ebook img

DTIC ADA532600: A Hierarchical and Contextual Model for Learning and Recognizing Highly Variant Visual Categories PDF

5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA532600: A Hierarchical and Contextual Model for Learning and Recognizing Highly Variant Visual Categories

UNIVERSITY OF CALIFORNIA LosAngeles A Hierarchical and Contextual Model for Learning and Recognizing Highly Variant Visual Categories Adissertationsubmittedinpartialsatisfaction oftherequirementsforthedegree DoctorofPhilosophyinStatistics by Jacob Matthew Porway 2010 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Hierarchical and Contextual Model for Learning and Recognizing 5b. GRANT NUMBER Highly Variant Visual Categories 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of California, Los Angeles,Los Angeles,CA,90095 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT In this dissertation we present a hierarchical and contextual model for representing image patterns (manmade objects and aerial images) that are highly variant from instance to instance. These types of patterns are difficult to model because objects within the same class may have very different photometric and geometric properties and/or compositions of parts, e.g. teapots may have very different colors, shapes, and locations of their spouts and handles. We hypothesize that these varied visual patterns can be captured by using a novel representation that arranges common primitives of the patterns in a probabilistic hierarchy, thus compactly capturing possible compositional variations, and then enforces contextual constraints on the appearances of the parts, thus modeling the conditional photometric and geometric relationships of the object parts. We combine a Stochastic Context Free Grammar (SCFG), which captures the long-range compositional variations of a pattern, with a Markov Random Field (MRF), which captures the short-range constraints between neighboring pattern primitives, to create our model. We also present a minimax entropy framework for automatically learning which contextual constraints are most relevant for modeling a type of pattern and estimating their parameters. Finally, we present a novel Markov Chain Monte Carlo (MCMC) algorithm called Clustering Cooperative and Competitive Constraints (C4 ) for efficiently performing Bayesian inference with our model. C4 is a method for minimizing energy functions defined on graphs that we will use to combine bottom-up and top-down information to find the best interpretation of an image. We show experiments on learning models of a number of manmade object categories and of aerial images and demonstrate that our algorithms automatically learn models that accurately capture the statistical nature of the patterns we are modeling. We also show that our model can be used for inference in new images, allowing it to identify objects in challenging scenarios. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 169 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 (cid:13)c Copyrightby JacobMatthewPorway 2010 ThedissertationofJacobMatthewPorwayisapproved. YingNianWu AlanYuille DemetriTerzopoulos SongChunZhu,CommitteeChair UniversityofCalifornia,LosAngeles 2010 ii Tomyparents, whotaughtmenevertopassupanopportunitytolearnsomething. iii TABLE OF CONTENTS 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 OurApproachandTechnicalContributions . . . . . . . . . . . . . . 4 1.3 OverviewoftheDissertation . . . . . . . . . . . . . . . . . . . . . . 6 2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Appearance-BasedMethods . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Geometric-BasedMethods . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Grammar/Compositional-BasedMethods . . . . . . . . . . . . . . . 12 2.4 Domain-specificMethods . . . . . . . . . . . . . . . . . . . . . . . 17 3 TheHierarchicalContextualModel . . . . . . . . . . . . . . . . . . . . 19 3.1 StochasticContextFreeGrammars . . . . . . . . . . . . . . . . . . 19 3.2 MarkovRandomFields . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 CreatingaContextualHierarchy . . . . . . . . . . . . . . . . . . . . 25 3.4 MathematicalFormulationfortheContextualHierarchy . . . . . . . 30 3.5 ApplicationtoObjectModeling . . . . . . . . . . . . . . . . . . . . 33 3.6 ApplicationtoAerialImageModeling . . . . . . . . . . . . . . . . . 35 4 LearningviaMinimaxEntropy . . . . . . . . . . . . . . . . . . . . . . 39 4.1 MaximumLikelihoodEstimation . . . . . . . . . . . . . . . . . . . 39 4.2 Learning(λ(α),λ(β)) . . . . . . . . . . . . . . . . . . . . . . . . . . 40 iv 4.3 RelationshipPursuit . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 SummaryofParameterLearningandRelationshipPursuitAlgorithms 47 5 ExperimentsonLearningandSampling . . . . . . . . . . . . . . . . . 50 5.1 ExperimentsonObjectLearning . . . . . . . . . . . . . . . . . . . . 50 5.1.1 DataCollection . . . . . . . . . . . . . . . . . . . . . . . . 50 5.1.2 ObjectRepresentation . . . . . . . . . . . . . . . . . . . . . 51 5.1.3 RelationshipFunctions . . . . . . . . . . . . . . . . . . . . 54 5.1.4 ParseGraphConstruction . . . . . . . . . . . . . . . . . . . 54 5.1.5 Learningtheλ()Parameters . . . . . . . . . . . . . . . . . 55 5.1.6 RelationshipPursuit . . . . . . . . . . . . . . . . . . . . . . 57 5.1.7 AnalysisbySynthesis . . . . . . . . . . . . . . . . . . . . . 58 5.1.8 SmallSampleSetGeneralization . . . . . . . . . . . . . . . 59 5.2 LearningResultsforAerialImages . . . . . . . . . . . . . . . . . . 61 5.2.1 DataCollection . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.2 ObjectRepresentation . . . . . . . . . . . . . . . . . . . . . 62 5.2.3 RelationshipFunctions . . . . . . . . . . . . . . . . . . . . 63 5.2.4 DeterministicallyFormingParseGraphs . . . . . . . . . . . 64 5.2.5 Learningtheλ()Parameters . . . . . . . . . . . . . . . . . . 67 5.2.6 AnalysisbySynthesis . . . . . . . . . . . . . . . . . . . . . 68 5.3 ConclusionsonLearningExperiments . . . . . . . . . . . . . . . . . 69 6 InferenceWithTheC4 Algorithm . . . . . . . . . . . . . . . . . . . . 71 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 v 6.1.1 MotivationsandObjective . . . . . . . . . . . . . . . . . . . 71 6.1.2 RelatedWorkintheLiterature . . . . . . . . . . . . . . . . . 74 6.1.3 OverviewofthemajorconceptsofC4 . . . . . . . . . . . . 76 6.2 Graphs,CouplingandClustering . . . . . . . . . . . . . . . . . . . 80 6.2.1 AdjacencyandCandidacyGraphs . . . . . . . . . . . . . . . 80 6.2.2 PositiveandNegativeEdges . . . . . . . . . . . . . . . . . . 82 6.2.3 TheNeckerCubeExample . . . . . . . . . . . . . . . . . . 83 6.2.4 EdgeProbabilityforClustering . . . . . . . . . . . . . . . . 86 6.3 C4 algorithmonflatgraphs . . . . . . . . . . . . . . . . . . . . . . 89 6.3.1 Outlineofthealgorithm . . . . . . . . . . . . . . . . . . . . 89 6.3.2 CalculatingtheAcceptanceProbability . . . . . . . . . . . . 91 6.3.3 Specialcase: Pottsmodelwith+/-edges . . . . . . . . . . . 93 6.4 ExperimentsonFlatGraphs . . . . . . . . . . . . . . . . . . . . . . 95 6.4.1 CheckerboardIsingModel . . . . . . . . . . . . . . . . . . . 95 6.4.2 CheckerboardPottsModelwith7Labels . . . . . . . . . . . 97 6.4.3 LineDrawingInterpretation . . . . . . . . . . . . . . . . . . 99 6.4.4 LabelingMan-madeStructuresonCRFs . . . . . . . . . . . 100 6.5 C4 onHierarchicalGraphs . . . . . . . . . . . . . . . . . . . . . . 102 6.5.1 ConditionforGraphConsistency . . . . . . . . . . . . . . . 102 6.5.2 FormulationofHierarchicalC4 . . . . . . . . . . . . . . . . 104 6.5.3 ExperimentsonHierarchicalC4 . . . . . . . . . . . . . . . 106 6.6 ConclusionsonC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 vi 7 ExperimentsonInference . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1 ObjectInference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 AerialImageInference . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2.1 Bottom-UpDetections . . . . . . . . . . . . . . . . . . . . . 114 7.2.2 Top-DownPredictionofMissingObjects . . . . . . . . . . . 120 7.2.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . 121 7.3 ConclusionsonInferenceExperiments . . . . . . . . . . . . . . . . . 130 8 DiscussionandFutureWork . . . . . . . . . . . . . . . . . . . . . . . 133 8.1 SummaryofMajorContributions . . . . . . . . . . . . . . . . . . . . 135 vii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.