ebook img

DTIC ADA525411: Color and Luminance Asymmetries in the Clear Sky PDF

8 Pages·2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA525411: Color and Luminance Asymmetries in the Clear Sky

Color and luminance asymmetries in the clear sky Javier Herna´ndez-Andre´s, Raymond L. Lee, Jr., and Javier Romero A long-standing assumption about the clear sky is that its colors and luminances are distributed symmetricallyabouttheprincipalplane. Asusefulasthisapproximationis,ourdigital-imageanalyses show that clear-sky color and luminance routinely depart perceptibly from exact symmetry. These analysesreconfirmourearliermeasurementswithnarrowfield-of-viewspectroradiometers(cid:1)J.Opt.Soc. Am.A18,1325(cid:2)2001(cid:3)(cid:4),andtheydosowithmuchhighertemporalandangularresolutionacrossthe entireskydome. ©2003OpticalSocietyofAmerica OCIScodes: 010.1290,330.1710,330.1730. 1. Introduction distributions also have been relatively rare. A no- Oneoftheoldestassumptionsaboutcloudlessskiesis table exception comes from Sekine, who in 1991 cal- that their chromaticity and luminance distributions culatedtheoreticalclear-skychromaticitiesalongthe aresymmetricaboutthesolarmeridian,orprincipal solarmeridian.10 Sekineanalyzeshowaerosolopti- plane. Assumingthatskylightexhibitsmacroscopic cal depth, solar elevation, scattering angle, and re- symmetryfollowslogicallyfromthemicroscopicscat- flected surface light all affect sky color. He shows tering symmetry of single molecules or collections of that, for constant solar elevation, moving along the randomly oriented aerosols. Skylight symmetry solar meridian generates V-shaped chromaticity also agrees with the evidence of our eyes—the clear curves for skylight. Furthermore, these Vs nearly daytime sky’s color and brightness indeed look bal- parallel the Planckian locus on its green side, i.e., anced on either side of the principal plane. But abovethePlanckianlocus. AlthoughSekine’sanal- what experimental evidence exists for this symme- ysis is a useful start, it is restricted to the solar me- try? ridian and thus can offer no insights into clear-sky Acrossseveraldecadesandwithavarietyofgoals, color symmetry. numerous researchers have studied the angular dis- In1994,oneofus(cid:2)Lee(cid:3)useddigitalimageanalysis tribution of the clear daytime sky’s visible- to measure daytime and twilight clear-sky chroma- wavelength radiances. One consequence of this ticities along several different meridians near the diverse research is a variety of empirical and theo- horizon.11,12 This technique produced data compa- retical models of clear-sky radiance and luminance rable in quality with that derived from spectroradi- across the sky dome.1–5 Although the clear sky’s ometers, with the added advantage of having quite patternsofspectraandchromaticitiesmeritasmuch highangularandtemporalresolution. Amongother attentionasitsradiancepatterns,littleexperimental conclusions, this study showed that clear daytime research has been done on the former,6–9 because skies have purity minima a small distance above, quicklymappingtheentireskywas,untilrecently,a rather than at, the astronomical horizon. Now we difficult feat. quite literally expand our horizons by applying an Physically realistic models of the clear sky’s color improvedversionofthisdigital-imageanalysistothe entire hemisphere of the clear sky. 2. PreviousResearchonSkylightAsymmetries J.Herna´ndez-Andre´s(cid:2)[email protected](cid:3)andJ.Romeroarewith Recently we analyzed (cid:5)1600 skylight spectra ac- theDepartamentodeO´ptica,FacultaddeCiencias,Universidadde quired during a 7-month period in Granada, Spain Granada,Granada18071,Spain. R.L.Lee,Jr.iswiththeMath- (cid:2)37°11(cid:6)N,3°35(cid:6)W,altitude680m(cid:3).13 Theseclear- ematicsandScienceDivision,UnitedStatesNavalAcademy,An- sky spectral radiances were measured within 3° napolis,Maryland21402. fieldsofview(cid:2)FOVs(cid:3)alongfourskymeridians: the Received8January2002;revisedmanuscriptreceived25March solar meridian with relative azimuth (cid:7) (cid:8) 0°, and 2002. rel 0003-6935(cid:1)03(cid:1)00458-07$15.00(cid:1)0 three meridians at (cid:7)rel (cid:8) 45°, 90°, and 315° to it. ©2003OpticalSocietyofAmerica Notethat(cid:7) increasesclockwisefromtheSun’saz- rel 458 APPLIEDOPTICS(cid:1)Vol.42,No.3(cid:1)20January2003 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 25 MAR 2002 2. REPORT TYPE 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Color and luminance asymmetries in the clear sky 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION United States Naval Academy (USNA),Mathematics & Science REPORT NUMBER Department,Annapolis,MD,21402 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 7 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 imuth (cid:2)i.e., (cid:7) increases in the same sense as com- from two GSV directions as quickly as we can reaim rel pass direction(cid:3). it (cid:2)(cid:5)5–7 s(cid:3), we still found perceptible differences in When we reuse our earlier notation,13 view- skylight. However,toaddressdefinitivelytheques- elevationanglehincreasesfrom0°attheastronom- tionoftemporalchangesinclear-skycolorandlumi- ical horizon to h (cid:8) 90° at the zenith. If skylight nance, we now turn to a technique that offers far symmetry holds true, then we should observe the higher angular and temporal resolution—digital same chromaticity and luminance at any symmetric analysis of fish-eye photographs. pairofviewingdirectionsh,(cid:7) (cid:8)180°(cid:9)(cid:10)(cid:7),where rel 0°(cid:11)(cid:10)(cid:7)(cid:11)180°. Thush(cid:8)20°and(cid:7) (cid:8)30°,330° 4. Digital-ImageAnalysisofFish-EyePhotographs rel are one such pair of geometrically symmetric view Whether derived from digital cameras or scanned (cid:2)GSV(cid:3) directions; h (cid:8) 60° and (cid:7) (cid:8) 95°, 265° are film,theinherentadvantageofdigitalimagesisthat rel anotherGSVpair. AlthoughanygivenpairofGSV their angular and temporal resolutions can be quite directions has the same scattering angle from the small: Here each pixel subtends a linear angle of Sun, the fact that two viewing directions have equal (cid:5)0.3° (cid:2)solid angle (cid:5)2.2 (cid:12) 10(cid:13)5 sr(cid:3), and images are scatteringanglesdoesnotmeaningeneralthatthey acquiredin1(cid:1)125–1(cid:1)4s(cid:2)dependingonh (cid:3). Aswith 0 are a GSV pair. our earlier spectroradiometer measurements, we A significant constraint on our Granada radiome- took our fish-eye photographs in Granada, Spain. termeasurementswasthatwecouldmeasureonlya Although our observing site’s horizon has few topo- relativelyfewradiances(cid:2)44intotal(cid:3)acrosstheentire graphic obstructions, these nonetheless give us un- sky quickly enough that unrefracted Sun elevation ambiguous compass directions, which in turn let us h ,andthusscatteringgeometry,changednegligibly. calculate (cid:7) accurately. As a result, our uncer- 0 rel Onesalientresultfromourmeasurementcampaign13 taintyindeterminingazimuthsis1°,asdescribedin suggeststhatSekine’smodel10maybeaspecialcase Ref.13. Ourvisualprerequisitefortakingmeasure- ofamoregeneralphenomenon. Namely,mostofour mentswasthattheskymustappeartobecompletely scansalongthefourskymeridiansyieldeddistinctly cloudless. V-shaped chromaticity curves, and these Vs nearly We photographed the entire sky at different h , 0 coincide with the Commission Internationale de usingaNikkor8-mmobjective17,18(cid:2)FOV(cid:8)180°or2(cid:14) l’Eclairage (cid:2)CIE(cid:3) daylight locus. sr(cid:3), and we aimed the optical axis of the lens at the Yetevenwithonly44radiancesperh ,ourearlier zenith. To avoid exposure problems and lens flare 0 skylightanalysisroutinelyfoundperceptiblechroma- during the day, we shaded the camera lens from di- ticity and luminance differences in various GSV di- rectsunlightwithasmalldiskattachedtoathinpole. rections. Independent of h , color asymmetries in Afterscanningfish-eyephotographsoftheskyandof 0 GSV pairs often exceeded 1 just-noticeable differ- a color-calibration card, we began our digital-image ence14 (cid:2)JND(cid:3), reaching a maximum of 4.5 JNDs. analysis. When we photographed the color- Giventhatclear-skycolorandluminanceareclosely calibrationcard,itwasilluminatedbydaylight(cid:2)sky- linked at a given h , not surprisingly we also found light plus direct sunlight(cid:3) with a known spectral 0 luminance asymmetries about the principal plane. power distribution. Because we are interested only With a 2% luminance difference as a typical thresh- inmeasuringchromaticitiesoftheconvolvedspectra oldforphotopicvision,almostallGSVdirectionshad of skylight illuminants and scatterings, our known perceptible luminance differences. daylight illuminant need not be (cid:2)and in general will notbe(cid:3)identicaltothosethatilluminatescatterersat 3. AreSkylightAsymmetriesReal,orAreThey differentaltitudesintheclearsky. Leedescribesin MeasurementArtifacts? detail the calibration procedure for, and advantages Despite (cid:2)or perhaps because of(cid:3) the fact that these and limitations of, his particular technique.12 It is asymmetries occur routinely, a fair question is especially useful in calculating relative chromatici- whether they are real or are merely artifacts caused tiesandluminancesfordifferentlightsources. That by our measurement technique or by the spectrora- is certainly our task here, since we are comparing diometer itself. One obvious quibble involves the color and brightness differences for many different time required for making our meridional measure- pairs of clear-sky GSV directions. ments. Indeed, some of the observed asymmetries Foreachdigitalimageweuseourcolorimetriccal- mightbeascribedtothe4minneededforourLI-COR ibrationalgorithmtomapred–green–bluepixelgray LI-1800spectroradiometer15tosurveytheentiresky. levels into CIE 1931 x, y chromaticities and relative However,ouruncertaintyinmeasuring(cid:7) wascom- luminanceY. Insteadofcalculatingcolorandlumi- rel parable in magnitude with changes in solar position nance differences directly from x, y, and Y in the duringthisperiod. Thuswereasonedthatchanges perceptually anisotropic CIE XYZ color space, we insolarelevationandazimuthmayslightlyincrease first map this data into the isotropic CIELUV color but would not cause the observed color and lumi- space.14,19 Within this space we calculate the CIE- nance asymmetries. LUV color difference (cid:10)E* , which for any pair of uv Strong support for this reasoning comes from sky- clear-sky GSV directions is light measurements made with a faster spectroradi- ometer, a Photo Research PR-65016 with a 1° FOV. Even though this instrument lets us acquire spectra (cid:10)E* (cid:1)(cid:1)(cid:2)(cid:10)L*(cid:3)2(cid:2)(cid:2)(cid:10)u*(cid:3)2(cid:2)(cid:2)(cid:10)v*(cid:3)(cid:4)1/2 . uv 20January2003(cid:1)Vol.42,No.3(cid:1)APPLIEDOPTICS 459 Fig.2. Clear-skycolor-differencemapderivedfromFig.1. Over- laid on this map are the solar meridian (cid:2)or clear-sky principal plane(cid:3)with(cid:7) (cid:8)0°andthreemeridianscorrespondingto(cid:7) (cid:8) rel rel 45°,90°,and315°. Becausewearelookingupatthezenithrather than down at the nadir, (cid:7) increases counterclockwise in this Fig.1. Fish-eyephotographofaclearskyinGranada,Spain,on rel figure. Each map contour spans 5 units of the CIELUV color 21May2000at10:24UTC.Unrefractedsolarelevationh0(cid:8)60.0° difference(cid:10)E* . Themostchromaticskylightcolorsareplottedin abovetheastronomicalhorizon,andthephotographiscenteredon red (cid:2)(cid:10)E* (cid:8) 1uv60(cid:3)near h (cid:8) 45°, (cid:7) (cid:8) 180°; the least-chromatic thezenith. skylightucvolors(cid:2)(cid:10)E* (cid:8)0(cid:3)arenearretlheSun. uv L*, u*, v* are the CIELUV space’s orthogonal coor- graybandorcolorbandinFig.2correspondsto(cid:10)E* dinates, and (cid:10)L*, (cid:10)u*, (cid:10)v* are the corresponding (cid:8) 5 color-difference units; the most chromatic skyuv- differences between coordinates of the two light light colors are plotted in red near h (cid:8) 45°, (cid:7) (cid:8) rel sources being compared. Note that 3–5 CIELUV 180°. So if a pair of GSV directions are plotted in color-difference units are often taken to be 1 JND. different colors in Fig. 2, then their (cid:10)E* (cid:15) 5, and uv Onceagainweusea2%differenceinluminanceL as their combined color and luminance differences ex- v the luminance JND for photopic vision. ceed 1 JND. Because color changes smoothly as we lookacrosstheclearsky,thisfinalstatementdoesnot 5. AsymmetryResults implythatadjoiningpatchesofskyinFig.2’sdiffer- Ourfirstfish-eyephotographofacloudlessskyisFig. ent map bands differ perceptibly from one another. 1,whichwastakenon21May2000whenh (cid:8)60.0°. ForanexampleofGSVdifferencesinFig.2,compare 0 Thedarkovalath isthesunshielddescribedabove. the magenta band at h (cid:8) 30°, (cid:7) (cid:8) 315° with the 0 rel In Fig. 2 and subsequent figures, we indicate the greenbandath(cid:8)30°,(cid:7) (cid:8)45°. Because(cid:10)E* (cid:5) rel uv Sun’s position and selected h, (cid:7) by overlaying a 10betweenthesetwoGSVdirections,thecorrespond- rel polar-coordinatesystemonthefish-eyeviews. This ingpatchesofclearskyinFig.1wouldhavedifferent white overlay will be useful in visually identifying colors if compared side by side. Unlike the chame- skylight color and luminance asymmetries, and it leon, sadly we cannot roll our eyes independent of includes the horizon; the h (cid:8) 30° and 60° almucan- eachotherinordertomakesimultaneousfovealcom- tars; the zenith; the solar meridian (cid:2)(cid:7) (cid:8) 0°(cid:3); and parisonsofsuchdisparateGSVdirections.However, rel (cid:7) (cid:8)45°,90°,and315°. Becausetheoverlay’sdots if we carefully aim a small mirror outdoors or juxta- rel indicate the 44 h, (cid:7) where we made our earlier pose digital-image samples indoors, then we can see rel spectroradiometer measurements,13 the overlay also these differences in sky color. aidscomparisonwiththatstudy. Notethatbecause Whathappensifweeliminatecolorfromtheclear we included the zenith in each of four meridional sky and simply view it in shades of gray? In other radiometer scans, only 41 separate dots appear in words,ifweignorecolorcanwestilldetectclear-sky Fig. 2. Each of these four zenith spectra was ac- asymmetries? Part of the answer comes from Fig. 3, quired 6 min. apart,13 which at small h is long which is a map of Fig. 1’s luminances L . As with 0 v enough to produce perceptible changes in skylight color differences, we find that this clear sky does color and luminance. Furthermore, (cid:7) increases indeedhaveperceptibleluminanceasymmetries. In rel counterclockwiseinFig.2,sincewearelookingupat Fig.3,eachgraybandorcolorbandspansarangeof the zenith, rather than down at the nadir. luminances(cid:10)L (cid:8)2%;thedarkestskylightcolorsare v InFig.2weplotu*,v*calculatedfromourdigital- plotted in red near h (cid:8) 45°, (cid:7) (cid:8) 180°. For an rel imageanalysisofFig.1,butwedosointheformofa example of suprathreshold luminance asymmetries CIELUV color-difference map. Specifically, each inFig.3,comparetheGSVdirectionsh(cid:8)30°,(cid:7) (cid:8) rel 460 APPLIEDOPTICS(cid:1)Vol.42,No.3(cid:1)20January2003 Fig.3. Clear-skyluminancemapderivedfromFig.1. Eachmap contour spans a range of luminances (cid:10)L (cid:8) 2%. The darkest v skylightcolors(cid:2)(cid:10)L (cid:8)0%(cid:3)areplottedinrednearh(cid:8)45°,(cid:7) (cid:8) v rel 180°;thebrightestskylightcolors(cid:2)(cid:10)L (cid:8)60%(cid:3)areneartheSun. v Fig.4. Fish-eyephotographofaclearskyinGranada,Spain,on 9April2001at18:50UTC.Solarelevationh (cid:8)(cid:13)2.1°(cid:2)i.e.,during 315°(cid:2)cyanband(cid:3)andh(cid:8)30°,(cid:7)rel(cid:8)45°(cid:2)pinkband(cid:3). civiltwilight(cid:3),andthephotographiscentere0donthezenith. For this pair of directions (cid:10)L (cid:5) 3%, a small but v clearlydistinguishabledifference. Infact,Table1’s (cid:10)L statistics show that perceptible GSV luminance nificantfractionofthetotalstimulusdifference(cid:10)E* v uv differencesaretherule,ratherthantheexception,in for Fig. 1. Fig.1: Itsmean(cid:10)L isnearly4.3timesournominal Because surface reflectance spectra do not vary v threshold value. systematically within 40 km of Granada, our ob- Direct visual comparisons suggest that luminance servedskylightasymmetriesareunlikelytoarisefrom does not outweigh color in defining the clear sky’s variations in ground reflection. Furthermore, these asymmetries. Using a colorimetrically calibrated asymmetriescanlargelydisappearin(cid:11)24hr(cid:2)seeSec- colormonitorandadigitalimageofFig.1,wejuxta- tion6(cid:3),somethingthatcannotbeexplainedbywhole- posedpairsofcolorswatchescorrespondingtoallits sale changes in surface reflectance. Instead, our GSV directions. Of these thousands of GSV color clear-skycolorandluminanceasymmetriesarelikelier pairs,wejudgedthat33%werevisiblydifferentand tobecausedbylocalinhomogeneitiesinthekindand that most of these pairs appeared to differ in color concentration of tropospheric aerosols. If surface rather than brightness. Although this judgment is sourcesofaerosolscontributetothisvariabilityacross necessarily subjective, visual interpretation is, after (cid:7) , one plausible explanation for it would be that rel all, our ultimate benchmark here. Table 1 also Granadahasconsiderablearablelandtoitswest,but shows that color differences matter in causing GSV muchlessinotherdirections. Thecityhasnosignif- asymmetries: the luminance-weighted chromatic- icantsourcesofindustrialaerosols. ity difference (cid:10)u*v* (cid:16)(cid:8) (cid:1)(cid:2)(cid:10)u*(cid:3)2 (cid:17) (cid:2)(cid:10)v*(cid:3)2(cid:4)1(cid:1)2(cid:18) is a sig- Our second clear-sky photograph is Fig. 4, which Table1. SummaryStatisticsfor(cid:1)L (cid:2)%(cid:3),(cid:1)u*v*,and(cid:1)E* inFigs.1,4,and7a v uv FigureNo.and 10th 90th CIELUVVariable n x(cid:1) s percentile percentile Fig.1(cid:10)L (cid:2)%(cid:3) 139955 8.597 23.734 0.242 20.716 v Fig.4(cid:10)L (cid:2)%(cid:3) 136833 13.522 51.362 0.251 22.294 v Fig.7(cid:10)L (cid:2)%(cid:3) 146867 8.374 26.543 0.280 13.742 v Fig.1(cid:10)u*v* 139955 3.584 7.454 0.274 10.080 Fig.4(cid:10)u*v* 136833 3.602 7.955 0.265 8.653 Fig.7(cid:10)u*v* 146867 3.146 5.734 0.258 7.456 Fig.1(cid:10)E* 139955 5.039 9.946 0.356 16.412 uv Fig.4(cid:10)E* 136833 5.375 12.250 0.398 13.221 uv Fig.7(cid:10)E* 146867 4.381 8.668 0.356 10.271 uv aThesestatisticsarecalculatedovernpairsofGSVclear-skypixels,witheachoftheoriginalL*,u*,andv*valuesfirstbeingsmoothed overits8(cid:12)8pixelneighborhood. Forallvariables,x(cid:1)andsarethesamplemeanandstandarddeviation,respectively. Variable(cid:10)u*v* isaCIELUVluminance-weightedchromaticitydifferenceandisgivenby(cid:10)u*v*(cid:8)(cid:1)(cid:2)(cid:10)u*(cid:3)2(cid:17)(cid:2)(cid:10)v*(cid:3)2(cid:4)1(cid:1)2. 20January2003(cid:1)Vol.42,No.3(cid:1)APPLIEDOPTICS 461 Fig.5. Clear-skycolor-differencemapderivedfromFig.4,with eachmapcontourspanning(cid:10)E* (cid:8)6. uv wastakenduringciviltwilight(cid:2)h (cid:8)(cid:13)2.1°(cid:3)on9April Fig.7. Fish-eyephotographofaclearskyinGranada,Spain,on 0 2001. This sky, along with its corresponding color 10April2001at15:36UTC.Solarelevationh (cid:8)36.1°,andthe 0 and luminance maps (cid:2)Figs. 5 and 6, respectively(cid:3), photographiscenteredonthezenith. showsjusthowdistinctskylightasymmetriescanbe. Inthesefigureswedonotusethebelow-horizonSun toidentifytheprincipalplane,butinsteadwelocate caused by horizontal inhomogeneities in the atmo- itbycombiningsolarephemeriscalculationswiththe sphere.11 This in turn increases skylight color and known azimuths of topographic features. In fact, luminanceasymmetriescomparedwiththesameat- even a cursory examination of Figs. 5 and 6 reveals mosphere at higher h . 0 substantially greater color and luminance asymme- tries than in Figs. 2 and 3. Table 1 shows that the 6. ThePolarizationBugbear mean (cid:10)L for Fig. 4’s GSV directions is (cid:5)1.5 times The question of polarization-induced asymmetries v thatforFig.1,andthemeansofboth(cid:10)u*v*and(cid:10)E* quite rightly haunts any analysis of skylight color uv have increased in Fig. 4 (cid:2)the (cid:10)E* increase is statis- andluminancedata. Herethisquestionis,doesthe uv tically significant at the 0.1% level(cid:3). The physical clearsky’shighdegreeoflinearpolarizationPcause reason for these increases is that direct sunlight’s spurious color and luminance differences in either longopticalpathsduringtwilightamplifyanydiffer- our camera or spectroradiometers as they sample ences in spectral scattering and absorption that are light from two GSV directions? For example, might instrument self-polarization or a polarization- dependent change in spectral sensitivity make a spectroradiometerproducenonexistentdifferencesin chromaticity and luminance? In fact, there are both theoretical and observational reasons to think that any such spurious differences are negligible. First, light transmitted through our PR-650 spec- troradiometer’sinputopticsisdepolarizedjustbefore reaching the instrument’s diffraction grating, thus avoiding measurement problems associated with both self-polarization and intrinsic polarization.20,21 Similar precautions are taken within the LI-1800 spectroradiometer’s optical chain. The fact that both instruments measured comparable skylight asymmetriesinsimilarGSVdirectionsstronglysug- gests that these differences are real. Second, since in principle P is the same for any given pair of GSV directions, polarization’s effects on color and lumi- nanceshouldalsobethesame. Yetinpractice,our earlier research shows that P itself is asymmetric Fig.6. Clear-skyluminancemapderivedfromFig.4,witheach about the solar meridian.22 The least-complicated mapcontourspanning(cid:10)L (cid:8)2%. explanation for these observations is that all three v 462 APPLIEDOPTICS(cid:1)Vol.42,No.3(cid:1)20January2003 In addition, all three means are smaller for Fig. 7 than for our other daytime image, Fig. 1. These results make good physical sense. Com- pared with Fig. 1, the slightly bluer sky in Fig. 7 implieslowerturbidity,thusmovingitsskycloserto thesymmetricRayleighatmosphereandfartherfrom one with asymmetries caused by, say, spatial varia- tionsinaerosolconcentration.Thusweconcludethat our measured color and luminance asymmetries are real, rather than artifacts. In fact, the simplest, most reasonable optical explanation for what we ob- serve is that clear-sky color, luminance, and polar- ization asymmetries are natural corollaries of one other. Inotherwords,whenonekindofasymmetry is present, so are the other two. 7. Conclusions Ourpurposeinthispaperistodemonstratethereality Fig.8. Clear-skycolor-differencemapderivedfromFig.7,with ofclear-skycolorandluminanceasymmetries. Their eachmapcontourspanning(cid:10)E* (cid:8)6. uv persistenceacrossavarietyofmeasuringinstruments and techniques strongly suggests that they are real, rather than instrument artifacts. Although space skylight properties are distributed unevenly in the limitationsheremeanthatwecannotbeencyclopedic horizontally inhomogeneous volume of air above us. in offering examples, we do note that our analysis of Butmightnotangularandspatialasymmetriesin two years of Granada clear-sky photographs firmly cameraopticsorfilmresponseexplainwhatweseein supports our earlier conclusion13: Perceptible sky- Figs. 1–6? Although we cannot exclude such prob- light luminance and color asymmetries are the rule, lems as confidently as we did for our spectroradiom- ratherthantheexception,inrealatmospheres. eters, Figs. 7–9 suggest that any photographic Although the apparent dome of the clear sky may polarization artifacts are small at best. Figure 7 summonthoughtsofcelestialperfectionandsymme- was taken just one day after the highly asymmetric try, our research shows something quite different. Fig. 4, and our camera’s and film’s polarization re- No matter how clear the sky may appear to us, on sponses were unchanged from Fig. 4. Yet Fig. 7’s many days its color and luminance are asymmetric color and luminance maps (cid:2)Figs. 8 and 9(cid:3) indicate aboutthesolarmeridian. Wearenotclaimingthat thatitsclearskyismuchmoresymmetricthanthat every clear day is asymmetric, nor has our research inFig.4. Thisstrongvisualimpressionisconfirmed progressed far enough to let us offer a thorough sta- by Table 1’s data: Mean (cid:10)E* , (cid:10)L , and (cid:10)u*v* all tisticalanalysisofthefrequencyofskylightasymme- uv v decreaseinFig.7(cid:2)atthe0.1%significancelevel(cid:3),and tries. Another logical next step in our ongoing thedecreaseinmean(cid:10)E* islikelytobeperceptible. researchintotheclearsky’svisiblestructure11,13,22–27 uv istomodelthesecommonasymmetriesinwaysthat offer some basic physical insights into their causes. J. Herna´ndez-Andre´s and J. Romero were sup- portedbySpain’sComisio´nInterministerialdeCien- ciayTecnolog´ıa(cid:2)CICYT(cid:3)underresearchgrantBFM 2000-1473. R. L. Lee was supported by U.S. Na- tional Science Foundation grant ATM-9820729 and by the U.S. Naval Academy’s Departments of Math- ematics and Physics. ReferencesandNote 1. F.C.Hooper,A.P.Brunger,andC.S.Chan,“Aclearskymodel ofdiffuseskyradiance,”J.Sol.EnergyEng.109,9–14(cid:2)1987(cid:3). 2. R.Perez,J.Michalsky,andR.Seals,“Modellingskyluminance angular distribution for real sky conditions: experimental evaluation of existing algorithms,” J. Illum. Eng. Soc. 21, 84–92(cid:2)1992(cid:3). 3. F.M.F.Siala,M.A.Rosen,andF.C.Hooper,“Modelsforthe directional distribution of the diffuse sky radiance,” J. Sol. EnergyEng.112,102–109(cid:2)1990(cid:3). 4. C.R.Prasad,A.K.Inamdar,andH.P.Venkatesh,“Compu- Fig.9. Clear-skyluminancemapderivedfromFig.7,witheach tationofdiffuseradiation,”Sol.Energy39,521–532(cid:2)1987(cid:3). mapcontourspanning(cid:10)L (cid:8)2%. 5. R. Perez, R. Seals, and J. Michalsky,“All-weather model for v 20January2003(cid:1)Vol.42,No.3(cid:1)APPLIEDOPTICS 463 sky luminance distribution—preliminary configuration and thePhotographicLens(cid:2)Academic,Boston,1989(cid:3),pp.146–147. validation,”Sol.Energy50,235–245(cid:2)1993(cid:3). Although near-horizon skylight passes through a much 6. A. W. Harrison and C. A. Coombes, “Angular distribution of greaterthicknessofitsopticalglassthandoeszenithskylight clearskyshortwavelengthradiance,”Sol.Energy40,57–63 enteringalongitsopticalaxis,thisdifferencelikelyhasneg- (cid:2)1988(cid:3). ligible effects on our asymmetry results because spectral 7. E.M.Winter,T.W.Metcalf,andL.B.Stotts,“Sky-radiance transmissivity in this lens is independent of rotation angle gradientmeasurementsatnarrowbandsinthevisible,”Appl. aboutitsopticalaxis. Opt.34,3681–3685(cid:2)1995(cid:3). 19. ASTMCommitteeE-12,“Standardpracticeforcomputingthe 8. G.ZibordiandK.J.Voss,“Geometricalandspectraldistribu- colorsofobjectsbyusingtheCIEsystem(cid:2)E308-95(cid:3),inASTM tionofskyradiance:comparisonbetweensimulationsandfield standardsoncolorandappearancemeasurements”(cid:2)American measurements,”RemoteSens.Environ.27,343–358(cid:2)1989(cid:3). SocietyforTestingandMaterials,Philadelphia,Pa.,1996(cid:3),pp. 9. C.Chain,D.Dumortier,andM.Fontoynont,“Acomprehensive 262–263. modelofluminance,correlatedcolourtemperatureandspec- 20. Photo Research, Incorporated, PR-650 SpectraScan Spectra- tral distribution of skylight: comparison with experimental ColorimeterOperatingManual,SoftwareVersion1.10(cid:2)Photo data,”Sol.Energy65,285–295(cid:2)1999(cid:3). Research,Incorporated,Chatsworth,Calif.,1996(cid:3),Sec.3,p.4. 10. S.Sekine,“Spectraldistributionsofclearskylightandtheir 21. R.Gerharz,“Selfpolarizationinrefractivesystems,”Optik43, chromaticities,”J.LightVisualEnviron.15,23–32(cid:2)1991(cid:3). 471–485(cid:2)1975(cid:3). 11. R.L.Lee,Jr.,“Twilightanddaytimecolorsoftheclearsky,” 22. R.L.Lee,Jr.,“Digitalimagingofclear-skypolarization,”Appl. Appl.Opt.33,4629–4638,4959(cid:2)1994(cid:3). Opt.37,1465–1476(cid:2)1998(cid:3). 12. R. L. Lee, Jr., “Colorimetric calibration of a video digitizing 23. R.L.Lee,Jr.,“Horizonbrightnessrevisited: measurements system: algorithm and applications,” Color Res. Appl. 13, 180–186(cid:2)1988(cid:3). andamodelofclear-skyradiances,”Appl.Opt.33,4620–4628, 4959(cid:2)1994(cid:3). 13. J.Herna´ndez-Andre´s,J.Romero,andR.L.Lee,Jr.,“Colori- 24. J.Romero,A.Garc´ıa-Beltra´n,andJ.Herna´ndez-Andre´s,“Lin- metricandspectroradiometriccharacteristicsofnarrow-field- ear bases for representation of natural and artificial illumi- of-viewclearskylightinGranada,Spain,”J.Opt.Soc.Am.A 18,412–420(cid:2)2001(cid:3). nants,”J.Opt.Soc.Am.A14,1007–1014(cid:2)1997(cid:3). 14. G. Wyszecki and W. S. Stiles, Color Science: Concepts and 25. J.Herna´ndez-Andre´s,J.Romero,A.Garc´ıa-Beltra´n,andJ.L. Methods,QuantitativeDataandFormulae(cid:2)Wiley,NewYork, Nieves,“Testinglinearmodelsonspectraldaylightmeasure- 1982(cid:3),pp.306–310,828–829. ments,”Appl.Opt.37,971–977(cid:2)1998(cid:3). 15. LI-1800 spectroradiometer from LI-COR. Incorporated, 4421 26. J.Herna´ndez-Andre´s,R.L.Lee,Jr.,andJ.Romero,“Calcu- SuperiorStreet,Lincoln,Neb.68504-1327. latingcorrelatedcolortemperaturesacrosstheentiregamutof 16. PR-650spectroradiometerfromPhotoResearch,Incorporated, daylight and skylight chromaticities,” Appl. Opt. 38, 5703– 9731TopangaCanyonPlace,Chatsworth,Calif.91311. 5709(cid:2)1999(cid:3). 17. Nikkor fish-eye lens from Nikon USA, 1300 Walt Whitman 27. J.Herna´ndez-Andre´s,J.Romero,J.L.Nieves,andR.L.Lee, Road,Melville,NewYork11747. Jr., “Color and spectral analysis of daylight in southern Eu- 18. ThisparticularlensisdescribedinR.Kingslake,AHistoryof rope,”J.Opt.Soc.Am.A18,1325–1335(cid:2)2001(cid:3). 464 APPLIEDOPTICS(cid:1)Vol.42,No.3(cid:1)20January2003

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.