ebook img

DTIC ADA539503: Evaluation of Protease Inhibitors and an Antioxidant for Treatment of Sulfur Mustard-Induced Toxic Lung Injury PDF

0.72 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA539503: Evaluation of Protease Inhibitors and an Antioxidant for Treatment of Sulfur Mustard-Induced Toxic Lung Injury

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 2009 Open Literature 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Evaluation of protease inhibitors and an antioxidant for treatment of sulfur mustard-induced toxic lung injury 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Anderson, DR, Taylor, SL, Fetterer, DP, Holmes, WW , Sc, Filipiak, KT, Bloom, JC and 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AUNSD A ArDmDyR MESeSd(iEcaSl) Research Institute of Aberdeen Proving Ground, MD Chemical Defense 21010-5400 USAMRICD-P08-002 ATTN: MCMR-CDT-T 3100 Ricketts Point Road 9. SPONSORING / MONITORING AGENCY NAME(S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) US Army Medical Research Aberdeen Proving Ground, MD AInTstTitNut:e M ofC CMhRem-UicVa-lP DNe fense 21010-5400 ATTN: MCMR-CDZ-I 11. SPONSOR/MONITOR’S REPORT 3100 Ricketts Point Road NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Published in Toxicology, 263, 41–46, 2009 14. ABSTRACT See reprint. 15. SUBJECT TERMS Sulfur mustard, Lung injury, Pulmonary function, Treatment 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Dana R. Anderson a. REPORT b. ABSTRACT c. THIS PAGE UNLIMITED 6 19b. TELEPHONE NUMBER (include area UNLIMITED UNLIMITED UNLIMITED code) 410-436-1945 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Toxicology263(2009)41–46 ContentslistsavailableatScienceDirect Toxicology journal homepage: www.elsevier.com/locate/toxicol Evaluation of protease inhibitors and an antioxidant for treatment of sulfur mustard-induced toxic lung injury DanaR.Andersona,∗,StephanieL.Taylorb,DavidP.Fetterera,WesleyW.Holmesa aMedicalToxicologyBranch,AnalyticalToxicologyDivision,U.S.ArmyMedicalResearchInstituteofChemicalDefense,3100RickettsPointRoad, AberdeenProvingGround,MD21010,USA bUniversityofDelawareSchoolofNursing,McDowellHall,25NorthCollegeAvenue,Newark,DE19716,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Sulfurmustard(SM)-inducedlunginjuryhasbeenassociatedwithproteaseactivation,oxidativeinjury Received1April2008 andinflammatoryresponseculminatingintissuenecrosis.Theproteaseinhibitorsaprotininandilo- Receivedinrevisedform25July2008 mastatandtheantioxidanttroloxwereevaluatedforefficacyinamelioratingSM-inducedlunginjury. Accepted19August2008 Anesthetizedspontaneouslybreathingrats(N=6–8/group)wereintratracheallyintubatedandexposed Availableonline21September2008 to1.4mg/kgSM(0.35mgSMin0.1mlofethanol)orethanolalonebyvaporinhalationfor50min.At 1minbeforetheexposureratsweretreatedwithoneofthefollowing:intravenousaprotinin,4.4mg/kg; Keywords: intraperitoneal(ip)ilomastat,25mg/kg;oriptrolox,500(cid:2)g/kg.Aprotinin-treatedanimalsreceivedsup- Sulfurmustard plemental2.2mg/kgdosesat1minand6hpost-exposure(PE).Awholebodyplethysmographsystemwas Lunginjury Pulmonaryfunction usedtomonitorpulmonaryfunction(PF)parametersfor1hbeforeexposure(baseline),andfrom5–6and Treatment 23–24hpost-exposure.SMinhalationcausedsignificantincreasesinseveralPFparameters,includingtidal volume,peakinspiratoryflow,peakexpiratoryflow,endexpiratorypauseandenhancedpause.Consistent withthereporteddevelopmentofSM-inducedpathology,thesechangeswereminimalatthe5–6-htime andsignificantatthe23–24-htimepoint.Atthelatertimeitisknownfrompreviousworkthatairways arebecomingobstructedwithloosecellulardebris,damagedcellsandexudate,whichcontributedtothe changesinPFparameters.TreatmentwithaprotininorilomastateliminatedthesePFchanges,yielding resultscomparablewithcontrolsforeachoftheseparameters.LunglavagefluidanalysisshowedthatSM causedasignificantincreaseintotalprotein(TP)andinthecytokinesIL-1(cid:3)andIL-13.Aprotinintreat- mentpreventedtheincreasesinTPandIL-1(cid:3)production,ilomastatpreventedtheincreasedproduction ofIL-13,andtroloxtreatmentdidnotsignificantlypreventtheSM-relatedincreasesinTP,IL-1(cid:3)orIL-13. Histopathologicexaminationoflungtissue24hpost-exposureshowedminimalalveolareffectscausedby SM,whiledamagetobronchiolarregionswasmuchmoresevereduetothehighlyreactivenatureofSM. WhileaprotininandilomastatbothalleviatedthePFperturbations,surprisinglyonlyaprotininreduced theobservedpathology,bothgrosslyandhistologically.Theseearlyresultsindicatethattreatmentwith aprotininandtoalesserextentilomastatreducessomeofthedirectinflammatoryresponseanddamage associatedwithSM-inducedlunginjury. ThisresearchwassupportedbytheDefenseThreatReductionAgency–JointScienceandTechnology Office,MedicalS&TDivision. PublishedbyElsevierIrelandLtd. 1. Introduction individualincapacitatedfordaystomonths,dependingonthedose. This not only removes the individual from vital duties, but also Sulfurmustard(2,2-dichlorodiethylsulfide,SM)isachemical placesastrainonthemedicalsystem.Duetotheavailability,ease warfareagentthatremainsathreattothetacticalstrategiesofthe ofproductionandstorage,persistenceandstability,SMisconsid- United States Army and the health of the US soldier. More than eredapotentialterroristagentthatposesathreattothecivilian lethality,SMcausesdebilitatingeffectsthatcanleaveanexposed populationaswell.Despitedecadesofresearch,nocompletelysat- isfactoryexplanationofthetoxicactionofSMexists,andasaresult, the development of an effective antidote has not been realized (Papirmeisteretal.,1991). ∗ Correspondingauthor.Tel.:+14104361945. Respiratory damage resulting from SM inhalation exposure is E-mailaddresses:[email protected](D.R.Anderson), dose-dependent and latent in onset. Inhalation of low to mod- [email protected](S.L.Taylor),[email protected](D.P.Fetterer), [email protected](W.W.Holmes). erate levels of SM primarily affects the upper respiratory tract 0300-483X/$–seefrontmatter.PublishedbyElsevierIrelandLtd. doi:10.1016/j.tox.2008.08.025 42 D.R.Andersonetal./Toxicology263(2009)41–46 with alveolar damage occurring only with high dose exposures 2. Methods (Papirmeisteretal.,1991).Insevereexposures,SMmayenterthe circulatorysystemandaffectotherorgansystems,suchasthebone 2.1. Animals marrow and lymphatic tissue. The associated suppression of the Malerats(Crl:CDSDBR),weighing230–260g,werepurchasedfromCharles immunesystemleavesanexposedindividualsusceptibletoinfec- RiverLaboratoryandmaintainedinananimalcarefacilitythatisfullyaccreditedby tion.ThecombinedeffectofSM-inducedrespiratorylesionsand theAssociationforAssessmentandAccreditationofLaboratoryAnimalCareInterna- infections secondary to SM-related immunosuppression such as tional.Inconductingtheresearchdescribedinthisreport,theinvestigatorsadhered tothe“GuideforCareandUseofLaboratoryAnimals,”revised1996. bronchopneumonia has been documented as the leading cause ofmortalityinWWI(Papirmeisteretal.,1991)andtheIran/Iraq 2.2. Intubation&SMexposure war(Willems,1989).Long-termeffectsofSMinhalationexposure include the development of chronic obstructive pulmonary dis- Thisexposuremodelhaspreviouslybeendescribed,andtheSMdoseemployed ease(mustardlung),bronchiectasis,asthma,andfibrosis(Emadand hasbeenshowntoproduceconsistent,non-lethalpathologyat24hpost-exposure (Andersonetal.,1996).SMwasdilutedto3.5mgml−1inabsoluteethanol.Ratswere Rezaian,1997). anesthetizedwithanintramuscularly(im)administeredcombinationofketamine Although not fully understood, SM-induced cytotoxicity is (80mg/kg)andxylazine(10mg/kg),andintubatedwithamodifiedglassPasteur attributedtoitsalkylatingproperties.Thelipophiliccharacteristics pipette(ca.5cmlong)usingalaryngoscopetovisualizethelarynxandapieceof ofSMallowittoreadilycrosscellularmembranesandreactwith PE90tubingasaguidetube.Thelengthoftheglassendotrachealtubewassufficient fordistalplacementinthetracheaatthepointofthelarynxandthebifurcationof manybiologicallyimportantmolecules,suchasDNA,RNA,proteins thetrachea.Onceinplacetheendotrachealtubewassecuredbywrappingapiece andothermembranecomponents.ThedownstreameffectsofSM- ofporoustapearoundthetubeandtherostrumoftherat.Aglassendotracheal inducedDNAalkylationhavebeenpostulatedtoincludeanincrease tubewasnecessarytominimizeabsorptionofSM.100(cid:2)lofSM(0.35mg)inabso- inproteaseinductionandactivation(Papirmeisteretal.,1991).Sev- luteethanolorethanolalone(control)wasplacedinawaterjacketed(37◦C)glass eralinvestigatorshaveprovidedsupportingevidencefortherolefor vaporgenerator(customfabricatedbyAtmarGlass,KennettSquare,PA),andspon- taneouslybreathingratswereconnectedtothisdeviceandexposedfor50min. proteasesinthepathogenesisofSM-induceddamage.Thesestud- Bytheendoftheexposureperiod,theSMinethanolwascompletelyvaporized iescoverawiderangeofproteaseclassesincludingserine,cysteine, andinhaled.Thispassiveexposuresystemincludesaninletone-wayrespiratory andmatrixmetalloproteases(Woessneretal.,1990;Cowanetal., checkvalve(HansRudolph,Inc.,KansasCity,MO)toinsurethattheonlysourceof 1991,1997;Casillasetal.,2000;Guignabertetal.,2005;Shakarjian airfortheanimalduringtheexposurewasthroughthevaporgenerator.Exhaled airpassesthroughatwo-waynon-rebreathingRudolphvalveandthenthrougha etal.,2006).Increasedproteolyticactivityhasbeenreportedwith charcoal-filteredbleachtraptodecontaminateanyexhaledSM.Attheconclusion theexposuremodelusedherein(Cowanetal.,1997). ofthe50-minexposure,theratsweredisconnectedfromthevaporgenerator,the InadditiontoDNAalklyation,SMmayreactwithanddeplete endotrachealtubewasremoved,andtheratswerereturnedtotheircage. reducedglutathione(GSH)levels.GSHisamoleculethatisinvolved in the detoxification of endogenous and exogenous sources of 2.3. Treatment reduced oxygen radicals (Papirmeister et al., 1991). Free oxygen Ratswereassignedtooneoffivetreatmentgroups(N=6–8):ethanolexposed/no radicals react with membrane phospholipids, creating lipid per- treatment (control); SM-exposed/no treatment; SM-exposed/aprotinin-treated; oxides that attack adjacent lipids. This chain reaction can lead SM-exposed/ilomastat-treated; SM-exposed/trolox-treated. 1min prior to SM to alterations in membrane fluidity, loss of membrane protein exposureratsweretreatedwithaprotinin(SIGMA,St.Louis,MO),4.4mg/kg,intra- function, disruption of membrane integrity and ultimately cell venously(iv);ilomastat(QuickMedTechnologies,Inc.,Gainesville,FL),25mg/kg, intraperitoneally(ip);ortrolox(SIGMA,St.Louis,MO),500(cid:2)g/kg,ip.Tomaintaina death. Anderson et al. (1993) reported that SM may affect lungs sufficientdoseofcirculatingaprotinin(half-life0.7h;Levyetal.,1994)ratsassigned byfreeradical-mediatedmembraneandtissuedamage.Thisstudy tothistreatmentgroupwereadministeredadditional2.2mg/kg,ivinjectionsat identifiedthegenerationofanascorbylradicalat1and24hpost- 1minand6hPE.Thetotalaprotinindose(8.8mg=∼80,000KIU)iswithintheclini- exposure (PE) and thiobarbituric acid reactive products (TBARs) callyrelevantdoserangeof60,000–120,000KIU/kg,andwasusedbyAsimakopoulos etal.(2000),asananti-inflammatorydoseinrats.Thedoseofilomastatwasrecom- 24hPEinbronchoalveolarlavagefluid(BALF),whichindicatedthat mendedtobyDr.RichardGalardyfromQuickMedTechnologies,asadosetousewith lipidperoxidationandmembranedamagehadoccurredinresponse asystemicinjectioninrats.Duetotheslowclearanceofilomastat(half-life5–6h), toSMinhalation. wefeltonedosewasadequateforthesepreliminarystudies.Thedosefortroloxwas Epithelial and other cell type damage seen in SM toxicity is fromKumaretal.(2001),whoreportedincreasedsurvivaltimesusingtroloxagainst associatedwiththereleaseofextracellularproteasesandoxidative sulfurmustardinhalationinjury.Intheirstudytroloxwasgivenoncein24h,there- forewefollowedthissameschedule.Alldrugswerepreparedinphosphatebuffered radicalsthatareresponsibleforthemajorityofallinflammatory, saline. coagulative,andtissueremodelingprocessespluscellularmem- branedestruction(Cowanetal.,1997;PutnamandRoyston,2003; 2.4. Wholebodyplethysmography(WBP) Papirmeisteretal.,1991).Undernormalornon-diseasedphysio- logical states there is a balance between protease inhibitors and A Buxco unrestrained WBP system with Biosystems XA software (Buxco ResearchSystems,Wilmington,NC)wasusedtomonitorpulmonaryfunction(PF) proteasesaswellastheoxidizedandreducedmolecules.However, parametersinconsciousrats.Theseparametersincludedtidalvolume,peakinspi- inacutetissueinjurythesebalancescanbeoffset,resultinginan ratoryflow,peakexpiratoryflow,endexpiratorypause,andenhancedpause,an environmentdominatedbyproteasesandfreeradicals.Moreover, indirectmeasureofbronchoconstriction.Priortoethanol(vehiclecontrols)orSM Guignabertetal.(2005)showedthatlevelsoftissueinhibitorsof exposure,ratswereplacedintheWBPchambersforatotalof2h(1hforaccli- mationand1hfordatacollection)toestablishabaselineforPFparameters.At metalloproteases(TIMPS)werenotsufficienttorepressincreased theconclusionofeachSMexposure,theratswereplacedintheiroriginalcages gelatinase activity in SM-induced respiratory lesions in guinea torecoverfromanesthesia.FourhourPEtheratswereplacedintheWBPcham- pigs. bersagainandallowedtoacclimatefor1h;PFdatawasrecordedfrom5to6h Proteaseinhibitorsandfreeradicalscavengershavebeenprevi- post-exposure.Thefollowingday,PFparameterswereassessedfor1haspreviously ouslysuggestedandtestedaspotentialtreatmentsforSM-induced described,throughthe24-htimepoint.Datawereaveragedbygroupforeach1-h datacollectionperiod. injury with some success in both in vitro and in vivo models (Lindsayetal.,1996;Cowanetal.,1997,2002;Guignabertetal., 2.5. Bronchoalveolarlavage(BAL) 2005).Therefore,theaimofthisstudywastofurthertesttheeffi- cacyofsupplementaladministrationofotherproteaseinhibitors Twenty-fourhourPE,ratsweredeeplyanesthetized,abloodsamplewasdrawn fromthedorsalvenacava,andthentheratswereexsanguinatedbyclippingthevena andanantioxidantcompound,includingthebroadspectrumpro- cavaanddescendingaorta.Differentialbloodcellcountswereperformedusinga teaseinhibitorsaprotininandilomastatandtheantioxidanttrolox CELL-DYN3500(AbbottLaboratories,AbbottPark,IL).Thetracheawasisolated, againstSM-inducedpulmonarytoxicity. anda16ga.gavageneedlewasintroducedintothetracheaandsecuredusing3/0 D.R.Andersonetal./Toxicology263(2009)41–46 43 suture.Thechestcavitywasopenedandthetrachea/heart/lungblockwasremoved. thesection.Incidenceofpathologywasnotedforthefourrightlungsectionsand PE50tubingwaspassedthroughthegavageneedleandtiedintotheleftmainstem thenrecordedassectionsshowingpathologyversustotalnumberofsections. bronchustoserveasacatheterforbronchoalveolarlavage.Theleftlungwaslavaged threetimeswith3-mlaliquotsofsaline,whichwascollectedvialow-pressurevac- 2.7. Biochemicalevaluation uum.Theleftlungwastiedoffandremovedfollowinglavage.TherecoveredBALF wasimmediatelypooledandcentrifuged(10minat300×g),andthesupernatant BALFsupernatantwasanalyzedfortotalprotein(TP),IL-1(cid:3),andIL-13.TPlev- wasremovedandstoredat−80◦Cuntilbiochemicalanalyseswereperformed. elsweredeterminedusingaBio-RadProteinAssay(Hercules,CA)modifiedfora 96-wellplate.Absorbancewasreadat595nmusingaSPECTRAmaxPlus384(Molec- 2.6. Histopathology ularDevices,Sunnyvale,CA),microplatespectrophotometer.Theconcentrationsof cytokinesIL-1(cid:3)andIL-13weredeterminedusingaLinco-plexmulti-plexedcytokine Immediatelyfollowinglavage,thetracheaandthefourrightlunglobeswere assay(Linco,St.Charles,Missouri)andanalyzedonaBio-Plexmultiplexanalyzer removedandformalinfixed(10%bufferedphosphateformalin,FisherScientific, (Bio-Rad,Hercules,CA). Pittsburgh,PA)forhematoxylinandeosinstainingandevaluation.Allrightlung lobes(cranial,medial,caudal,andaccessory)wereassessedforextentofdamage 2.8. Dataanalysis basedonthefollowingparameters:bronchialexudate,bronchialepithelialnecro- sis,bronchialpolymorphonuclear(PMN)infiltrates,bronchialassociatedlymphoid Thedataareshownmean±S.E.forbothtextandfigures.Groupcomparisons tissue(BALT)necrosis,alveolarexudate,alveolarhemorrhage,alveolarPMNinfil- wereconductedusingone-wayANOVAfollowedbyTukey’spost-hocmultiplecom- trates,alveolarepithelialnecrosis,andperivascularfibrin/edema.Eachparameter parisontest.PathologydatawereanalyzedacrossgroupswithaChisquaretest.If wasgivenascoreof0through3:0=normal;1=minimal,presentin1–10%ofthe itwassignificant,allgroupswerecomparedtoEtOHandalsotoHDaloneusinga section;2=moderate,presentin10–50%;3=severe,presentingreaterthan50%of Fisher’sexacttest.Significantresultswereidentifiedwhenp<0.05. Fig.1. PulmonaryfunctionparametersmeasuredontheBuxcowholebodyplethysmographysystem.SMinhalationcausedsignificantincreases(*)relativetocontrol(EtOH) inseveralparametersat24hpost-exposure,includingtidalvolume(A),peakinspiratoryflow(B),peakexpiratoryflow(C),endexpiratorypause(D)andenhancedpause(E). Treatmentwithaprotinin,ilomastatandtoalesserextenttroloxamelioratedtheseeffects. 44 D.R.Andersonetal./Toxicology263(2009)41–46 3. Results 3.1. Pulmonaryfunctionparameters SMinhalationcausedsignificantincreasesinseveralparame- ters,includingtidalvolume,peakinspiratoryflow,peakexpiratory flow,endexpiratorypauseandenhancedpause(Fig.1A–E).Con- sistentwiththereporteddevelopmentofSM-inducedpathology, these changes were minimal at the 5- to 6-h timepoint and sig- nificant at the 23- to 24-h timepoint. It is known from previous work (Anderson et al., 1996) that by 24h, airways are becoming obstructedwithloosecellulardebris,damagedcellsandexudate. ThesephysicalobstructionsmaycontributetothechangesinPF parametersobservedhere.Increasesintheseparametersarecon- sistentwiththedeepgaspingbreathsoftheSM-exposedanimals havingtoworkhardertobreaththroughpartiallyoccludedairways. Treatmentwithaprotininorilomastateliminatedthesechanges, yieldingresultscomparablewithethanolcontrolsforeachofthese parameters.Theantioxidanttroloxgenerallywasnotaseffectiveas thetwoproteaseinhibitors,reducingonlytheSMeffectontidalvol- ume(Fig.1A),endexpiratorypause(Fig.1D)andenhancedpause (Penh,Fig.1E). 3.2. Biochemicalevaluation We,aswellasothers,haveusedBALFtocharacterizethetempo- ralbiochemicalchangeswithinthebronchoalveolarregionofthe Fig.2. Biochemicalassaysonlunglavagefluid.Totalprotein(TP)(A);interleukin1 lungfollowingaSMexposure,andthesechangesarequantifiedto alpha(IL-1(cid:3))(B);andInterleukin13(IL-13)(C).N=6–8pergroup.(*)Significantly determinetheefficacyoftestedtherapeuticcompounds(Anderson differentfromEtOH.(**)SignificantlydifferentfromEtOHandSM. etal.,1997;Cowanetal.,1997;Kumaretal.,2001;Guignabertetal., 2005).BALisatechniquethatcanbeextremelyusefulinthebio- inTP,IL-1(cid:3)andIL-13(Fig.2A–C).Troloxdidreducethedepletion chemicalassessmentofpulmonaryhealth(Henderson,1989).This by SM of total glutathione levels in BALF; however, due to high techniquesamplestheepithelialliningofthelungs,whichisthe variabilityofthisdataitwasnotstatisticallysignificant(datanot bodyfluidclosesttothesiteofinjurycausedbyinhaledtoxicants, shown). and allows for the evaluation/quantification of the level of cyto- toxicityorinflammationinducedbyatoxicant(Henderson,2005). ResultsfromtheanalysisofBALFwerelessconsistentthanthePF 3.3. Histopathology data.SMcausedasignificantincreaseinTP,IL-1(cid:3)andIL-13.Apro- tinintreatmentpreventedtheincreasesinTPandIL-1(cid:3)production, Histology data show minimal alveolar effects caused by SM, ilomastatpreventedtheincreasedproductionofIL-13,andtrolox which is consistent with previous reports using this model treatment did not significantly prevent the SM-related increases (Anderson et al., 1996), while damage to bronchiolar regions is Fig.3. GrossviewofinjurytoratlungsexposedtoSMorEtOHandremoved24hpost-exposure.(A)SM-exposed(H–heart).Notethegrosshemorrhage(arrows)onthe leftlung(justabovetheheart)andontherightmedialandcaudallobes(lowerleftoftheheart).(B)SM+aprotinin(H–heart).Notetheabsenceofhemorrhageinthelung lobes(shownarerightmedial,caudal,accessoryandleft).ThesuturepicturedwasusedtosecurethePE50tubingforlavage.(C)Control–EtOH-exposed.Asmallsectionof theheartisvisibleontheextremeright.Nohemorrhageisvisibleontheleftlungorthethreevisiblerightlobes. D.R.Andersonetal./Toxicology263(2009)41–46 45 thesignificantlylowerbronchiolareffects(Fig.4),whichindicate less direct injury to airways, and in clearer airways, which was corroboratedbythePFdata. Ilomastat is a broad spectrum matrix metalloprotease (MMP) inhibitorthatexertsitsinhibitoryeffectsonMMPsthatarechar- acterized by a zinc binding motif in their active site. MMPs are involved in the degradation of the extracellular matrix compo- nents,growthfactorsandreceptorsthatareessentialforhealing (Schultz et al., 1992). MMP-mediated degradation of the extra- cellular components results in the activation of chemokines as well as MMP-9, which together produce inflammation and con- tributetothepathogenesisofSMtoxicity(Sabourinetal.,2002). Fig.4. PercentincidenceofhistopathologyinratlungsexposedtoEtOHorSM24h Guignabertetal.(2005)foundthatMMP-9levelsincreasedinBALF post-exposure.Incidenceofpathologywasnotedforthefourrightlungsections of SM-exposed guinea pigs, which could be associated with air- andthenrecordedassectionsshowingpathologyversustotalnumberofsections. N=6–8rats/treatmentgroup.(*)SignificantlydifferentfromEtOH.(+)Significantly wayepithelialdetachment.Severalstudieshavedemonstratedthe differentfromSM.Alv–fourmeasuresofinjuryinthealveolarregionofthefour abilityoftissueMMPsandilomastattoinhibitSM-inducedMMP-9 rightlunglobes–alveolarepithelialnecrosis,alveolarexudate,alveolarhemorrhage, activity,inflammationlevels,andairwayepitheliallesionsinguinea alveolarPMNinfiltrates;BALT–bronchialassociatedlymphoidtissue;Bron–three pigspretreatedintratracheallyorsubcutaneouslywithdoxycycline measuresofinjuryinthebronchiolarregionofthefourrightlunglobes.Themea- sureswerebronchiolarepithelialnecrosis,bronchiolarexudate,bronchiolarPMN (Guignabert et al., 2005), microvesicle formation in human skin infiltrates;Edema–perivascularedemavaluesinthefourrightlunglobes. cells treated with ilomastat (Schultz et al., 1992), and reduced eye opacity and bullae scores in rabbits treated with ilomastat (Schultzetal.,1992).Wepreviouslydemonstratedincreasesinpro- much more severe due to the highly reactive nature of SM and inflammatorycytokinesandlipidperoxidationinratsfollowingSM itseffectonepithelialtissuesoftheconductingairways.Aprotinin inhalation(Andersonetal.,2006).Fig.1showsseverallungfunction andilomastatbothalleviatedthePFperturbations;however,only parameters where ilomastat treatment clearly ameliorated SM- aprotininreducedtheobservedpathology,bothgrossly(Fig.3)and inducedchanges.Pembertonetal.(2005)showedthataerosolized histologically(Fig.4).Troloxwasineffectiveagainstdevelopment ilomastatreducedMMP-mediatedchroniclungdegenerationand ofSM-inducedlungpathology. thepermanentlossofpulmonaryfunctionthatisassociatedwith emphysema in mice through the inhibition of macrophage and 4. Discussion neutrophilrecruitmentintothelungs.Inourbiochemicalanalysis of lavage fluid, ilomastat significantly reduced levels of the pro- Inthecurrentstudywehaveevaluatedthreecompounds,apro- inflammatorycytokineIL-13comparedtoSMalone(Fig.2C).IL-13 tinin, ilomastat and trolox, for efficacy against SM-induced lung isamediatoroftissuefibrosisandislinkedtoMMP-9levels(Leeet injury.Thesecompoundswereevaluatedwithvaryingdegreesof al.,2001),whichareinhibitedbyilomastat.WhileFig.1showseffi- effectivenessbyWBP,analysisofBALFandhistology.Ourresults cacyincrucialPFparameters,thiswasnotsupportedbyprevention indicate that aprotinin was the most effective of the three com- oflungpathology(Fig.4). poundsfollowedbyilomastat,andtroloxwastheleasteffective. Trolox is a water soluble vitamin E analog that is capable of Aprotininisaserineproteaseinhibitorthatfunctionsbyirre- penetrating cellular membranes where it can protect the cells versibly binding to proteases that contain a serine amino acid from oxidative damage. In the treatment of oxidative stress, the residueintheircatalyticsiteinhibitingtheactionsoftrypsin,plas- best antioxidant depends on the specific molecules causing the min,kallikrien,elastase,urokinase,andthrombininanincreasing stress and the cellular or extracellular location of these specific dose-dependentmanner,respectively(PutnamandRoyston,2003). molecules (Naghii, 2002). Since lipid peroxidation is considered Theseproteasesplayimportantcellularandhumoralrolesinhemo- a component of SM toxicity, an antioxidant that is active in cel- static dysfunction and activation of the inflammatory response lularmembranesmighteliminateoratleastameliorateoxidative byactivatingcytokines,coagulationfactors,fibrinolytic,andcom- membranedamage.Bhattacharyaetal.(2006)showedthatinSM- pliment cascades. Prior studies using our model have shown a exposedhumanperipheralbloodlymphocytespretreatmentwith time-dependent up-regulation of gene transcripts that are acti- troloxsignificantlyreducedcelldeath,lactatedehydrogenase(LDH) vatedbyserineproteases,suchascoagulationfactorIIIandtissue leakage,andperoxidegeneration.Trolox,ip,hasalsobeenreported factor (Anderson et al., 2000). Aprotinin (Trasylol®) is an FDA toincreasesurvivaltimeandprotectthelungfromoxidativedam- approveddrugusedintransplantandorthopedicsurgerytoreduce age following SM challenge in mice (Kumar et al., 2001). Using perioperativebleedingandhemorrhaging.Inrecentstudiesusing ourmodelsystemwehaveobservedareductioninBALFLDHand thismodel,andasdescribedhere,wehaveobservedthataprotinin (cid:4)-glutamyl transferase (GGT) levels and a reduction in peroxide was able to control reactive oxygen species generation (Holmes generation following SM inhalation with concurrent administra- etal.,2006),eliminateSM-inducedgrosspulmonaryhemorrhag- tionoftrolox(AndersonandHolmes,2005;Schrothetal.,2006). ing up to 24h post-exposure (Fig. 3), and restore lung function TheuseofantioxidantstoprotectagainstSMlunginjuryhasbeen parameterstonearcontrollevels(Fig.1).Theroleofaprotininin investigatedbyseveralotherswithvariedsuccess.McClintocket maintainingalveolar/capillarybarrierintegritywasalsoevidentin al.(2006)usedintratracheallyinstilledliposomeencapsulatedN- reduced TP levels (Fig. 2A) in BALF analysis. Further evidence of acetylcysteinetoreduce2-chloroethyl-ethylsulfide(CEES)injury thiswasshownhistologically(Fig.4)wheresignificantlyreduced toratlungs.Wepreviously(Andersonetal.,2000)usedN-acetyl perivascularedemawasobserved.Thisalsocouldbedue,inpart,to cysteinewithsomesuccessagainstsulfurmustard-inducedlung thereducedBALTnecrosis.SinceoneroleofBALTistodrainexcess injury in rats. Wilde and Upshall (1994) evaluated several cys- fluids,plasmaproteinandparticulatematterfrompulmonarytis- teine esters that provided some protection against SM in an in sue(WitschiandNettasheim,1982),injurytoBALTcouldleadto vitromodel.Inthisstudy,troloxwasgenerallyineffectiveagainst edemaandrespiratoryinsufficiency(Andersonetal.,1996;Baum, SM-inducedchanges.WedidobserveareductioninSM-induced 1974).Histologically,protectionbyaprotininwasmostevidentin changesinthelungfunctionparameterstidalvolume(Fig.1A),end 46 D.R.Andersonetal./Toxicology263(2009)41–46 expiratorypause(Fig.1D)andenhancedpause(Fig.1E)withtrolox, Calvet,J.H.,Jarreau,P.H.,Levame,M.,D’Ortho,M.P.,Lorino,H.,Harf,A.,Macquin- buttheseweretheonlypositiveresultsnoted.Thenegativeresults Mavier, I., 1994. Acute and chronic respiratory effects of sulfur mustard withtroloxinthisstudymaybetheresultofthesinglerelatively intoxicationinguineapig.J.Appl.Physiol.76,681–688. Casillas,P.R.,Kam,J.C.,Powers,C.-M.,2000.Serineandcysteineproteasesinsul- lowdoseofdruggiven.Wehopetoaddressthisdeficiencyinfuture furmustard-exposedhairlessmouseskin:Enzymaticactivityandinhibition work. profiles.J.Toxicol.Cutan.Ocul.Toxicol.19,137–151. Thedosesandroutesofdrugadministrationusedinthisstudy Cowan,F.M.,Anderson,D.R.,Broomfield,C.A.,Byers,S.L.,Smith,W.J.,1997.Biochemi- calalterationsinratlunglavagefluidfollowingacutesulfurmustardinhalation: werechosenbasedonwhatwasfoundintheliterature(aprotinin II.Increaseinproteolyticactivity.Inhal.Toxicol.9,53–61. andtrolox)ormanufacturersrecommendations(ilomastat).While Cowan,F.M.,Broomfield,C.A.,Smith,W.J.,1991.Effectofsulfurexposureonpro- theseprovidedastartingpointforthisstudy,usingidenticalroutes teaseactivityinhumanperipheralbloodlymphocytes.CellBiol.Toxicol.7(3), 239–248. ofadministrationwouldhavebeendesirable.Thenextstepinthis Cowan,F.M.,Broomfield,C.A.,Smith,W.J.,2002.Suppressionofsulfurmustard- workwillbetoevaluatethesecompoundsusingcommonroutesof increasedIL-8inhumankeratinocytecellculturesbyserineproteaseinhibitors: administration,eitherivorinhalationtreatment.Thecompounds implicationsfortoxicityandmedicalcountermeasures.CellBiol.Toxicol.18(3), 175–180. administered ip were not as efficacious as the aprotinin, so we Emad,A.,Rezaian,G.R.,1997.Thediversityoftheeffectsofsulfurmustardgasinhala- willevaluatethemusingthesamerouteasaprotinin.Wealsofeel tiononrespiratorysystem10yearsafterasingle,heavyexposure:analysisof that aiming the treatment directly at the site of injury, i.e., via 197cases.Chest112,734–738. Guignabert,C.,Taysee,L.,Calvet,J.-H.,Planus,E.,Delamanche,S.,Galiacy,S.,d’Ortho, inhalation,maysignificantlyimprovelungfunctionoverthesys- M.-P.,2005.Effectofdoxycyclineonsulfurmustard-inducedrespiratorylesions temicadministrationmodels.Asstatedpreviously,Pembertonet inguineapigs.Am.J.Physiol.Cell.Mol.Physiol.289,L67–L74. al.(2005)demonstratedefficacywithaerosolizedilomastatagainst Henderson,R.F.,2005.Useofbronchoalveolarlavagetodetectrespiratorytracttox- emphysema-inducedlossofpulmonaryfunction. icityofinhaledmaterial.Exp.Toxicol.Pathol.57,155–159. Henderson,R.F.,1989.Bronchoalveolarlavage:atoolforassessingthehealthstatus Inadditiontothedifferingroutesofadministration,inourfuture ofthelung.In:McClellan,R.O.,Henderson,R.F.(Eds.),ConceptsinInhalation workwewillinvestigatelonger-termeffects(upto28daysPE)of Toxicology.RavenPress,NewYork,pp.253–282. SMinhalation.Allofourpreviousworkhasbeenaimedatdocu- Holmes,W.W.,Schroth,J.M.,Anderson,D.R.,2006.Evaluationofaprotininasatreat- mentforsulfurmustard(SM)-inducedlunginjury.FASEBJ.(SanFrancisco,CA) mentingthedevelopmentoftheSM-inducedlunginjuryupto24h. 20(April),A672. Calvetetal.(1994)documentedrespiratoryeffectsinguineapigsup Kumar,O.,Sugendran,K.,Vijayaraghavan,R.,2001.Protectiveeffectofvariousantiox- to7dayspost-exposure.Inadditiontomeasuresdescribedinthis idantsonthetoxicityofsulphurmustardadministeredtomicebyinhalationor percutaneousroutes.Chem.Biol.Interact.134,1–12. report,weintendtoevaluatetheeffectoftherapiesonSM-induced Lee,C.G.,Homer,R.J.,Zhu,Z.,Lanone,S.,Wang,X.,Koteliansky,V.,Shipley,J.M.,Got- lungfibrosis(inadditiontoourroutinemeasures),whichEmadand wals,P.,Noble,P.,Chen,Q.,Senior,R.M.,Elias,J.A.,Sep172001.Interleukin-13 Rezaian(1997)indicateistypicalofSMinhalationexposure. inducestissuefibrosisbyselectivelystimulatingandactivatingtransforming growthfactorbeta(1).J.Exp.Med.194(6),809–821. Levy,J.,Bailey,J.,Salmenpera,M.,1994.Pharmacokineticsofaprotinininpreopera- Conflictofinterest tivecardiacsurgicalpatients.Anesthesiology80,1013–1018. Lindsay,C.D.,Hambrook,J.L.,Smith,C.N.,Rice,P.,1996.Histologicalassessmentof theeffectsofpercutaneousexposureofsulfurmustardinaninvitrohumanskin None. systemandtherapeuticpropertiesofproteaseinhibitors.In:MedicalDefense Bioscience Review, USAMRICD, Baltimore, MD, May 12–16, p. 148, AD No. A321840. Acknowledgement McClintock,S.D.,Hoesel,L.M.,Das,S.K.,Till,G.O.,Neff,T.,Kunkel,R.G.,Smith,M.G., Ward,P.A.,2006.Attenuationofhalfsulfurmustardgas-inducedacutelung Theauthorswouldliketoacknowledgethecontributionofthe injuryinrats.J.Appl.Toxicol.26(2),126–131. Naghii,M.R.,2002.Sulfurmustardintoxication,oxidativestress,andantioxidants. Veterinary Medicine and Surgery Branch animal caretaker staff, Mil.Med.167(7),573–575. especiallyTiffanieWhitty,TabithaVenker,KathieKing,andMered- Papirmeister,B.,Feister,A.J.,Robinson,S.I.,Ford,R.D.,1991.MedicalDefenseAgainst ith Moyer for coordinating and carrying out animal movements MustardGas:ToxicMechanismsandPharmacologicalImplications.CRCPress, BocaRaton,FL. necessaryforthisproject. Pemberton, P.A., Cantwell, J.S., Kim, K.A., Sundin, D.J., Kobayashi, D., Fink, J.B., Shapiro,S.D.,Barr,P.J.,2005.Aninhaledmatrixmetalloproteaseinhibitorpre- ventscigarettesmoke-inducedemphysemainthemouse.COPD2(3),303– References 310. Putnam,J.B.,Royston,D.(Eds.),2003.EvaluatingtheRoleofSerineProteaseInhi- Anderson,D.R.,Yourick,J.J.,Arroyo,C.M.,Young,G.D.,Harris,L.W.,1993.UseofEPR bitionintheManagementofTumorMicrometastases.Oncol.17(10),suppl.10, spin-trappingtechniquestodetectradicalsfromratlunglavagefluidfollowing pp.1–32. sulfurmustardexposure.In:Proceedingsofthe1993MedicalDefenseBioscienc Sabourin,C.L.,Danne,M.M.,Buxton,K.L.,Casillas,R.P.,Schlager,J.J.,2002.Cytokine, Review,USAMRICD,AberdeenProvingGround,MD,May1,pp.113–121,ADNo. chemokine,andmatrixmetalloproteinaseresponseaftersulfurmustardinjury A275667. toweanlingpigskin.J.Biochem.Mol.Toxicol.16(6),263–272. Anderson,D.R.,Yourick,J.J.,Moeller,R.B.,Petrali,J.P.,Young,G.D.,Byers,S.L.,1996. Schroth,J.M.,Holmes,W.W.,Anderson,D.R.,2006.EvaluationofTrolox,awater Pathologicalchangesinratlungsfollowingacutesulfurmustardinhalation. solubleVitaminEanalog,asatreatmentforsulfurmustardinhalationinjury. Inhal.Toxicol.8,285–297. In:MedicalDefenseBioscienceReview,USAMRICD,HuntValley,MD,June,pp. Anderson,D.R.,Byers,S.L.,Clark,C.R.,Schlehr,J.A.,1997.Biochemicalalterationsin 23–28. ratlunglavagefluidfollowingacutesulfurmustardinhalation.Inhal.Toxicol.9, Schultz,G.S.,Strelow,S.,Stern,A.,Chegini,N.,Grant,M.B.,Galardy,R.E.,Grobelny, 43–51. D.,Rowsey,J.J.,Stonecipher,K.,Parmley,V.,Khaw,P.T.,1992.Treatmentofalkali- Anderson,D.R.,Byers,S.L.,Vesely,K.R.,2000.Treatmentofsulfurmustard(HD)- injuredrabbitcorneaswithasyntheticinhibitorofmatrixmetalloproteinases. inducedlunginjury.J.Appl.Toxicol.20,S129–S132. Invest.Opthalmol.Vis.Sci.33(12),3325–3331. Anderson,D.R.,Holmes,W.W.,2005.Evaluationoftrolox,awatersolublevitaminE Shakarjian,M.P.,Bhatt,P.,Gordon,M.K.,Chang,Y.C.,Casbohm,S.L.,Rudge,T.L.,Kiser, analog,asatreatmentforsulfurmustard(SM)inhalationinjury.FASEBJ.(San R.C.,Sabourin,C.l.,Casillas,R.P.,Ohman-Strickland,P.,Riley,D.J.,Gerecke,D.R., Diego,CA)(March–April),91.4. 2006.Preferentialexpressionofmatrixmetalloproteinase-9inmouseskinafter Anderson,D.R.,Schroth,J.M.,Holmes,W.W.,2006.Evaluationofilomastat,amatrix sulfurmustardexposure.J.Appl.Toxicol.26(3),239–246. metalloproteaseinhibitor,asatreatmentforsulfurmustard(SM)inhalation Wilde,P.E.,Upshall,D.G.,1994.Cysteineestersprotectculturedrodentlungslices injury.FASEBJ.(SanFrancisco,CA)(April),429. fromsulphurmustard.Hum.Exp.Toxicol.13,743–748. Asimakopoulos, G., Thompson, R., Nourshargh, S., Lidington, E.A., Mason, J.C., Willems,J.L.,1989.Clinicalmanagementofmustardgascasualties.Ann.Med.Mil. Ratnatunga, C.P., Haskard, D.O., Taylor, K.M., Landis, R.C., 2000. An anti- Belg.3,S1–S61. inflammatory property of aprotinin detected at the level of leukocyte Witschi,H.,Nettasheim,P.(Eds.),1982.MechanismofRespiratoryToxicology,vol.1. extravasation.J.Thorac.Cardiovasc.Surg.120,361–369. CRCPress,BocaRaton,FL. Baum,G.L.(Ed.),1974.TextbookofPulmonaryDisease,seconded.Little,Brown, WoessnerJr.,J.F.,DannenbergJr.,A.M.,Pula,P.J.,Selzer,M.G.,Ruppert,C.L.,Higuchi, Boston,MA. K.,Kajiki,A.,Nakamura,M.,Dahms,N.M.,Kerr,J.S.,etal.,1990.Extracellular Bhattacharya, R., Tulsawani, R.K., Vijayaraghavan, R., 2006. Effect of trolox and collagenase,proteoglycanaseandproductsoftheiractivity,releasedinorgan quercetinonHD-inducedcytotoxicityinhumanperipheralbloodlymphocytes. culturebyintactdermalinflammatorylesionsproducedbysulfurmustard.J. IndianJ.Pharmacol.38,38–42. Invest.Dermatol.95(6),717–726.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.