ebook img

DTIC ADA531703: Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA531703: Projecting Deep-Subwavelength Patterns from Diffraction-Limited Masks Using Metal-Dielectric Multilayers

APPLIEDPHYSICSLETTERS93,111116(cid:1)2008(cid:2) Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers Yi Xiong,1 Zhaowei Liu,1 and Xiang Zhang1,2,a(cid:1) 1NSFNanoscaleScienceandEngineeringCenter(NSEC),UniversityofCalifornia,Berkeley,California 94720,USA 2MaterialsSciencesDivision,LawrenceBerkeleyNationalLaboratory,1CyclotronRoad,Berkeley, California94720,USA (cid:1)Received 19August 2008; accepted 28August 2008; published online 19 September 2008(cid:2) We utilize a metal-dielectric multilayer structure to generate deep-subwavelength one-dimensional andtwo-dimensionalperiodicpatternswithdiffraction-limitedmasks.Theworkingwavelengthand the pattern are set by the flexible design of the multilayer structure. This scheme is suitable to be applied to deep-subwavelength photolithography. As an example, we numerically demonstrate pattern periods down to 50 nm under 405 nm light illumination. © 2008 American Institute of Physics. (cid:3)DOI:10.1063/1.2985898(cid:4) Therapidprogressinthenanoscalescienceandtechnol- cal transfer function of the multilayer structure, we can ad- ogy has increased the demand for fabrication of nanoscale justtheperiodratiobetweenthediffraction-limitedmaskand patterns. Photolithography is the most widely used micro- the deep-subwavelength lithographic pattern. fabrication technique as it is a parallel, cost effective, and For simplicity, we consider a 1D periodic mask with highthroughputprocess.However,theconventionalphotoli- period (cid:1) (cid:1)(cid:1) is larger than the diffraction limit(cid:2) to illustrate thography techniques have a resolution barrier due to the the principle, which can be extended to the case of 2D diffraction limit of light. To improve the photolithography periodicmaskseasily.Letusdefinexasthegratingdirection resolution, one straightforward approach is to reduce the of the 1D periodic mask and z as the direction perpendicu- wavelength of the illumination light into deep UV,1 extreme lar to the grating plane (cid:3)see Fig. 2(cid:1)b(cid:2)(cid:4). The waves emer- UV,2 or even x-ray3 wavelengths. The main drawbacks of ging from the mask are the sum of a series of diffracted these approaches, however, are the drastically increased planewaves,(cid:5)i(cid:2)=−(cid:2)T(cid:1)i(cid:2)exp(cid:3)j(cid:1)kx(cid:1)i(cid:2)x+kz(cid:1)i(cid:2)z(cid:2)(cid:4),where kx(cid:1)i(cid:2)=i2(cid:3)/(cid:1), instrument complexity and the corresponding cost. Several (cid:3)k(cid:1)i(cid:2)(cid:4)2=(cid:1)n2(cid:3)/(cid:4)(cid:2)2−(cid:3)k(cid:1)i(cid:2)(cid:4)2,wherei isanintegerdiffractionor- z x other techniques are also available to achieve nanoscale der, T(cid:1)i(cid:2) is the amplitude of ith order plane wave, (cid:4) is feature sizes: electron-beam lithography,4 focused ion- the wavelength of the incident light in free space, and n is beam lithography,5 dip-pen lithography,6,7 and imprint the refractive index of the medium on the transmission lithography,8,9justtonameafew.Althoughthesetechniques side of the grating. Depending on whether (cid:3)k(cid:1)i(cid:2)(cid:4)2 is larger or z have been widely used, each of them has to face its own smaller than zero, the diffracted plane wave is propagating disadvantages. or evanescent, respectively. The evanescent waves carry Recently, plasmonic nanolithography10–17 was demon- subdiffraction-limited information of the mask but decay strated to improve the photolithography resolution by utiliz- exponentially with the distance away from the mask. There- ing surface plasmons. The wavelength of surface plasmons foreinconventionalprojectionphotolithography,theevanes- is smaller than that of light in free space at the same fre- cent waves play no role, and the resolution is diffraction- quency.18 Hence, photolithography assisted with surface limited. By including the evanescent waves, near field plasmons can generate patterns with subwavelength feature contact lithography forms subdiffraction-limited patterns in sizes.Furthermore,plasmonicnanolithographyiscompletely the near field of the mask but requires subdiffraction-limited compatible with conventional photolithography as they both masks. share the same optical frequency and process flow. In our approach of photolithography, we generate Near field contact lithography is another promising subdiffraction-limited patterns from a diffraction-limited subdiffraction-limited photolithography method, which mask,usingaspecialslabofmaterialthatonlyallowswaves forms patterns with subdiffraction-limited resolution in the near field of the mask.19–21 However, the patterns formed by the near field contact lithography are identical to the masks. Therefore, subdiffraction-limited masks are always required to form subdiffraction-limited patterns. In this paper, we propose a deep-subwavelength photo- lithography method which uses a designed metal-dielectric multilayertogeneratethesubwavelengthfeaturesfromatra- ditional one-dimensional (cid:1)1D(cid:2) or two-dimensional (cid:1)2D(cid:2) diffraction-limited mask (cid:1)see Fig. 1(cid:2). By designing the opti- λ a(cid:2)Author to whom correspondence should be addressed. Electronic mail: FIG.1. (cid:1)Coloronline(cid:2)Schematicofdeep-subwavelengthphotolithography [email protected]. usingmetal-dielectricmultilayer. 0003-6951/2008/93(cid:2)11(cid:1)/111116/3/$23.00 93,111116-1 ©2008AmericanInstituteofPhysics Downloaded 22 Sep 2008 to 128.32.14.230. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED AUG 2008 2. REPORT TYPE 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Projecting deep-subwavelength patterns from diffraction-limited masks 5b. GRANT NUMBER using metal-dielectric multilayers 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Univeristy of California Berkeley,NSF Nano-scale Science and REPORT NUMBER Engineering Center,5130 EtcheVerry Hall,Berkeley,CA,94720 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 3 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 111116-2 Xiong,Liu,andZhang Appl.Phys.Lett.93,111116(cid:2)2008(cid:1) (a) (b) ky/k0 -6 0.07 x (a) -4 z -2 0 k /k x 0 2 (c) 4 |H| 6 0 0.1 -6 -4 -2 0 2 4 6 k /k x 0 y(nm) |E| 0 0 400nm (b) 200 0.013 Cr Ag SiO 2 FIG.2. (cid:1)Coloronline(cid:2)(cid:1)a(cid:2)Thetransmissionvsthetangentialwavevectorfor x y a10pairsof40nmAgand35nmSiO multilayer.ThepolarizationisTM 2 polarization.Workingwavelengthis405nm.(cid:1)b(cid:2)Configurationforphotoli- thographyandthesimulated(cid:6)H(cid:6)fieldafterthemultilayer.Onlyoneperiod (cid:1)400nm(cid:2)ofthegratingmaskisshown.(cid:1)c(cid:2)The(cid:6)E(cid:6)fieldinthephotoresistat themultilayer-photoresistinterface(cid:1)blue(cid:2),10nm(cid:1)green(cid:2),and20nm (cid:1)red(cid:2) awayfromtheinterface. 0 0.009 0 200 with tangential wave vector larger than nk (cid:1)k =2(cid:3)/(cid:4)(cid:2) to x(nm) 0 0 passthrough.Furthermore,thewidthofthespatialfrequency FIG. 3. (cid:1)Color online(cid:2) (cid:1)a(cid:2) The transmission vs tangential wavevector k pass band is narrow enough to allow one diffraction order x and k (cid:1)2D transfer function(cid:2) for a 12 pairs of 35nm Ag and 21nm (cid:1)(cid:5)mth order(cid:2) from the 1D mask only. When we place this SiO myultilayer at a wavelength of 405nm. (cid:1)b(cid:2)The simulated (cid:6)E(cid:6) field at 2 slab material immediately after a diffraction-limited mask, a theplane3nmaftertheAgandSiO multilayer.Theleftinsetisthecon- 2 subdiffraction-limited pattern with period (cid:1)/2m is formed figurationforphotolithography.Onlyoneperiod(cid:1)200nm(cid:2)isshown. ontheothersideoftheslabmaterialasaresultofthesuper- position of the (cid:5)mth order diffraction waves. TMpolarizationatawavelengthof405 nm.Thepermittivity The abovementioned special slab material can be real- of Ag is −4.67+0.22i.33 The permittivity of SiO is 2.16.34 2 ized by a metamaterial, an artificial fabricated structure that Thepermittivityofthephotoresistafterthemultilayeris2.89 has received significant attention recently because of its (cid:1)negativephotoresistNFR105 GfromJSRMicro(cid:2).Fromthe properties that are not observed in nature.22–24 A metal- transferfunctionofthemultilayer,onlyabandofwaveswith dielectric multilayer structure, one of the simplest metama- tangential wavevector around 3k can pass through this 0 terials,hasbeenproposedforvariousapplications.25–29Asan structure. If a grating mask with 400 nm period is added in example, we shall show a designed slab of multilayer front of the multilayer structure and illuminated by a light metamaterial can realize the deep-subwavelength photoli- at 405 nm, only the (cid:5)3 order diffraction waves from the thography. A metal-dielectric multilayer has those special maskcangothroughthemultilayersandformapatternwith propertiesbecauseofthesplitsurfaceplasmonmodesonthe period six times smaller compared with the mask. This metal-dielectricmultilayer.Surfaceplasmonmodessplitona spatialfrequencysextuplingeffectisevidentlyshownbythe metal thin film due to the interaction of modes on two metal simulated (cid:6)H(cid:6) field distribution (cid:1)COMSOL MULTIPHYSICS surfaces.30 As the number of the metal thin films increases, 3.4(cid:2) after the multilayer in Fig. 2(cid:1)b(cid:2). The thickness of the the number of the split surface plasmon modes increases Cr mask is 50 nm, and the opening width is 100 nm. For accordingly.31 With proper design, the split surface plasmon photolithography purpose, the (cid:6)E(cid:6) field distribution is modes can be highly compacted, and form a band. Subse- also shown in Fig. 2(cid:1)c(cid:2) at planes 0, 10, and 20 nm after quently, the transmission (cid:1)through the multilayer(cid:2) of a range the Ag and SiO multilayer. The intensity contrast is 2 of tangential wavevector band corresponding to the surface (cid:1)(cid:6)E(cid:6)2 −(cid:6)E(cid:6)2 (cid:2)/(cid:1)(cid:6)E(cid:6)2 +(cid:6)E(cid:6)2 (cid:2)(cid:7)0.2, which satisfies the max min max min plasmon mode band is large and the transmission of the rest minimum contrast required for common negative tangential wavevector band is negligible. Therefore, the de- photoresists.35 signed multilayer can act as an extraordinary spatial filter, Theabovemethodcanbeeasilyextendedto2Dpatterns i.e.,onlyallowsabandofwaveswithtangentialwavevector generation, as illustrated by the following example: Addi- larger than nk to go through it. The location and the band- tionally, we redesign the Ag–SiO multilayer to show that 0 2 width of the pass band can be tuned by changing the thick- different period ratio between the mask and the lithographic nesses of the metal and dielectric layers.32 pattern is achievable by adjusting the configuration of the We firstly show one example where a metal-dielectric multilayer. Figure 3(cid:1)a(cid:2) is the 2D transfer function (cid:1)the trans- multilayer can generate a deep-subwavelength 1D pattern mission versus tangential wavevector k and k (cid:2) for a 12 x y fromadiffraction-limitedmask.Figure2(cid:1)a(cid:2)showsthetrans- pairs of 35 nm Ag and 21 nm SiO multilayer at a wave- 2 mission versus the tangential wavevector (cid:1)transfer function(cid:2) length of 405 nm. Each set of k and k can define an inci- x y for a 10 pairs of 40 nm Ag and 35 nm SiO multilayer for dentplane.The2Dtransferfunctioniscalculatedintheway 2 Downloaded 22 Sep 2008 to 128.32.14.230. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp 111116-3 Xiong,Liu,andZhang Appl.Phys.Lett.93,111116(cid:2)2008(cid:1) that the H field is always perpendicular to the incident plane 1A.K.Bates,M.Rothschild,T.M.Bloomstein,T.H.Fedynyshyn,R.R. corresponding each set of k and k (cid:1)see Ref. 32 for more Kunz,V.Liberman,andM.Switkes,IBMJ.Res.Dev. 45,605(cid:1)2001(cid:2). x y 2C.W.Gwyn,R.Stulen,D.Sweeney,andD.Attwood,J.Vac.Sci.Tech- about the 2D transfer function(cid:2). In this exampled case, we nol.B 16,3142(cid:1)1998(cid:2). design the multilayer to allow the transmission of the waves 3J.P.Silverman,J.Vac.Sci.Technol.B 16,3137(cid:1)1998(cid:2). (cid:8) withtangentialwavevectork= k2+k2around4k .Themask 4C.Vieu,F.Carcenac,A.Pepin,Y.Chen,M.Mejias,A.Lebib,L.Manin- x y 0 Ferlazzo,L.Couraud,andH.Launois,Appl.Surf.Sci. 164,111(cid:1)2000(cid:2). is a 2D grating with square lattice on a 50 nm thickness Cr 5J.Melngailis,A.A.Mondelli,I.L.Berry,andR.Mohondro,J.Vac.Sci. slab. The period is 200 nm, and the diameter of the circular Technol.B 16,927(cid:1)1998(cid:2). opening is 100 nm (cid:3)see the left inset of Fig. 3(cid:1)b(cid:2), one unit 6R.D.Piner,J.Zhu,F.Xu,S.Hong,andC.A.Mirkin,Science 283,661 cell is shown(cid:4). Only the (cid:5)2 order diffracted waves from the (cid:1)1999(cid:2). 7D.S.Ginger,H.Zhang,andC.A.Mirkin,Angew.Chem. 43,30(cid:1)2004(cid:2). mask have tangential wavevector 2(cid:6)405/200k0(cid:7)4k0 thus 8S.Y.Chou,P.R.Krauss,andP.J.Renstrom,Science 272,85(cid:1)1996(cid:2). can propagate through the multilayer. As a result, a pattern 9H.Schift,J.Vac.Sci.Technol.B 26,458(cid:1)2008(cid:2). with period 200/(cid:1)2(cid:6)2(cid:2)=50 nm is formed after the multi- 10R.J.BlaikieandS.J.McNab,Appl.Opt. 40,1692(cid:1)2001(cid:2). layer. Figure 3(cid:1)b(cid:2) is the (cid:6)E(cid:6) field at the plane 3 nm after the 11W.Srituravanich,N.Fang,C.Sun,Q.Luo,andX.Zhang,NanoLett. 4, 1085(cid:1)2004(cid:2). multilayer calculated by CST Microwave Studio 2008. In 12X.G.LuoandT.Ishihara,Opt.Express 142,3055(cid:1)2004(cid:2). the simulation, the incident light has circular polarization. 13Z.W.Liu,Q.H.Wei,andX.Zhang,NanoLett. 5,957(cid:1)2005(cid:2). The multilayer selects the TM polarized direction for each 14W.Srituravanich,S.Durant,H.Lee,C.Sun,andX.Zhang,J.Vac.Sci. Technol.B 23,2636(cid:1)2005(cid:2). set of k and k , and allows the transmission of the waves x y (cid:8) 15D.B.ShaoandS.C.Chen,Appl.Phys.Lett. 86,253107(cid:1)2005(cid:2). with tangential wavevector k= k2+k2 around 4k . The in- 16A.Sundaramurthy,P.J.Schuck,N.R.Conley,D.P.Fromm,G.S.Kino, x y 0 tensity contrast of E field is about 0.3, larger than the mini- andW.E.Moerner,NanoLett. 6,355(cid:1)2006(cid:2). 17L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, Nano Lett. 6, 361 mum intensity contrast required by common negative (cid:1)2006(cid:2). photoresist.35 18W.L.Barnes,A.Dereux,andT.W.Ebbesen,Nature(cid:1)London(cid:2) 424,824 As a summary, we numerically demonstrated a photoli- (cid:1)2003(cid:2). thography scheme that can fabricate deep-subwavelength 19M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming,Appl.Phys.Lett. 75,3560(cid:1)1999(cid:2). nanometer scale 1D and 2D periodic patterns from 20J.G.GoodberletandH.Kavak,Appl.Phys.Lett. 81,1315(cid:1)2002(cid:2). diffraction-limited masks.We can determine the period ratio 21D. O. S. Melville and R. J. Blaikie, J. Vac. Sci. Technol. B 22, 3470 between the mask and the photolithography pattern by de- (cid:1)2004(cid:2). signing the multilayer structure. At wavelength of 405 nm, 22R.A.Shelby,D.R.Smith,andS.Schultz,Science 292,77(cid:1)2001(cid:2). 23D.Schurig,J.J.Mock,B.J.Justice,S.A.Cummer,J.B.Pendry,A.F. weobtaineda1Dperiodicpatternwith67 nmperiodfroma Starr,andD.R.Smith,Science 314,977(cid:1)2006(cid:2). 1D mask with 400 nm period. We also demonstrated a 2D 24Z.W.Liu,H.Lee,Y.Xiong,C.Sun,andX.Zhang,Science 315,1686 periodic pattern with 50 nm period from a 2D mask with (cid:1)2007(cid:2). 200 nmperiod.Ourtechniqueprovidesacosteffectivemass 25N.N.Lepeshkin,A.Schweinsberg,G.Piredda,R.S.Bennink,andR.W. Boyd,Phys.Rev.Lett. 93,123902(cid:1)2004(cid:2). productionmethodtofabricatedeep-subwavelengthpatterns. 26P.A.BelovandY.Hao,Phys.Rev.B 73,113110(cid:1)2006(cid:2). The mask used in our method, which is diffraction limited, 27B.Wood,J.B.Pendry,andD.P.Tsai,Phys.Rev.B 74,115116(cid:1)2006(cid:2). can be fabricated by conventional photolithography or laser 28H.C.ShinandS.H.Fan,Appl.Phys.Lett. 89,151102(cid:1)2006(cid:2). interference lithography. 29M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, andA.S.Manka,J.Appl.Phys. 83,2377(cid:1)1998(cid:2). 30E.N.Economou,Phys.Rev. 182,539(cid:1)1969(cid:2). The authors thank Dr. Guy Bartal and Dr. Stephane 31I.Avrutsky,I.Salakhutdinov,J.Elser,andV.Podolskiy,Phys.Rev.B 75, Durantforvaluablediscussions.Thisworkwassupportedby 241402(cid:1)2007(cid:2). the National Science Foundation (cid:1)NSF(cid:2) Nanoscale Science 32Y.Xiong,Z.W.Liu,C.Sun,andX.Zhang,NanoLett. 7,3360(cid:1)2007(cid:2). and Engineering Center (cid:1)Grant No. DMI-0327077(cid:2) and 33P.B.JohnsonandR.W.Christy,Phys.Rev.B 6,4370(cid:1)1972(cid:2). the Air Force Office of Scientific Research (cid:1)AFOSR(cid:2), the 34E. D. Palik, Handbook of Optical Constants of Solids (cid:1)San Diego,Aca- demic,1998(cid:2). Multidisciplinary University Research Initiative (cid:1)MURI(cid:2) 35M. J. Madou, Fundamentals of Microfabrication (cid:1)CRC, Boca Raton, (cid:1)Grant No. FA9550-04-1-0434(cid:2). 2002(cid:2). Downloaded 22 Sep 2008 to 128.32.14.230. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.