ebook img

DTIC ADA530738: Bathymetry Retrieval from Hyperspectral Imagery in the Very Shallow Water Limit: A Case Study from the 2007 Virginia Coast Reserve (VCR'07) Multi-Sensor Campaign PDF

3.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA530738: Bathymetry Retrieval from Hyperspectral Imagery in the Very Shallow Water Limit: A Case Study from the 2007 Virginia Coast Reserve (VCR'07) Multi-Sensor Campaign

MarineGeodesy,33:53–75,2010 Copyright©Taylor&FrancisGroup,LLC ISSN:0149-0419print /1521-060Xonline DOI:10.1080/01490410903534333 Bathymetry Retrieval from Hyperspectral Imagery in the Very Shallow Water Limit: A Case Study from the 2007 Virginia Coast Reserve (VCR’07) Multi-Sensor Campaign CHARLESM.BACHMANN,1MARCOSJ.MONTES,1 ROBERTA.FUSINA,1CHRISTOPHERPARRISH,2 JONSELLARS,2ALANWEIDEMANN,3WESLEYGOODE,3 C.REIDNICHOLS,4PATRICKWOODWARD,4 0 1 20 KEVINMcILHANY,5VICTORIAHILL,6 h rc RICHARD ZIMMERMAN,6DANIELKORWAN,1 a M 5 BARRYTRUITT,7ANDARTHURSCHWARZSCHILD8 2 3 5 9: 1NavalResearchLaboratory,RemoteSensingDivision,Washington,D.C.,USA 1 : 2NOAANGS,SilverSpring,Maryland,USA t A 3NavalResearchLaboratory,OceanographyDivision,Stennis,Mississippi,USA ] y ve 4MarineInformationResourcesCorporation,EllicottCity,Maryland,USA r Su 5U.S.NavalAcademy,PhysicsDepartment,Annapolis,Maryland,USA al 6OldDominionUniversity,Norfolk,Virginia,USA c i og 7TheNatureConservancy,Nassawadox,Virginia,USA l eo 8UniversityofVirginia,DepartmentofEnvironmentalScience,Charlottesville, G S Virginia,USA U [ : y B d e Wefocusonthevalidationofasimplifiedapproachtobathymetryretrievalfromhyper- d a o spectralimagery(HSI)intheveryshallowwaterlimit(lessthan1–2m),wheremany l wn existingbathymetricLIDARsensorsperformpoorly.Inthisdepthregime,nearinfra- o D red(NIR)reflectancedependsprimarilyonwaterdepth(waterabsorption)andbottom type,withsuspendedconstituentsplayingasecondaryrole.Ourprocessingframework exploitstwooptimalregionswhereasimplemodeldependingonbottomtypeandwater depthcanbeappliedintheveryshallowlimit.Thesetwooptimalspectralregionsareat alocalmaximuminthenearinfra-redreflectancenear810nm,correspondingtoalocal minimuminabsorption,andamaximuminthefirstderivativeofthereflectancenear 720nm.Thesetworegionscorrespondtopeaksinspectralcorrelationwithbathymetry atthesedepths. Keywords Hyperspectral,shallow-waterbathymetry,bottomtype,IOP,Hydrolight, VirginiaCoastReserve Received26March2009;accepted14October2009. AddresscorrespondencetoCharlesM.Bachmann,NavalResearchLaboratory,RemoteSensing Division,CoastalScienceandInterpretationSection,Code7232,Washington,DC20375.E-mail: [email protected] 53 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED MAR 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Bathymetry Retrieval from Hyperspectral Imagery in the Very 5b. GRANT NUMBER ShallowWater Limit: A Case Study from the 2007 Virginia Coast Reserve (VCR?07) Multi-Sensor Campaign 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Remote Sensing REPORT NUMBER Division,Washington,DC,20375 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 23 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 54 C.M.Bachmannetal. IntroductionandBackground Numerous institutions, including the Naval Research Laboratory (NRL), have developed look-uptablesforremoteretrievalofbathymetryandin-wateropticalpropertiesfromhy- perspectralimagery(HSI)(Mobleyetal.2005).Forbathymetryretrieval,thelowerlimitis theveryshallowwatercase(heredefinedtobelessthan2m),adepthrangethatisnotwell resolvedbymanyexistingbathymetriclightdetectionandranging(LIDAR)sensorssuch as Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) (Ebrite, Pope and Lillycrop 2001). The ability to rapidly model these shallow water depths from HSI directlyhaspotentialbenefitsforcombinedHSI/LIDARsystemssuchastheCompactHy- drographicAirborneRapidTotalSurvey(CHARTS)(Smith,IrishandSmith2000).Among themanypotentialapplicationareasistheNationalOceanicandAtmosphericAdministra- tion (NOAA) LIDARshoreline mapping initiative (White2007), inwhich shallow-water topo/bathydatasetswithseamlesscoverageinanalongshoreswathencompassingthein- tertidalzonecanbeusedforextractionofbothmeanlowerlowwater(MLLW)andmean highwater(MHW)shoreline.Inthisstudy,wefocusedonthevalidationofanearinfra-red 0 1 feature corresponding to a local minimum in absorption (and therefore a local peak in 0 2 h reflectance), which can be correlated directly to bathymetry with a high degree of confi- c ar dence. Our study also concludes that a second near infra-red feature near a peak in the M 5 derivativeofthereflectanceisanotheroptimalregionforretrievalintheveryshallowlimit. 2 53 Compared to other VNIR wavelengths, these particular near-IR features correspond to a : 19 peak in the correlation with depth in this very shallow water regime. In this article, we : t develop a simplified computational framework that exploits these near infra-red features A y] andthefactthatinthenearinfra-red,intheveryshallowwaterlimit,reflectancedepends e rv primarilyonwaterdepth(waterabsorption)andbottomtype,withsuspendedconstituents u S playingasecondaryrole. l a ic The general problem of bathymetry retrieval from HSI is more complicated out of g lo theselimits.Atvisibleandnearinfra-red(VNIR)wavelengths,reflectanceisdetermined o e G byavarietyoffactorsincludingwaterdepth,bottomtype,andthepresenceofsuspended S [U constituentssuchascolor-dissolvedorganicmatter(CDOM),suspendedsediments,chloro- y: phyll,phytoplankton,andothersuspendedconstituents(Mobley1994).Thegeneralprob- B d lem of retrieving depth and other water properties has been approached using spectral e d oa look-up tables (Mobley et al. 2005) in which a forward radiative transfer model such as l wn Hydrolight(MobleyandSundman2000)isexecutedrepeatedlywithvaryingwatercolumn o D properties,depth,andbottomtypes.Tobecomprehensive,theselook-uptablesmustbelarge andmayneedtobetunedtospecificcoastaltypesbecauseofdifferencesinbottomtypes and water properties, which may vary significantly with coastal type. Other approaches to the problem of bathymetry retrieval from HSI have included a semi-analytical model (Leeetal.1999,2001).BoththeLUTapproachandsemi-analyticalmodelssimultaneously retrievemorethanoneinherentopticalproperty(IOP)ofthewatercolumn. RecentcommercialbathymetricLIDARsystems,suchastheSHOALS(Ebrite,Pope andLillycrop2001),havebeendesignedforimprovedperformanceatthedeependofthe operatingrange,possiblyattheexpenseoflimitingperformanceinshallowwater(0–4m depth).Inparticular,thecombinationofarelativelylarge(severalnanosecond)laserpulse width(whichincreasesthelengthofthetotalsystemresponsefunction),largespotsizeat thewatersurface(duetodesignrequirementsimposedbyeyesafetyconsiderations with high-poweredlasers),andgeometricpulsestretchingatthewatersurface(largelydue,in the case of the SHOALS, to a fixed 20◦ incidence angle) make it difficult to resolve the bottom in returns from very shallow water (less than ∼2 m). Typical data gaps found in VeryShallowWaterBathymetryfromHSI 55 Figure1. Typical SHOALS bathymetry coverage superimposed on a Google Earth image. These datawerecollectedbytheU.S.ArmyCorpsofEngineersinCurrituckCounty,N.C.,inJuly2004. 0 01 Thesensorfails toresolvethebottom inreturnsfromveryshallowwater regions,leading todata 2 h gaps. c r a M 5 2 manyoftheSHOALSstandardproductsareshowninFigure1.Somefairlyrecentstudies 3 5 : have focused on using advanced digital signal processing techniques to estimate bottom 9 1 : depths from LIDAR waveforms in these very shallow regions, with encouraging results t A (Yangetal.2007).However,alargenumberofexistingSHOALSdatasetsexhibitdatagaps, ] y e such as those shown in Figure 1. In addition, the very low (few hundred meter) altitude v r u requiredfordataacquisitionbybathymetricLIDARsystemsmakesacquisitionimpossible S al inmanyregionsoftheworld.Inthisarticle,wefocusonthisveryshallowwaterregime, c gi specificallyontheretrievalofbathymetryfromaspectralrangewherearelativelysimple o l o model forreflectance can beassumed and whereafull-scaleLUT may not benecessary. e G S Comparedtothereflectanceatvisiblewavelengths,whereallcontributionsfromthewater U [ column must be carefully considered, near infra-red wavelength reflectance (beyond 800 : y B nm)isprimarilydependentonwaterabsorptionanddepth,alongwithbottomreflectance, d de withwatercolumnconstituentsplayingasecondaryrole.Wewillfindthatanearoptimal a lo wavelengthforthisretrievalisapproximately810nm.Asecondoptimalregionalsoappears n w o nearapeakinthefirstderivativeofthereflectancenear720nm. D WaterColumnReflectanceintheNearInfra-RedandHydrolightModels In this section, we demonstrate that varying concentrations of suspended constituents do not significantly affect the reflectance at 810 nm or 720 nm but indeed are a large contributing factor to the shorter wavelength returns. Likewise, the wavelength ranges near 810 nm and 720 nm are particularly sensitive to water depth in the very shallow limits. To demonstrate this theoretical expectation, we have run a series of models using Hydrolight. This model allows the user to vary the concentration of constituents, bottom type,depth,andotherparametersandlookattheircontributiontoremotesensingreflectance as a function of wavelength. Hydrolight supports the ingest of field measured spectra. To test our model assumptions, a bottom reflectance measured by us in the intertidal zone at the Virginia Coast Reserve Long-term Ecological Research (VCR LTER) site (http://www.lternet.edu/sites/vcr/)wasusedasamodelinputtoHydrolight.Totalsuspended sediment (TSS), CDOM, and chlorophyll concentration were held constant with values 56 C.M.Bachmannetal. 0 1 0 2 h c r Ma Figure2. Hydrolight modeled reflectance for varying depths with fixed water column properties. 5 2 InputbottomreflectancewasfromanASDinsitumeasurementoveranoystershellbottominFigure6. 3 5 : 9 1 : t A ] ey that might be found in coastal lagoons such as those at the VCR LTER. With the water v r u column properties fixed, depth was varied, and the resulting reflectance was calculated S al fromHydrolight.Figure2showstheresultingreflectanceforafixedsetofwatercolumn c gi propertiesasthedepthisvaried.Italsoshowsapeakinthevicinityof810nmthatiswell o l o correlatedwithdepth.Thespectralregionnear720nm(maximumderivativeofreflectance) e G S is another peak in this correlation. Empirical studies of the visible and near IR spectrum U [ inlaboratorysettingshaveshownarelativelybroadpeaknear810nm,correspondingtoa : y B localminimumintheliquidwaterabsorption(CurcioandPetty1951). d de We also used Hydrolight to show that varying suspended constituents are indeed a lo expected to make only a small difference near 810 nm and 720 nm, while at shorter n w o wavelengthsinthevisible,thesechangeshaveasignificantimpactthatcannotbeignored D inmodeling.Figure3aillustratesthispointforacaseinwhichtotalsuspendedsediment (TSS) is varied while all other inherent optical properties (IOPs) are held fixed and the depthisconstantforaspecificbottomtype(inthiscase,thefieldspectrumofourbottom substratetakenfortheoystershellbottomsiteatWreckIsland,Virginia,describedlaterin thisarticle).Weprovidetwoexamples,oneatafixeddepthof0.4mandtheotherat0.8 m. Hydrolight reflectances are shown for TSS = 2, 3, and 5 g/m3. Note the much larger variationinreflectanceatwavelengthsbelow700nmcomparedtolongerwavelengths. Whilethetotalcontributionstoreflectancearegovernedbytheequationsofradiative transfer(Mobley1994)andareincludedinHydrolight,theHydrolightsimulationssuggest the possibility of an approximate form in this wavelength regime. The simulations of Figures2and3showthatinthelongerwavelengths,thedominantfactoristheabsorption duetoliquidwater,withtheinfluenceofthescatteringbecominganegligibleterm.Under these assumptions, and ignoring fluorescence and Raman scattering for the moment, the attenuationisapproximatelyduetotwoterms:oneduetothereflectanceofthebottomand oneduetothepropertiesofthewatercolumnwiththesecondbecomingsmallerinthenear VeryShallowWaterBathymetryfromHSI 57 Variation of Suspended Sediment, depth=0.8m, Variation of Suspended Sediment, depth=0.4m, chl=3mg/m3, chl=3mg/m3, cdom(440nm) = 0.1/m cdom(440nm)=0.1/m 0.07 0.06 0.06 drolight Reflectance 0000....00002345 rrreeeffflll(((tttssssss===235ggg///mmm^^^333))) drolight Reflectance0000....00002345 rrreeeffflll(((tttssssss===235ggg///mmm^^^333))) y y H H 0.01 0.01 0 0 350 450 550 650 750 850 950 350 450 550 650 750 850 950 Wavelength (nm) Wavelength (nm) 0 1 0 2 Figure3a. SimulatedreflectanceusingHydrolight,forvaryingTSS,withallotherIOP’sheldfixed, h rc andatfixeddepths:(left)0.4m,(right)0.8m. a M 5 2 3 5 infra-redwavelengths: : 9 1 At: Rλ ∼ρbottome−α(λ)d +R∞(λ)(1−e−3α(λ)d) (1) ] y e v where R is the reflectance at wavelength λ; ρ is the bottom reflectance; α(λ) is a r λ bottom u S wavelength-dependentattenuationcoefficient,whichatlongernearinfra-redwavelengths l ca isdominatedbytheabsorptionduetoliquidwaterandislessaffectedbyscatterasshown i g o in the Hydrolight simulations; d is the depth (for our purposes we define quantities such l Geo thatdisincmandα(λ)isincm−1);andR∞(λ)isareflectanceofthewatercolumnwhen [US thereisnobottomcontribution.Atlongernearinfra-redwavelengths,R∞(λ)isnearzero, : whereasatshorterwavelengthsthistermissignificantduetothescatteringofsuspended y B d constituents.Eq.(1)issimilartoapproximateformsforthesetwocontributionsfound,for e ad example,inLeeetal.(1994),whereα(λ)isacompositeoffactorssuchasthequasi-diffuse o l n attenuationcoefficient(sumofabsorptionandscatteringcoefficients)andthedownwelling w o D distributionfunction.Withthisassumption,welookforaregressionbetweenln(R )andd, λ assumingthatinourshallowwaterlimitthefirstterminEq.(1)isthemostsignificant.In thisapproximation,wehave: In(R )=−α(λ)d+β(λ) (2) λ where β(λ) ∼ ln(ρ ) is a wavelength-dependent offset, depending on the bottom re- bottom flectance. Numerically, we can show that this is further justified by extending the Hydrolight simulations in Figures 2 and 3a to deeper depths. Figure 3b shows ln(R ) versus d (in λ meters)forλ=722.5nmand812.5nm,nearthetwooptimalwavelengthsforthistypeof retrieval.InthisfigurewehaveplottedtheeffectsofincreasingtheconcentrationofTSS andchlorophyll.Therelationshipbetweenln(R )anddislinearintheshallowlimit,and λ departurefromthislinearlimitvariesdependingonconcentrationsofTSSandchlorophyll. More important, the linear slope is the same regardless of concentration, and the point of departure from linearity marks the point at which the second term in Eq. (1) due to 58 C.M.Bachmannetal. thewatercolumnbecomesmoresignificantandcannolongerbeneglected.Thedeparture fromlinearityoccurssoonerathigherconcentrationsofsuspendedconstituentsasscattering andabsorptionbecomemoreimportant.Evenatlowconcentrations,extinctioneventually 0 1 0 2 h c r a M 5 2 3 5 : 9 1 : t A ] y e v r u S l a c i g o l o e G S U [ : y B d e d a o l n w o D Figure3b. Hydrolightsimulationsshowingthenaturallogarithmofreflectancevs.depthinmeters at two NIR wavelengths: 722.5 nm (left column) and 812.5 nm (right column) for varying levels oftotalsuspendedsediment(TSS)atlow,fixedchlorophyllandCDOMconcentrations(toprow), andforvaryinglevelsofchlorophyllconcentrationatfixedTSSandCDOMconcentrations(middle row).(Bottomrow)NegligibleimpactoffluorescenceandRamanscatteringfor(bottom,left)low andhighconcentrationsofchlorophylland(bottom,right)lowandhighconcentrationsofTSSat 722.5nm. VeryShallowWaterBathymetryfromHSI 59 0 1 0 2 h c r a M 5 2 3 5 : 9 1 : t A ] y ve Figure4. NRLCASI-1500quicklookcompositeoftheVCR’07multi-sensorcampaign.Thesensor r Su suitecoveredover1880km2,someareasmultipletimesatdifferenttidalstages.Areasusedforshallow al waterbathymetryvalidationduringtheVCR’07campaignandearlierin2005areindicatedbyred c gi arrows. o l o e G S [U becomes the most important factor at these longer NIR wavelengths, which is why the y: curvesreachanasymptoticlimitinallcases.TSShasthebiggestimpactonthedepthof B d departurefromlinearityinthesecurves,whilechlorophyllhasanimpactbutnotasstrong. e d oa There is virtually no dependence on CDOM concentration at these NIR wavelengths, so l wn these graphs are not shown. Finally, the impact of fluorescence and Raman (inelastic) o D scatteringisnegligibleasshowninFigure3b.Forthisreason,thefluorescenceandRaman termswereignoredinthediscussionsurroundingEq.(1). VirginiaCoastReserve2007(VCR’07)Campaign DuringSeptember2007,theNavalResearchLaboratory(NRL)andanumberofcollabo- rating institutions undertook a multisensor airborne data collection and in situ validation campaign at the Virginia Coast Reserve (VCR’07). Airborne, in-water, and land-based measurementstookplaceoverthecourseofthe2–1/2weekexerciseandcovereda95km stretchofbarrierislands,inlets,coastallagoons,tidalflats,andmainlandmarshsystems. In all, some 1880 km2 were covered by the NRL sensor suite (Figure 4), some areas multiple times at different tidal stages. NRL flew three sensors on a Twin Otter aircraft: a Compact Airborne Spectrographic Imager (CASI-1500), which is a visible and near infra-red(VNIR)HSIsensor(www.itres.com);aSurfaceOptics(www.surfaceoptics.com) InGaAs SWIR HSI sensor operating in the 0.9–1.7 µm spectral region; and a single- 60 C.M.Bachmannetal. channelIndigoSystemsMerlinmidwaveIRcameraoperatinginthe3–5µmspectralrange (www.corebyindigo.com/products/legacy.cfm). This article focuses on the CASI imagery takenduringtheexperimentandtheinsituvalidationdatacollectedtostudytheNIRfeature describedearlier.OtherlittoralfocusareasstudiedduringtheVCR’07experimentincluded the remote retrieval of soil bearing strength (Bachmann et al. 2008), biomass retrieval, land-covermapping(Bachmannetal.2003),andseagrassandoysterreefmonitoring. During the experiment, the NRL CASI-1500 was operated at an altitude of approxi- mately3000m,withanominalgroundsampledistance(GSD)ofroughly1.5m.Atthis spatialresolution,theswathwidthwasapproximately2.25km.AlthoughtheCASI-1500is capableofupto288spectralchannels,spectraldatawerebinnedto96channelstoimprove signaltonoiseratio(SNR).Withthisnumberofchannels,thespectralbinshadasizeof approximately7nm.SincetheCASI-1500hyperspectralimagerywasacquiredinacoastal region,withwaterpresentineveryscene,dataweretakeninamannerthatwouldminimize glintbyconfiningdatacollectiontospecificwindowswhenthesolarelevationanglewas in the range between 30 and 60◦. A further measure to reduce glint was that flight line 0 headingsduringdataacquisitionwereeitherintooroutofthesun.Thiswasaccomplished 1 20 bysetsoflinesinhourlywindowsinsuchawaythatfollowedtheaverageheadingintoor h c outofthesunforthewindow. r a M Fortheveryshallowbathymetrystudy,fieldvalidationeffortsusedAnalyticalSpectral 5 2 Devices(ASD)spectrometers(www.asdi.com)positionedonatripodinashallowcoveon 3 5 : thenorthwesternshoreofWreckIsland,Virginia,andintheshallowstretchesofamuddy 9 1 : tidalcreekandsaltmarshsysteminthenorthernendofParramoreIsland,Virginia.Depth t A andASDspectralmeasurementswererecordedonafallingtideuntilthesubstratewascom- ] ey pletelyexposed,allowinganinsitubottomreflectancetobeobtainedinthemeasurement v r u suite. Bottom reflectance was also measured by divers using an underwater spectrometer S al atotherlocations.Previously,duringfieldworkinOctober2005,ASDmeasurementshad c gi beencollectedintheshallowwatersontheedgeofasaltmarshsysteminthenorthernend o l o of Smith Island. The ground truth for VCR’07 included postprocessed kinematic (PPK) e G S GPSdatafortheinter-tidalregiononthenorthernendofWreckIslandtosupportproduct U [ validation.Inaddition,depthsoundingsweretakenintheshallowwatersbehindtheisland : y B andintheadjacentchannelseparatingWreckfromCobbIsland.Attheconclusionofthe d de study,theNASAExperimentalAirborneAdvancedResearchLIDAR(EAARL)acquired a lo datainconjunctionwiththeNRLsensorsuite,albeitduringaperiodwhenweathercondi- n w o tions were not optimal and turbidity was high. For this study, the PPK GPS ground truth D dataservedastheelevationreferencedataforbathymetryretrievalvalidation. Figures5and6showthemeasuredspectralcurvesforeachdepthcollectedduringthe measurement cycle at Parramore and Wreck Islands, respectively, during VCR’07, along withinsituphotosandtheregressionat810nm.Asimilarregressionwascarriedoutfor datatakenbyusonthenorthernendofSmithIsland,Virginia,inOctober2005(Figure7)for asand/siltbottomonthewaterymarginbetweenbeachandsaltmarshzones.Asdescribed earlier,thefocuswasonthelongerwavelengthsofthenearinfra-redspectrum,butthefull rangespectrumfrom0.35–2.5µmalsowascollected.Thevisibleandnearinfra-redarethe portionsofthespectrumusuallyusedinwaterapplications,sincethereflectancebeyonda micronisnearzero,exceptwhenconstituentsinthewatercolumnarefullymixedtothe surface layer. The visible shallow water spectra in Figures 5, 6, and 7 show a relatively broadpeaknear810nm,correspondingtoalocalminimumintheliquidwaterabsorption (CurcioandPetty1951).Thereisasimilarpeaknear1.076µm,whichisofasimilarorigin, thoughofalesspronouncedcharacter. VeryShallowWaterBathymetryfromHSI 61 Toassesstherelativemeritsofwavelengthselectionattheselongerwavelengthsand confirmtheoptimalityofthechoiceofthe810nmand722nmfeatures,wecomputedan R2goodnessoffitbetweenalinearregressionofln(R )andd,whereR isthereflectance λ λ atwavelengthλandd isthedepthincm.Thisisbasedonourearlierassumptionthatthe bottom type and water absorption and depth are the most significant factors in the very 0 1 0 2 h c r a M 5 2 3 5 : 9 1 : t A ] y e v r u S l a c i g o l o e G S U [ : y B d e d a o l n w o D Figure5. (Top)ParramoreIslandinsituspectrometrysiteonsaltmarshtidalcreekbank,September 12,2007,withmuddybottom;(middle)NRLCASI1500imageofParramoreIslandonsameday, showing the ASD spectral measurement site (yellow circle) where spectral reflectance vs. depth profileswererecorded:(top,left)beginning(nearhightide)(top,right)andend(nearlowtide)of measurement cycle. (Bottom right) Spectral samples at depths varying from 90 cm to 0 cm (wet substrate).(Bottom,left)ln(R810nm)vs.d(depthincm).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.