1072 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME27 A Conserved Minimal Adjustment Scheme for Stabilization of Hydrographic Profiles PETERC.CHUANDCHENWUFAN DepartmentofOceanography,NavalPostgraduateSchool,Monterey,California (Manuscriptreceived25September2009,infinalform26January2010) ABSTRACT Ocean(T,S)dataanalysis/assimilation,conductedinthethree-dimensionalphysicalspace,isageneralized averageofpurelyobserveddata(dataanalysis)orofmodeled/observeddata(dataassimilation).Becauseof thehighnonlinearityoftheequationofthestateoftheseawaterandnonuniformverticaldistributionofthe observationalprofiledata,falsestaticinstabilitymaybegenerated.Anewanalyticalconservedadjustment schemehasbeendevelopedonthebaseofconservationofheat,salt,andstaticstabilityforthewholewater columnwithpredetermined(T,S)adjustmentratios.Asetofwell-posedcombinedlinearandnonlinear algebraicequationshasbeenestablishedandissolvedusingNewton’smethod.Thisnewschemecanbeused foroceanhydrographicdataanalysisanddataassimilation. 1. Introduction andr istheinsitudensitytothedepthoftheupperof thetwo adjacent levels z . The density inversion isde- Raw and averaged observational hydrographic data k finedbytheoccurrenceofthenegativevalueofE .The contain substantial regions with vertical density in- k minimumstaticstabilityisrepresentedbyE 5E .It versions. For example, Jackett and McDougall (1995) k min is not always possible to reach zero exactly due to the foundthattheannuallyaveragedfieldoftheoceanatlas precision limitations of the temperature and salinity of Levitus (1982) hadmore than 44%of thecasts pos- values used (Locarnini et al. 2006). As a result, the sessing static instability at least at one level. Here, the minimumvalueforthestaticstabilityisgivenby word ‘‘cast’’’ is used to denote a pair of vertical tem- peratureandsalinityprofiles.Awidelyusedconceptfor E $ E , k51,2, ... ,K, (2) staticstabilityEisdefinedbyLynnandReid(1968)as k min ‘‘the individual density gradient by vertical displace- whereE isthereferencevaluefortheminimumstatic ment of a water parcel (as opposed to the geometric min stability,whichisuser-defined.Ifstaticinstabilityoccurs density gradient).’’ For discrete samples (T , S ) at k k inanobservedoraveragedhydrographiccast[i.e.,(2)is depthz ,k51,2,...,K(kincreasingdownward),the k notsatisfied],thisprofileneedstobeadjusted. densitydifferencebetweentwoadjacentlevelsistaken The National Oceanographic Data Center (NODC) after one is adiabatically displaced to the depth of the usesalocalinteractive(T,S)separatedadjustmentmethod other.Computationally,E iscalculatedby k (Locarnini et al. 2006), which is based on the method E 5r(S ,T ,z )(cid:2)r(S ,T ,z ), proposedbyJackettandMcDougall(1995)withsome k k11 k11 k k k k modifications,tominimallyadjustunstabletemperature k51,2, ... ,K(cid:2)1, (1) and salinity profiles (hereafter referred to as the MA method) wherer(S ,T ,z )isthelocalpotentialdensityof k11 k11 k thelowerofthetwoadjacentlevelsbetweenz andz , k k11 x5(T ,T , ... , T , S ,S , ... ,S ) withrespecttotheupperofthetwoadjacentlevelsz , 1 2 K 1 2 K k intostableprofiles Correspondingauthoraddress:Dr.PeterC.Chu,NavalOcean AnalysisandPrediction(NOAP)Lab,NavalPostgraduateSchool, x1Dx5(T 1DT ,T 1DT , ... ,T 1DT , 833DyerRd.,Monterey,CA93940. 1 1 2 2 K K E-mail:[email protected] S 1DS ,S 1DS , ... ,S 1DS ). 1 1 2 2 K K DOI:10.1175/2010JTECHO742.1 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED JAN 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Conserved Minimal Adjustment Scheme for Stabilization of 5b. GRANT NUMBER Hydrographic Profiles 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School,Department of REPORT NUMBER Oceanography,Monterey,CA,93943 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 12 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 JUNE2010 CHU AND FAN 1073 AfterassumingTandSarelinear,theadjustmentisto thisexampleisthe18latitude–longitudeboxcentered solvetheproblem: at53.58S,171.58EfromLevitusetal.(1998).Thisison theNewZealandPlateau,withabottomdepthbelow MinimizekDxk subject to A(cid:3)(x1Dx) $ E , (3) min 1000 mandabove1100 m.ThemonthisOctober,dur- ingtheearlyaustralsummer.Thereisnotemperatureor wherethefinite-differenceapproximationofstabilityEk salinitydatawithinthechosen18box.Thus,theobjec- becomes the inner product of the matrix A and the tivelyanalyzedvaluesinthis18boxwillbedependenton profilevectorx1Dx.Obviously,matrixAdependson the seasonal objectively analyzed field and the data in the solution Dx to the minimization problem (3), im- nearby18gridboxes.Thereismuchmoretemperature plyingthattheconstraintsin(3)arenonlinear.Usually, datathansalinitydataontheNewZealandPlateaufor aniterationmethodisused. October. This contributes to six small (on the order of Before deciding which level to change, the values of 1022 kg m23) inversions in the local potential density ›T/›zand›S/›z,thegradientsoftemperatureandsalinity field calculated from objectively analyzed temperature betweentwoadjacentlevelsinvolvedintheinstability, andsalinityfields(Table1).AfterusingtheMAmethod, areexamined.Thishelpsdetermineifthetemperatureor theoriginalandadjustedprofilesfT ,S ,k51,2,..., k k salinityprofile,orboth,aretobechangedtostabilizethe KgareasshowninFig.1,andtheadjustedtemperature densityfield.If›T/›z,0,›S/›z,0,onlytemperatureis and salinity profiles are listed in Table 2. Readers are changed;if›T/›z.0,›S/›z.0,onlysalinityischanged; referred to appendix B of Locarnini et al. (2006) for andif›T/›z,0,›S/›z.0,bothtemperatureandsalinity detailed information on the stabilization procedures. fieldsareadjustedwithalocallineartrendtest(Locarnini The relative root-mean adjustment (RRMA) using the et al. 2006). Here, the z axis points upward. The prin- MAmethodcanberepresentedby cipleistostabilizethehydrographicprofileswithmini- mumadjustment. uvffiffiffiffiffiKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uvffiffiffiffiffiKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi The benefit of using the MA method can be easily tu1 (cid:2)(DT )2 tu1 (cid:2)(DS )2 identifiedfromcomparisonbetweentwooceanatlases: Kk51 k Kk51 k RRMA5 1 theocean atlasof Levitus (1982; withoutMA) andthe max(T )(cid:2)min(T ) max(S )(cid:2)min(S ) k k k k World Ocean Atlas 2005 (Locarnini et al. 2006; with 50.0712. (4) MA).Bothatlasesconsistofannuallyandmonthlyav- eraged vertical profiles of temperature and salinity on RRMA represents the mean adjustment relative to the aglobal18318gridat33verticallevels.Theoceanatlas rangeofaprofile.Thetotalheatandsaltchangesofthe ofLevitus(1982)hasconsiderablecastspossessingstatic watercolumnwithinthis18318gridboxareestimatedby instability; however, the World Ocean Atlas 2005 con- tainsnoprofilepossessingstaticinstability. ð0 ð0 Toeliminatethestaticinstability,theMAmethoddoes DQ5Ar c DTdz, D(salt)5A DSdz, 0 p notrequiretheconservationofheatandsalt.Becauseone (cid:2)H (cid:2)H of the ocean’s important roles in the earth’s climate is where r (51028 kg m23) is the characteristic density, heattransport,anadjustmentmadewithouttakingheat 0 c (54002 J kg21 K21) is the specific heat for the sea- conservationintoaccountmayleadtoerrorsinestimat- p water,H51000 m,andAistheareaofthegridbox, ingtheocean’simpactonglobalclimatechange.Inthis study,anewconservedschemeisdevelopedtosimulta- (cid:3)(cid:4)p 2 A5 R cosu, neouslyadjustthetemperatureandsalinityprofilesfrom 180 (T ,S )to(T 1DT ,S 1DS ).Asetof2Kalgebraic k k k k k k (linear and nonlinear) equations are established to get whereR(56370 km)istheearth’sradius,andu(553.58) (DT , DS ) on the base of heat and salt conservation, isthe latitude ofthe gridbox.The temperatureand sa- k K predetermined (DT /DS ) ratios (or called adjustment linityadjustments(DT,DS)areobtainedbycomparison k K ratios)foralllevels,andtheremovalofstaticinstability betweenTables1and2,theheatandsaltchangesofthe byadjustingE toE 1DE withacombinedconserva- watercolumnforthisgridboxarecalculatedby k k k tionandnonuniformincrementtreatment. DQ5(cid:2)7.0411 3 1017J, D(salt)5(cid:2)0.5443 3 1010kg. 2. Unconservedadjustment Becauseoneoftheocean’simportantrolesintheearth’s AnexampleasdescribedinappendixBofLocarnini climate is transporting heat fromlow to high latitudes, etal.(2006)isusedforillustration.Theareachosenfor nontrivialheatandsaltlossesshowthattheunconserved 1074 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME27 TABLE1.Gridbox171.58E,53.58SLevitusetal.(1998)profilesbeforestabilization(fromLocarninietal.2006,TableB1).Here,the asterisksinthelastcolumnindicatethestaticinstability. k Depth(m) T(8C) S(ppt) r(S ,T ,z )(kgm23) r(S ,T ,z )(kgm23) E (kgm23) k11 k11 k k k k k 1 0 7.1667 34.4243 26.9476 26.9423 0.0054 2 10 7.1489 34.4278 26.8982 26.9939 20.0957* 3 20 7.0465 34.2880 26.9529 26.9443 0.0085 4 30 7.0050 34.2914 27.0104 26.9990 0.0114 5 50 6.9686 34.2991 27.0967 27.1028 20.0061* 6 75 7.0604 34.3073 27.2406 27.2120 0.0286 7 100 6.9753 34.3280 27.3892 27.3560 0.0332 8 125 6.9218 34.3604 27.5164 27.5046 0.0117 9 150 6.8919 34.3697 27.6000 27.6316 20.0316* 10 200 6.9363 34.3364 27.8123 27.8302 20.0179* 11 250 7.0962 34.3415 28.0295 28.0421 20.0126* 12 300 7.1622 34.3367 28.2684 28.2593 0.0092 13 400 6.8275 34.2852 28.6664 28.7281 20.0618* 14 500 7.4001 34.3123 29.3699 29.1238 0.2461 15 600 6.2133 34.4022 29.9386 29.8292 0.1094 16 700 5.9186 34.4868 30.5869 30.3978 0.1891 17 800 4.5426 34.4904 31.0754 31.0488 0.0266 18 900 4.1263 34.4558 31.6539 31.5377 0.1162 19 1000 3.3112 34.4755 32.1176 adjustmentmaychangeheattransportandinturnaffect E*5E , (5) k min theoverturningthermohalinecirculation. i thatis,theminimaladjustmentwithincrementof 3. Stabilization Thestabilizationprocessisdividedintothreeparts:1) DE 5E (cid:2)E . k min k stability increasing at unstable levels, 2) stability de- i i creasing at stable levels, and 3) normalization for con- servation of stability for the cast. Let static instability Suchanincreaseofstabilitywillbecompensatedbythe occuratlevelk1,k2,...,ki[i.e.,satisfiestheinequality decreaseofstabilityatneighboringlevelski6m(m51, (2)], the static stability E is increased to its marginal 2, ...) with skipping the unstable levels until reaching k stabilityvalue(E*), i thetopandbottomoftheprofile, k i (E (cid:2)DE /2m11 if E (cid:2)DE /2m11$E E* 5 ki6m ki ki6m ki min. ki6m Emin if Ek6m(cid:2)DEk/2m11,Emin i i The static stabilities for the whole profile before and r(S 1DS , T 1DT , z )(cid:2)r(S 1DS , k11 k11 k11 k11 k k k aftertheadjustmentarecalculatedby T 1DT , z )5E**, k51,2, ... , K(cid:2)1. (8) k k k k K K (cid:2) (cid:2) I5 E , I*5 E*. (6) k51 k k51 k WhenEminisspecified[seeEq.(5)],theright-handside of(8)(i.e.,E**)istheknownadjustment,whichiscal- k Thenormalizationprocessisconductedby culated through (5)–(7). Equation (8) is used to de- terminethetemperatureandsalinityadjustmentsateach I depth for given E**. The difference between (7) (i.e., E**5 E* (7) k k I* k the direct determination of E**) and (8) is that (7) k to keep the conservation of the static stability for each showstheminimaldensityadjustmenttoremovestatic profile. After three stabilization processes, the static instability,and(8)istocalculatethe(T,S)adjustment stabilityisrepresentedby[seeEq.(1)] ateachdepth. JUNE2010 CHU AND FAN 1075 FIG.1.Original(dashed)andadjusted(solid)profilestemperatureofTk,salinitySk,andstaticstabilityEkatthegridbox53.58S,171.58E usingtheMAmethod(Locarninietal.2006). 4. Constraintsfortemperatureandsalinity ð0 ð0 DTdz50, DSdz50, (9) adjustment (cid:2)h (cid:2)h Conservationofheatandsaltfortheadjustmentcan berepresentedby whichcanbediscretizedby TABLE2.Gridbox53.58S,171.58EimprovedLevitusetal.(1998)profilesafterstabilizationusingtheMAmethod(fromLocarninietal. 2006,TableB2). k Depth(m) T(8C) S(ppt) r(S ,T ,z )(kgm23) r(S ,T ,z )(kgm23) E (kgm23) k11 k11 k k k k k 1 0 7.1667 34.3096 26.8521 26.8519 0.0002 2 10 7.1489 34.3063 26.8982 26.8982 0.0000 3 20 7.0465 34.2880 26.9529 26.9443 0.0085 4 30 7.0050 34.2914 27.0042 26.9990 0.0051 5 50 7.0132 34.2991 27.0967 27.0967 0.0000 6 75 7.0604 34.3073 27.2361 27.2120 0.0240 7 100 6.9796 34.3228 27.3513 27.3513 0.0000 8 125 6.9897 34.3243 27.4667 27.4667 0.0000 9 150 7.0242 34.3301 27.5820 27.5820 0.0000 10 200 7.0628 34.3364 27.8123 27.8123 0.0000 11 250 7.0962 34.3415 28.0422 28.0421 0.0000 12 300 7.0748 34.3367 28.2719 28.2719 0.0001 13 400 6.8275 34.2894 28.7314 28.7314 0.0000 14 500 6.9604 34.3123 29.3699 29.1899 0.1799 15 600 6.2133 34.4022 29.9386 29.8292 0.1094 16 700 5.9186 34.4868 30.5869 30.3978 0.1891 17 800 4.5426 34.4904 31.0754 31.0488 0.0266 18 900 4.1263 34.4558 31.6539 31.5377 0.1162 19 1000 3.3112 34.4755 32.1176 1076 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME27 TABLE3.Changeof(T 1DT(j))(8C)ateachiterationusingtheNewton’smethod.Itisnotedthattheiterationconvergesatthe k k thirditeration. k Depth(m) j50 j51 j52 j53 j54 1 0 7.166700 7.212634 7.212833 7.212833 7.212833 2 10 7.148900 7.289401 7.289072 7.289072 7.289072 3 20 7.046500 6.818173 6.816828 6.816828 6.816828 4 30 7.005000 6.872865 6.872591 6.872591 6.872591 5 50 6.968600 6.888794 6.888861 6.888861 6.888861 6 75 7.060400 7.023494 7.023712 7.023712 7.023712 7 100 6.975300 6.977379 6.977638 6.977638 6.977638 8 125 6.921800 6.965175 6.965378 6.965378 6.965378 9 150 6.891900 6.983992 6.983997 6.983997 6.983997 10 200 6.936300 6.959537 6.959779 6.959779 6.959779 11 250 7.096200 7.125999 7.126229 7.126229 7.126229 12 300 7.162200 7.228075 7.228205 7.228205 7.228205 13 400 6.827500 6.995044 6.994489 6.994488 6.994488 14 500 7.400100 7.229221 7.228652 7.228652 7.228652 15 600 6.213300 6.129374 6.129400 6.129400 6.129400 16 700 5.918600 5.883923 5.884121 5.884121 5.884121 17 800 4.542600 4.542873 4.543127 4.543127 4.543127 18 900 4.126300 4.153784 4.154020 4.154020 4.154020 19 1000 3.311200 3.362894 3.363075 3.363075 3.363075 K(cid:2)1 Equations(10)and(11)canberewrittenby (cid:2)(DT 1DT ) k k11 (z (cid:2)z )50, (10) k51 2 k k11 K K (cid:2) (cid:2) a DT 50, a DS 50, (12) k k k k K(cid:2)1 k51 k51 (cid:2)(DS 1DS ) k k11 (z (cid:2)z )50. (11) k51 2 k k11 where z (cid:2)z z (cid:2)z z (cid:2)z z (cid:2)z z (cid:2)z a 5 1 2 , a 5 1 3 , a 5 2 4 , ... , a 5 K(cid:2)2 K , a 5 K(cid:2)1 K . (13) 1 2(z (cid:2)z ) 2 2(z (cid:2)z ) 3 2(z (cid:2)z ) K(cid:2)1 2(z (cid:2)z ) K 2(z (cid:2)z ) 1 K 1 K 1 K 1 K 1 K Obviously,wehave toillustratethebasicmethodologyofthisanalyticalad- justmentprocedure.Thisratiomayvarywithdepth.A K largepartofthepaperbyJackettandMcDougall(1995) (cid:2) a 51, a .0 for k51,2, ... , K. (14) wasdevotedto developing amethodtodetermine g . k k k k51 Interestedreadersarereferredtotheirpaper. Theadjustmentratiosg areusedforN21levels, Equations (10), (11), (15), and (8) represent a set of k 2K algebraic equations for 2K unknowns (DT , DS ), k k k51,2,...,K.Thus,theyareclosure.Amongthem,(8) DT 1g DS 50, k51,2, ... , K(cid:2)1. (15) k k k isnonlinearand(10),(11),and(15)arelinear. Becausetemperatureandsalinitycorrectionsaffectthe 5. Example density differently, that is, the increase (decrease) of The same example as described in section 2 is used. temperature(salinity)decreases(increases)thedensity. SubstitutionoffS ,T ,z gvaluesfromTable1into(8), This leads to a positive value of g . Here, we use the k k k k (10), (11), and (15), and the Newton iteration method simplestform, (Kelley1987,seeappendixB)isusedtosolvethesetof 2Kalgebraicequations.Forthehydrographiccastlisted g 5g [ max(Tk)(cid:2)min(Tk), (16) inTable1,onlythreeiterationsareneededtoeliminate k max(S )(cid:2)min(S ) the static instability. Tables 3 and 4 list the values of k k JUNE2010 CHU AND FAN 1077 TABLE4.Changeof(S 1DS(j))(ppt)ateachiterationusingNewton’smethod.Itisnotedthattheiterationconvergesat k k thethirditeration. k Depth(m) j50 j51 j52 j53 j54 1 0 34.424300 34.421995 34.421985 34.421985 34.421985 2 10 34.427800 34.420749 34.420765 34.420765 34.420765 3 20 34.288000 34.299459 34.299526 34.299526 34.299526 4 30 34.291400 34.298031 34.298045 34.298045 34.298045 5 50 34.299100 34.303105 34.303102 34.303102 34.303102 6 75 34.307300 34.309152 34.309141 34.309141 34.309141 7 100 34.328000 34.327896 34.327883 34.327883 34.327883 8 125 34.360400 34.358223 34.358213 34.358213 34.358213 9 150 34.369600 34.364978 34.364978 34.364978 34.364978 10 200 34.336400 34.335234 34.335222 34.335222 34.335222 11 250 34.341500 34.340005 34.339993 34.339993 34.339993 12 300 34.336700 34.333394 34.333388 34.333388 34.333388 13 400 34.285200 34.276792 34.276820 34.276820 34.276820 14 500 34.312300 34.320875 34.320904 34.320904 34.320904 15 600 34.402200 34.406412 34.406410 34.406410 34.406410 16 700 34.486800 34.488540 34.488530 34.488530 34.488530 17 800 34.490400 34.490386 34.490374 34.490374 34.490374 18 900 34.455800 34.454421 34.454409 34.454409 34.454409 19 1000 34.475500 34.472906 34.472897 34.472897 34.472897 fT ,S gattheeachiteration.Theyshowthehigheffi- The heat and salt are conserved for the whole water k k ciencyofthismethodforeliminationofstaticinstability columnwiththerelativeroot-meanadjustment inthehydrographiccast.Figure2showstheoriginaland RRMA50.0482. (18) adjustedprofiles Comparing(18)to(4),wemayfindthatthisanalytical conserved adjustment scheme has a smaller RRMA (cid:5)(cid:6) Sk, Tk, Ek , k51,2, ... ,K. (17) (0.0482)thantheMAmethod(0.0712). FIG.2.AsinFig.1,butusingtheanalyticalconservedmethodproposedinthispaper. 1078 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME27 FIG.3.DistributionofstaticallyunstablecastsintheJPL-ECCO10-daydatacenteredon31Dec2008(availableonlineathttp://ecco.jpl. nasa.gov/external/).Thedatawereproducedbyadataassimilationsystem. Data assimilation is required in operational ocean (Fig. 3). Here, the NODC’s criterion for flagging out data access and retrieval (Sun 1999). It is to blend the staticallyunstableprofiles, modeled variable x with observational data y (e.g., m o Kalnay2003;Chuetal.2004), 8(cid:2)0.03 kgm(cid:2)3 (0 $ z $ (cid:2)30m) >< k x 5x 1W(cid:3)[y (cid:2)H(x )], (19) E 5 (cid:2)0.02 kgm(cid:2)3 ((cid:2)30m.z $ (cid:2)400m), (20) a m o m min k >:0 kgm(cid:2)3 ((cid:2)400m.z ) k where x is the assimilated variable, H is an operator a thatprovidesthemodel’stheoreticalestimateofwhat is observed at the observational points, and W is the is used. Because such a false static instability is due to weight matrix. The difference among various data as- theblendingofobservationaldatawiththemodeldata, similationschemessuchasoptimalinterpolation(e.g., itisnotarealinstability.Useoftheconvectiveadjust- Lozano et al. 1996), Kalman filter (e.g., Galanis et al. mentschememayovercorrecttheprofiles. 2006),andvariationmethods(e.g.,TangandKleeman To illustrate this, we discuss the existing convective 2004), is the different ways to determine the weight adjustmentschemesinoceanmodels.Thevariouscon- matrix W. The data assimilation process (19) can be vective adjustment schemes are based on the same consideredastheaverage(inageneralizedsense)ofx original idea (e.g., Bryan 1969): whenever a water col- m andy .Inocean(T,S)dataassimilation,theobserva- umnisstaticallyunstable,temperatureandsalinityare o tional data y may contain several casts, which are verticallyadjustedtomakethewatercolumnneutrally o staticallystable.Themodelprofilex isalsostatically stable,withheatandsaltconservedintheprocess.The m stable because convective adjustment (Bryan 1969) is adjustment takes an iterative approach. The iteration usuallyconductedateachtimestep. continues between all adjacent levels until the static Falsestaticstabilitymaybegeneratedafter(T,S)data instability is removed in the whole water column. Be- assimilation[i.e.,performing(19)].Forexample,10-day cause the adjustment acts on only neighboring points, JetPropulsionLaboratory(JPL)EstimatingtheCircu- the number of iterations required to reach the final lation and Climate of the Ocean (ECCO) (T, S) fields stablestateisinfiniteforagivenunstableprofile(Smith centered on 31 December 2008 (available online at 1989). In practice, however, the number of iteration is http://ecco.jpl.nasa.gov/external/)showthataconsider- alwaysfinite,andthisleadstosomeresidualinstability ableportion(35.32%)ofprofilesarestaticallyunstable (Killworth1989). JUNE2010 CHU AND FAN 1079 FIG.4.AsinFig.1,butusingthecompleteconvectiveadjustmentmethod(YinandSarachik1994). Several algorithms were developed to remove these adjuststhetemperatureandsalinityprofilesfDT ,DS , k k residual static instabilities such as the implicit vertical k 5 1, 2, ... , Kg simultaneously and efficiently on the diffusion scheme (Cox 1984; Killworth 1989) and the basisofthreetypesofconstraints:1)heatandsaltcon- complete adjustment scheme (Yin and Sarachik 1994). servation,2)predetermined(DT /DS )ratios(orcalled k k The former tests the static stability between the verti- adjustment ratios) for all levels, and 3) the removal of callyadjacentlevelsand,ifunstable, theverticaldiffu- static instability by adjusting the static stability with sivity is set to a large value (convective diffusivity) to a combined conservation and nonuniform increment smooth out the instability. The latter determines the treatment.Withtheseconstraints,asetof2Kcombined upper and lower boundaries of each adjusted region linear/nonlinearalgebraicequationsareestablishedfor whilekeepingtheinstantaneousadjustmentwithineach fDT , DS g. Among them, (K 1 1)algebraic equations k k unstable region. Yin and Sarachik (1994) showed that arelinear,and(K21)equationsarenonlinear.Newton’s the complete convective adjustment scheme is more method is used to solve this set of equations. The pro- efficientthantheimplicitverticaldiffusionschemeand posedschemehasverysmallrelativeroot-mean-square guaranteedacompleteremovalofstaticinstabilityofa adjustment compared to the existing methods. More- watercolumnateachtimestep.Forthesameexampleas over, it has three features: 1) conservation of heat and described in section 2, the complete convective adjust- salt, 2) removal of static instabilities with small (T, S) mentschemeremovesthestaticinstabilities(Fig.4)with adjustments,and3)analyticalform.Withthesefeatures, therelativeroot-meanadjustment it can be widely used in ocean (T, S) data analysis. Be- sides, ocean data assimilation may cause false static RRMA50.2192. (21) instabilities. Because this instability is not real, com- monlyusedconvectiveadjustmentschemesmayover- Thisvalueis4.5timeslargerthanthatof(0.0482)using adjust the profiles. Therefore, the proposed analytical theanalyticaladjustmentmethod. conserved scheme can be used in ocean (T, S) data assimilation. 6. Conclusions A new analytical conserved adjustment scheme is Acknowledgments.TheOfficeofNavalResearch,the developedtoeliminate thestaticinstability ofraw and NavalOceanographicOffice,andtheNavalPostgraduate averagedobservationalhydrographicdata.Thismethod Schoolsupportedthisstudy. 1080 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME27 APPENDIXA individualobservationss .Thus,theconservationcon- e straints(10)and(11)guaranteethat ValidityoftheConservationConstraints adj t (c )5(c)1(c9), (A8) In ocean modeling, all the convective adjustment schemes for stabilizing (T, S) profiles require heat and the same smaller error variance of the vertically in- saltconservation(e.g.,YinandSarachik1994).Inocean tegratedobservedvalues. data analysis, such conservation constraints are also valid.Afterqualitycontrolprocedures,itisreasonable toassumethatoceanobservationaldataccontainran- APPENDIXB domerrorc9, c5ct1c9, (A1) NewtonMethod Let the temperature and salinity adjustment be rep- with population meanhc9i5 0 and standard deviation s .Here,cdenotes(T,S),andctisthetruevalueatthe resentedbya2K-dimensionalvectorP, e samelocationandtimeastheobservationtakenplace. 2 3 2 3 Thepopulationmeanof(A1)gives p DT 1 1 6 p 7 6 DS 7 hci5hcti. (A2) 66 p2 77 66DT1 77 6 3 7 6 2 7 6 7 6 7 6 p 7 6 DS 7 An observational profile (c , k 5 1, 2, ... , K) can be 6 4 7 6 2 7 taken as a sample. Verticalkintegration of the observa- P[66 : 77566 : 77, M52K. (B1) tional profile is represented by weighted average [see 66 : 77 66 : 77 6 7 6 7 (12)], 6 : 7 6 : 7 6 7 6 7 6p 7 6DT 7 K K K 4 M(cid:2)15 4 K5 (c)5(cid:2)a c , (ct)5(cid:2)a ct, (c9)5(cid:2)a c9. pM DSK k k k k k k k51 k51 k51 (A3) ThealgebraicEqs.(10),(11),(15),and(8)[notethatwe put(8)atthelast]canberepresentedby Therandomerrorsatdifferentdepthc9 areconsidered k independent. The central limit theorem states that the F(P)50, (B2) linearcombination whereFhasthedimensionof2K.TheclassicalNewton K (cid:2) method (Kelley 1987) for approximating a desired so- Y95 a c9 (A4) k51 k k lutionPto(B2)isformallydefinedbytheiteration hasanormaldistributionwithzeromeanandvariance, P(j11)5P(j)(cid:2)J(cid:2)1(P(j))F(P(j)), j50, 1, 2, ... , (B3) K K where P(j) is the jth approximation to the solution of (cid:2) (cid:2) s2Y95 a2ks2e5s2e a2k. (A5) (B2),J(P(j))istheJacobianmatrixofF(P)evaluatedat k51 k51 P(j).InversionoftheJacobianmatrixisnotperformed inpractice;rather(B3)isimplementedviasolutionof From(14),wehave the following system of linear equations at the each iteration: K K (cid:2) (cid:2) a2, a 51. (A6) k51 k k51 k J(P(j))(cid:3)d(j)5b(j), b(j)[(cid:2)F(P(j)), (B4) Substitutionof(A6)into(A5)leadsto followedbytheupdate sY9,se, (A7) P(j11)5P(j)1d(j), (B5) whichindicatesthattheerrorvarianceofthevertically whered(j)iscalledtheNewtondirection.Theiteration integratedobservedvaluescissmallerthanthatofthe stopsatstepJwhen