Tailoring Advanced Nanoscale R E V I E Materials Through Synthesis of W S Composite Aerogel Architectures** ByMichele L. Anderson,Rhonda M. Stroud, Catherine A. Morris,Celia I. Merzbacher, and Debra R. Rolison* Introducing a desired solid guest to an about-to-gel silica sol prevents complete encapsulation of the guest particles by the silica, such that the composite retains the bulk and surface properties of each component on the nanoscale. The transport- and density-dependent properties of the composite aerogel can be tuned by varying the volume fraction of the second solid, thereby increasing the design flexibility of these nanoscale materials for optical, chemical, thermal, magnetic, and electronic applications. The chemical and physical properties of the composite material can be further engineered at multiple points during sol–gel processing by modifying the host solid, the guest solid, the composite gel, or thecomposite aerogel. 1.Introduction specialty optical, thermal, and/or electronic nanoscale mate- rials.[2] Using silica sol as a glue, we have developed a general method to prepare composites of particulate guests and na- noscalesilicathatarehighlyporous,havehighsurfaceareas, – and can be nanoscopically tailored to suit specific applica- tions. The properties of the particulate guest are retained in [*] Dr. D.R. Rolison,Dr. M.L. Anderson,C. A.Morris the composite, thereby creating a composite that unites the SurfaceChemistry(Code6170) continuousmesoporousnetworkandhighsurfaceareaofsil- NavalResearchLaboratory icagelnetworkswithpre-selectedchemical,physical,andop- Washington,DC20375(USA) ticalproperties oftheguest solid.Theuseofsol–gelchemis- Email:[email protected] trytocreatethesecompositesaffordsenormousflexibilityto Dr. R.M. Stroud tailor them with solution- and gas-phase reagents at various SurfaceModification(Code6370) stagesofthe wetgel preparation or aftersupercritically dry- NavalResearchLaboratory ingthewetgeltoformtheaerogel,asshowninFigure 1. Washington,DC20375(USA) Sol–gelsandsol–gelcompositescanbepreparedwithlow- Dr. C.I.Merzbacher erdensitiesandhigherporositiesandsurfaceareasthancon- OpticalTechniques(Code5670) ventional ceramics, which confers on them novel physical NavalResearchLaboratory and chemical properties.[1] Sol–gel-derived materials, as pro- Washington,DC20375(USA) ducedbythe hydrolysis andcondensation ofmetalalkoxide [**] The authors gratefully acknowledge funding from the Defense precursors (M(OR) ), Equations 1 and 2, respectively, as AppliedResearchProjectsAgencyandtheU.S.OfficeofNaval n shown for generation of silica from a tetraalkoxysilane pre- Research.M.L.A.wasanASEEPostdoctoralAssociate(1997– cursor, have been widely studied for applications requiring 2000). ADVANCEDENGINEERINGMATERIALS2000,2,No.8 1438-1656/00/0808-0481$17.50+.50/0 481 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2000 2. REPORT TYPE 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Tailoring Advanced Nanoscale Materials Through Synthesis Of 5b. GRANT NUMBER Composite Aerogel Architectures 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Washington,DC,20375 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT See Report 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 8 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite S (RO)3–Si–OR+H–OH(cid:222)(RO)3–Si–OH+R–OH (1) a wet gel affords a significant improvement in the surface W areaandporosityofthedriedmaterial,[1,3]ascontrastedwith E (cid:126)Si–OH+HO–Si(cid:126)(cid:222)(cid:126)Si–O–Si(cid:126)+H O (2) conventionalambient-dryingtechniquesthatyieldaxerogel, 2 I V as illustrated in Figure2. Aerogels are highly porous solids E Catalytic, electrocatalytic, and sensing applications, in (75–99%openspace)thatcontainmesopores(pores2–50nm R particular, are facilitated by high active surface areas con- insize)andmicropores(pores<2nm)andexpresshighsur- tainedwithinahighlyporousmediumsothatrapidreactant/ faceareas(upto1000m2/g)andultra-lowdensities(downto analyte throughput to the active sites occurs. The use of su- 0.003g/cm3).[2a,4]Thesephysicalattributesarealsopresentin percritical-fluiddryingtechniquestoproduceanaerogelfrom compositeaerogelspreparedfromwetcompositegels. Michele Anderson received a Ph.D. in physical chemistry in 1997 from the University of Arizona, where she characterizedtheopticalandelectronicpropertiesofmaterialsusedinorganiclight-emittingdiodesandphoto- voltaicdevices.Since1997,shehasworkedattheNavalResearchLaboratory(NRL),firstasapostdoctoralfel- lowoftheAmericanSocietyforEngineeringEducation(1997–2000),thenas aseniorscientistwithGeo-Cen- ters, Inc. While at NRL, she has developed composite aerogels for catalytic, electrocatalytic, and sensing applications. RhondaStroudjoinedthestaffoftheSurfaceModificationBranchoftheNRLin1998.ShereceivedherPh.D. inPhysicsfromWashingtonUniversityinSt.Louis,wheresheinvestigatedthephasestabilityofTi-basedqua- sicrystals. Her currentresearch focuseson analyzing the structure ofoxidematerials using transmission elec- tronmircroscopy,andrelatingthatstructuretoeletronictransport,magneticandopitcalproperties. CatherineMorrisreceivedherBachelors degreeinchemicalEngineeringfromCornell Universityin2000and has since joined the staff at Intel Corporation in Albuquerque, NM. Her first research on aerogels began as a hight school student participating in the NRL Science and Engineering Apprentice Program and continued throughherundergraduatestudiesatCornellasshedevelopedcompositeaerogels. CeliaMerzbacher(Ph.D.,1987,PennsylvaniaStateUniversity)joinedthestaffoftheOpticalSciencesDivision attheNRLin1989.Herresearchhascenteredonthedevelopmentofnovel,mostlyamorphousmaterialsandthe characterization of their structure/porperty relationships. Materials of interest include inorganic, organic, and composite aerogels; longwave infrared transmitting glasses; photosensitive heavy metal fluoride glasses; and radioactivewasteformglasses. DebraRolison(Ph.D.,1980,UniversityofNorthCarolinaatChapelHill)currentlyheadstheAdvancedElec- trochemical Materials section. Her program focuses on the influence of nanoscale domains on electron- and charge-transferreactionsandthedesignandsynthesisofnewnanostructuredmaterialsandcompositesforcata- lytic chemistries, energy storage and conversion (fuel cells, supercapacitors, batteries, thermoelectric devices), andsensors.Dr.RolisonwasamemberoftheAdvisoryBoardforAnalyticalChemistryandisacurrentmember of the Editorial Boards of the Journal of Electroanalytical Chemistry and Langmuir. She is a member of the BoardofDirectorsfortheSocietyforEletroanalyticalChemistryandhasservedsince1997aseditoroftheso- ciety’snewsletter:SEACCommunications. 482 ADVANCEDENGINEERINGMATERIALS2000,2,No.8 CMYB Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite sional network, and ii) guest–host R materials,inwhichthewetsol–gelor E V dried gel serves as a host matrix for I particulateormolecularsolids. E W We use silica sol as a nanoglue to S prepare composite aerogels by dis- persing a non-bonding solid (either in colloidal or non-colloidal form) in an about-to-gel silica sol.[9–11] By minimizing the time for interaction between the sol and particulate prior to gelation, it is possible to avoid en- capsulation of the guest by the silica host. However, the guest solid, even whensmallenoughtomovethrough the mesopores of the gel, is suffi- cientlyincorporatedintothethree-di- mensional silica network that it does not elute out either upon replacing the pore-filling liquid or during su- Fig.1.Aschematicdetailinghowthesol–gelprocessisusedtopreparecompositegelsandaerogels.Therequiredproper- percritical drying. The particulate is tiesofthecompositematerialcanbeselectedpriortogelationoftheSiO solonthebasisofwhichparticulateguestis 2 chosen.Additionalopportunitiesexisttonano-engineerthepropertiesofthecompositegeland/oraerogelwithsolution- therefore thoroughly immobilized, orgas-phasemodifiers,asindicatedatpointsI,II,III,andIV.TMOS=tetramethoxysilane.SCF=supercriticalfluid. yet readily accessible via the meso- SCFCO dryingconditions:T =31(cid:30)C,P =7.4MPa. 2 c c porousnetwork. 2.AlternateApproachestoFabricateGuest–Host SilicaComposites Our approach is distinct from previous approaches in B whichtheguestsolidiscovalentlylinkedtothethree-dimen- Y M sionalsilicanetworkduringgelation.[12]Covalentattachment C of the guest is achieved either by mixing it with the sol–gel precursors prior to gelation (to form a single hetero-net- Fig.2.Representationsillustratingthedifferenceinthedegreeofshrinkageexperienced work)[12,13] or by infiltration of the guest after gelation fol- bythenetworkofacompositegeldriedbysupercritical-fluidextraction(toproducean aerogel)orbyambientevaporationofthepore-fillingliquid(toproduceaxerogel).The lowed bycovalent bonding to the surfacesof the wet gel.[13f] compositegelthatisdriedtoformanaerogelischaracterizedbygreaterporosityand These methods are restricted to molecules and particulates decreasedencapsulationofimmobilizedguestparticlesthanwhendriedtoformaxero- forwhich(oftencomplex)syntheticroutescanbefoundtoat- gel. tach a functional group that covalently bonds to the silanols Silicagels(composedof(cid:126)10nmSiO particles[5])andcom- (Si–OH)ofthesilicanetwork. 2 posite gels have been widely studied, along with synthetic Our method also differs from impregnation techniques methods that retain the desired property of the guest that produce guest–host nanocomposites. Using these ap- phase.[6,7] Due to the mild conditions employed during sol– proaches, reactive precursors are infused into a pre-formed gelprocessing,temperature-sensitivemoieties(suchasmole- silicaorothermesoporousnetworkandreactedtoformasec- culesandbiomolecules)canbeincorporatedasguests.Ambi- ondparticulatephasedispersedthroughthehost.[6,7,12c,14]The entprocessingalsocompatiblyintegratessol–gels,whichare chemical composition and physical form of the impregnated readily fashioned in assorted physical forms (e.g., thin film, phasearedeterminedbyprecursorchemistryandconcentra- monolith, powder), with other materials to form multilayer tion, reaction conditions (e.g., temperature, means of mass orcompositestructures.[2] transportofthereactants),andpost-treatmentofthecompos- Sol–gel-derivedhostscontaininghighlydispersedparticu- ite.Impregnationtechniquesareoftenplaguedbydispersions lateguestshavepreviouslybeenstudiedfortheiropticalnon- in final particle sizes and non-uniform particle distribution linearity, catalytic, biocatalytic, electrocatalytic, and sensing throughthesilicamatrix. capabilities.[7,8]Thesenanocompositesfallintotwogeneralca- Our method is unique in that the guest associates with tegories: i) hybrid systems, in which a metal alkoxide and a the silica sol (host) for just seconds to a few minutes (rather particulate precursor that contains alkoxide functionalities than hours) before gelation occurs. Earlier work on guest– are reacted together to produce a single-phase, three-dimen- host nanocomposites, including aerogel-based composites, ADVANCEDENGINEERINGMATERIALS2000,2,No.8 483 CMYB Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite S have involved extensive physical mixing of the solid with silica-based composite aerogels shown in Figure3 are inter- W either the sol–gel precursors or sol to prevent settling of the mediatetothevaluesforthesilicaandguestparticulate.Pure E solidpriortogelation.[13g,15]Frickeandco-workersfirstdem- silica aerogel ((cid:126)1% dense) has a pore volume of (cid:126)4.4cm3/g; I V onstrated this concept in their investigations of silica aero- silica-based composite aerogels still preserve pore volumes E gels containing carbon (an opacifier) for thermal insula- characteristic of highly mesoporous materials. The density- R tion.[15b] Their subsequent work has shown that colloidal ZnO–silica aerogel nanocomposites retain the characteristic yellow-green photoluminescence of ZnO nanocrystals (also illustratedbyDeng,etal.,forZnO–silicacompositescontain- ingZnOmadebyreactingZnsaltsintroducedbyimpregna- tion[16]). Although certain properties are independent of mixing times, we find that extensive mixing of the particulate guest withthesilicasolpriortogelationcanleadtothelossofcriti- calpropertiesforsomematerials,particularlytransportprop- erties (which require intimate contact between guest parti- cles) and chemical properties (which involve guest Fig.3.Silica-basedcompositeaerogels(fromlefttoright):puresilicaaerogel[overlay- interaction with molecules in the mesopores). For instance, ing Ti–V/Zr–Nb/Hf–Ta in the periodic table]; colloidal Pt–silica composite aerogel (2nmPtsol);colloidalAu–silicacompositeaerogel(30nmAusol);carbonblack–silica when we prepared carbon–silica composite gels using pro- aerogel(Vulcancarbonblack,XC-72);poly(methylmethacrylate)–silicacompositeaero- longed mixing times to ensure thorough homogenization of gel(polymerM (cid:126)15000,sievedto<44(cid:109)m);FeII(bpy)NaYzeolite–silicacomposite w 3 the carbon and silica phases, electronic transport paths aerogel(0.1–1(cid:109)mtypeYzeolitecrystallitesmodifiedwithiron(II)tris-bipyridine);tita- nia(aerogel)–silicacompositeaerogel((cid:109)m-sizedparticulatescomposedof(cid:126)15nmTiO throughthecarbonweredisruptedinthedriedcomposite.[9] aerogel domains); and titania–silica composite aerogel (20–40nm Degussa P-252 Minimizing the interaction time between the same ratios of TiO2).Allsamplesshownare(cid:126)1cmdiametermonolithsofvaryinglengths. carbontosilica,however,yieldsacompositeinwhichthecar- bon is uniformly dispersed, yet electrically conducting. We expectthedesirablephysical,transport,andchemicalproper- tiesofothersolidstobeexpressedinthecompositewhenwe limitexposureoftheguesttothesilicasol. Applicationsinwhichgas-andliquid-phaseimmersionis C employed(i.e.,catalysis)mayrequiregelswithhighmechan- M icalandthermaldurability.[17–19]Wefindthatthepresenceof Y B the particulate guest often strengthens the nanoglued com- posite aerogel relative to the mechanical durability of pure silicaaerogel,evenwithoutthermallydensifying[16b]thecom- posite. 3.ChemicalandPhysicalDiversityofComposite Aerogels We have demonstrated immense range in the size and compositionoftheguestsolidinsilica-basedcompositeaero- gels, as seen in Figure3. Guests whose sizes span over five orders of magnitude (from several nanometers to sub-milli- meter)andwhosechemicalcompositionsvaryfromcolloidal metal to metal oxides, non-oxide semiconductors, carbon blacks, and polymer particles have been immobilized in the silicamatrix.Ingeneral,theknownattributesoftheguest,as wellasthestructureofthesilicanetwork(Fig. 4),areretained in the composite gel or aerogel.[9,11] The composite chemical, Fig.4.(bottom)SEMofacolloidalPt–silicacompositeaerogel.Thesilicaparticlesap- opticaland/orelectricalpropertiescanthereforebepredeter- peargrayandthemesoporesareblack.Thebeaded-necklacemorphologyischaracteris- minedtosuitthedesiredapplication. ticofthefractalstructureofbase-catalyzedsilicaaerogel[5].Theguest,(cid:126)2nmPtpar- ticles,isobscuredbythesurroundingsilicahost.(top)HRTEMofacolloidalPt–silica Particulate–silica composite aerogels are especially suited compositeaerogel.Themottledgrayregionistheamorphoussilicahost,whichencases fortechnologiesthatrequirehighlydispersed,readilyaccessi- the1.8nmPtparticle.HRTEMstudiesofcompositescontaining5nmorlargergold ble reactive sites (e.g., catalysts, sensors). The total pore vol- particlesindicatethatthenanoparticlesurfaceispartiallyexposedtothemesoporous network,inagreementwiththefindingthatcolloidalgoldguestssizedat(cid:126)5nmcan- umesandBrunauer–Emmett–Teller(BET)surfaceareasofthe notbechemicallymodified. 484 ADVANCEDENGINEERINGMATERIALS2000,2,No.8 Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite andtransport-controlledpropertiesofcompositeaerogelscan shifted Au plasmon resonance,[8f,g] as do gold–silica compo- R alsobetailoredbyadjustingthemassorvolumeratioofsilica sites derived from organically modified sol–gel monomers E V sol-to-guest particulate. For example, the density of zeolite– that are used to stabilize the dispersed Au particles.[8b,12a,c] I silica composite aerogel reflects a weighting of the densities Composites in which the metal particle size evolves over E W oftheindividualcomponents(silicaaerogelandzeolitepow- time,asoccursinthe surfactant-mediatedsynthesis ofgold– S der).[9] silica gels from gold-containing micelles, also exhibit a red Theopticalpropertiesofcompositegelsandaerogelsgen- shiftrelativetotheAusol.[15c] erally reflect those of the guest because base-catalyzed silica aerogelsaretransparentandfeaturelessovermostoftheUV- 4.DesignerArchitectures visible[11] and infrared (IR)[9] spectral regions. The range of optically active guests includes even organic species given Particulate–silica composite aerogels are platforms that the gentle processing conditions and known tolerance of or- provide opportunities to engineer a broad range of nano- ganic molecules to supercritical CO .[20] Composite gels and scopicmaterialswithspecificpre-selectedproperties.Thegel 2 aerogels are readily characterized by optical spectroscopies: preparation scheme, Figure 1, offers multiple means to for example, FeII(bpy) NaY zeolite–silica and poly(methyl- furthertailortheoptical,chemical,andphysicalpropertiesof 3 methacrylate)–silica composite aerogels exhibit the infrared the host solid, the guest solid, the composite wet gel or the absorption features characteristic of the bipyridine and driedaerogelviasolution-orgas-phasemodification. methylmethacrylatemoieties,respectively.[9] Additional tailoring of the composite gel architecture can Theinnateopticalcharacterofcommerciallyrelevantmet- beachievedbymodifyingthesurfaceoftheparticulateguest al oxide guests, such as photocatalytic titania, is also pre- priortogelation,asshowninFigure 1I.Wehavedemonstrat- servedinthemetaloxide–silicacompositeaerogel.Opaqueti- ed that active sites that are introduced to the surface of the tania(Degussa)whenincorporatedintoacompositeyieldsan guestparticles priortogelationremainaccessibletoexternal aerogelthatexhibitsabroadUVabsorbancecharacteristicof reagents after supercritical drying. Carbon-supported metal the large bandgap semiconducting guest. Titania (aerogel)– colloids in carbon–silica composite aerogels (produced by silica composite aerogels (see Fig.3) have a UV absorbance combiningcolloidalmetal-modifiedVulcancarbonwithsilica characteristicofpuretitaniaaerogel,whichistranslucentand sol)remainaccessibletoCOandMeOH,andhavebeenelec- exhibits a spectrum more molecular in nature.[9] The im- tronically addressed within the aerogel to catalyze redox re- proved photocatalytic activity of titania aerogel relative to actions.[24] moreconventionalformshasalreadybeen noted,[21]buttita- High-surface-area carbon blacks aretypically used in fuel niaaerogelsaredifficulttoprepareascrack-freemonolithsor cellstodispersethenanoscaleelectrocatalyst[25]andthenfab- films.[22] The transparency of silica aerogel permits effective ricated into a fuel-cell electrode of the required geometry by illumination of the titania component in the composite aero- combining with a porous binder, such as poly(tetrafluoro- gel, and may improve practical photocatalysts by permitting ethylene). Composite aerogels should improve existing elec- efficientilluminationoftheentirephotoactivematerialwithin trocatalytictechnologiesbecausetheirintegratedstructureof- astructurethatfacilitatesreagentfluxto(andfrom)theactive fers multifunctionality by providing superior access of fuel sitesthroughthecontinuousmesoporousnetwork. and oxidant to the dispersed, carbon-supported catalyst via Colloidalgold–silicacompositegelsandaerogelsretainthe thecontinuous mesoporous network,while alsomaintaining color and transparency of the native metal sol (see electronicconductivitythroughoutthecomposite. Fig.3),[9,11,23]becausethe characteristic plasmon resonanceat Modified carbon–silica composite aerogels are potential 500–550nmofthenanoscalegoldparticlesisunobscuredby black optical materials as well. Neither ambient nor He–Ne thetransparentsilicamatrix.Theplasmonresonancepeakpo- laser light is transmitted through a 1 cm monolithic carbon– sition is identical for the Au sol and the colloidal Au–silica silicacompositeaerogel,despiteitshighporosity(Fig. 5).[9]In compositegel,bothofwhichsurroundthecolloidalgoldwith contrast,nativesilicaexhibitsclaritythattransmitslightwith acondensedfluid.Theplasmonresonancepeakisblue-shifted little scattering (see Fig.3). Opaque or low-reflectivity coat- (relative to the sol) in the composite gold–silica aerogel, in ings and monoliths may be prepared and the wavelengths whichthegoldparticlesarenowsurroundedbyamixtureof thatareabsorbedcanthenbeextendedbeyondthevisibleby moreairthansilica.Theblue-shiftisinkeepingwiththerela- adsorbingmolecularmodifierstothecarbon. tionshipbetweenmaximumabsorbanceandsolventrefractive The surface of the guest particulate may also be tailored indexintheMieapproximationforcolloidalmetalparticles.[11] following gelation by adding solution-phase reagents to the The retention of the metal particle’s size and its optical pore-fluid washes that are performed prior to supercritical- properties in our colloidal gold–silica composite gels and fluiddrying,asshowninFigure 1II.Forexample,thesurface aerogels distinguishes them from compositionally related ofgold colloidslargerthan(cid:126)20nmremainsaccessibletoex- composites in which the gold particles are covalently at- ternal reagents via the three-dimensional mesoporous net- tached to the silica network or are stabilized by surfactants workofthecompositegel.[11]Thebase-conjugateformofthe duringgelation.Gold–silicacore–shellparticlesexhibitared- pH-sensitivedyemethylorangepreferentiallyadsorbs(from ADVANCEDENGINEERINGMATERIALS2000,2,No.8 485 CMYB Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite S W E I V E R Fig.6.Microporeandmesoporesizedistributionsforsilicaaerogelannealedat500(cid:30)C [—(cid:38)—](minimallyshrunkcomparedwithas-supercriticallydriedaerogel)anddensi- fiedat900(cid:30)C[—(cid:42)—]toca.50%ofitsoriginalsize.Lossofbothmeso-andmicropor- osityisobserved,butdirectanalysisofthetotalporevolumesineachoftheseregions indicatesa40%lossofmesoporousvolumeanda>85%lossofmicroporousvolume uponpartialdensification. posite aerogels,[9,23] analogously to the specific adsorption of Fig.5.He–Nelaser(fromleft)irradiatingair,SiO aerogel,andVulcancarbon–silica the dye in colloidal Au–silica composite wet gels, as de- 2 compositeaerogel.Nolightistransmittedthroughthecarbon–silicacompositeaerogel, scribedabove.[11]Thissurface-specificmodificationisconsis- eventhoughitis80%openspace. C tent with the retention of a continuous mesoporous network M acetone solution) to the metal surface in colloidal Au–silica in silica-based composite aerogels, even after partial densifi- Y composite wet gels, and not to the surface of the silica do- cation,asindicatedbyourN -physisorptionstudiescompar- B 2 mains. The UV-visible absorption spectrum of a methyl-or- ing as-prepared and partially densified aerogels (see Fig.6). ange-modifiedcolloidalAu–silicagelexhibitsresolvedpeaks Onthebasisoftheseindependentmeasurementsofthetotal forcolloidalAuandmethylorange.[11]Amorecomplexmod- sampleporevolumethatiscontributedbymicro-andmeso- ification of the metal surface architecture using solution- pores,nearly60%ofthe500(cid:30)C-annealedaerogelmesoporos- phase reagents can be conceived that customizes these com- ity is preserved in the 900(cid:30)C-partially densified aerogel, positeswithmolecularrecognitioncentersforanalytespecifi- while<15%ofthemicroporousvolumeisretainedinthepar- cityortailorsthecolloidalmetal-modifiedcarbon–silicacom- tiallydensifiedsample. positesformoreefficientelectrocatalysis. We have also verified the feasibility of optical or colori- Modificationofthecompositeaerogelfollowingsupercriti- metricsensingwithcompositegelsbyusingacombinationof caldrying(Fig. 1IIIand1IV)mayalsobeemployed.Forcom- themodificationstepsillustratedinFigure1.Wedemonstrat- posite aerogels that do not contain organic moieties, partial edthismultistepmodificationstrategybythermallydensify- densification at elevated temperatures can be used to ing50nmcolloidalgold–silicacompositeaerogelsandmodi- strengthenthesilicanetwork.[15,26,27]SilicaorcolloidalAu–sil- fying the colloidal Au guests with methyl orange by ica composite aerogels heated to 900(cid:30)C shrink ((cid:126)50%reduc- immersionofthepartiallydensifiedcompositeaerogelintoa tion in the sizeof the monolith), but the primary loss infree non-aqueoussolutionofthedye(Fig. 1IV).[9,11,23]Analogously volume, as determined by N -physisorption measurements, tothewetcompositegelsdiscussedabove,resolvedpeaksfor 2 occurs by collapse of the micropores (pores <2 nm), while theAuplasmonresonanceandthemethylorange(base-con- most of the mesoporosity (2–50nm pores) is preserved jugate form) absorbance areseen in the UV-visible spectrum (Fig. 6). Preserving the mesoporous free volume means that of a methyl-orange-modified colloidal gold–silica composite themostfacilemass-transportpathwaysthroughthecompos- aerogel that was thoroughly rinsed with acetone, then air- ite aerogel for gas- or solution-phase reactants remain unal- dried.[9,23]Exposingthedye-modified,air-driedcompositeto tered.Furthermore,thecompositeconstitutesarigidsolidar- HClvapor(i.e.,Fig.1III),producesared-shiftinthedye’sab- chitecture, such that the silica aerogel structure and metal sorption,correspondingtoitsprotonation. particle size distribution are retained in partially densified The gas-phase acid molecules may be detected either vi- colloidalAu–silicacompositeaerogels.[23] suallyorbyinstrumentalcolorimetry.Visualdetectionispos- Partiallydensifiedcompositeaerogelsaresufficientlydur- sible because although the surface coverage of the adsorbed able that they remain intact upon reimmersion into liquids dye is quite low (typically <0.1 of a monolayer), the surface- (Fig. 1IV).[17b,23,25] We have demonstrated this durability by to-volume ratio of the composite is enormous, which brings preferentially adsorbing methyl orange from solution onto theeffectiveconcentrationofthedyeinthemodifiedcompos- theAusurfaceinpartiallydensifiedcolloidalAu–silicacom- ite aerogel to millimolar levels. Color changes are rapid, be- 486 ADVANCEDENGINEERINGMATERIALS2000,2,No.8 Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite causeofthe highporosity,andarereadilydiscerned byeye. a diverse range of applications. Because composite gels and R Uponuptakeofmethylorange,thecolorofthecolloidalAu– aerogels prepared using silica nanoglue retain the surface E V silica composite aerogel changes from cranberry to peach and bulk properties of each component, improvements to I (again, no methyl orange is retained in partially densified current technologies may be readily achieved using existing E W pure silica), and a further color change from peach to bright materials. The ability to form an interconnected network of S pink occurs within seconds of exposure of the dye-modified thesecondaryorguestphaseallowsforionic,electronic,and Au–silicacompositeaerogeltoHClvapor. thermaltransportpropertiesnotattainableinasilicasystem. Composite aerogels are customizable platforms around which advanced structural and chemical architectures may 5.Methods nowbe designed. Notonlyis the rangeofguest particulates virtually limitless, but any primary guest phase can poten- 5.1.PreparationofCompositeAerogels tiallybemodifiedpriortoincorporation.Forexample,weare Ourrecipesforbase-andacid-catalyzedgelsarebasedon expanding this method to include other nanoscale materials, published procedures,[10] and are described elsewhere in de- suchasthiolatedAucolloidsthatpossessspecificactivefunc- tail.[11]Equalvolumepercentsofparticle suspensions(Auor tionalities (e.g., photo- or electroactive molecules). In addi- Pt sol) and silica sol were combined, the mixture stirred for tion,eithertheparticulateguestorsilicahostmaybetailored 1 min, and then poured into molds (and sealed with Paraf- foraspecificapplicationbyreactionat,ormolecularadsorp- ilm) prior to gelation. Volume percents ranging from tionto,theirsurfaces,whichremainaccessibletoexternalre- 1–90vol.-% solid were incorporated into particulate–silica agents via the continuous mesoporous network of the com- composites. For guests at <50 vol.-%, the solid was rapidly positeaerogel. added to the silica sol with stirring, mixed for 15s, and the dispersion was then poured into molds seconds before gela- – tion. For >50vol.-% solid, a homogenous dispersion of the solidinthegelisachievedbycombiningthesilicasolandsol- [1] C.J. Brinker, G. W. Scherer, Sol–Gel Science, Academic, idinavial,whichisthensealedandvigorouslyshakenuntil SanDiego1990. gelationoccurs.Ultrasonicationwasalsoattempted,butsome [2] a) L.W. Hrubesh, Chem. Ind. 1990, 824. b) L. W. Hru- solids (i.e., carbons and polymers) phase-separate from the besh,J.F.Poco,J.Non-Cryst.Solids1995,188,46. silica sol during sonication. The gelation time is determined [3] N.H(cid:252)sing,U.Schubert,Angew.Chem.Int.Ed.1998,37,22. by the type and amount of catalyst used, and in some cases [4] J.Fricke,Sci.Am.1988,258,92. onthesolidincorporated[ingeneral,fora15-mltotalvolume [5] D.W. Schaefer, K.D. Keefer, Phys. Rev. Lett. 1986, 56, ofsilicasol:0.7 mlof30%NH OH(base-catalyzedgels)ren- 2199. 4 dered a gelation time of (cid:126)1.5min; 0.07g of HCl (acid-cata- [6] a)B.Abramoff,L. C.Klein,inChemicalProcessingofAd- lyzed gels) yielded (cid:126)3 min gelation times]. One solid, titania vanced Materials (Eds: L. L. Hench, J.K. West), Wiley, aerogel, decreased the gelation time compared to neat silica NewYork1992,p.815.b)C. M.Mo,Y.H.Li,Y.S.Liu, sol,proportionatetotheamountofsolidadded.Thecompos- Y. Zhang, L.D. Zhang, J. Appl. Phys. 1998, 83, 4389. c) itegelswereagedfor10–20min,thenrinsingwasinitiated. W.Cao,A. J.Hunt,USPatent58559531999. [7] a) T. Yazawa, K. Kadono, H. Tanaka, T. Sakaguchi, S. Tsubota, K. Kuraoka, M. Miya, W. De-Xian, J. Non- 5.2.PhysicalCharacterization Cryst.Solids1994,170,105.b)I.Tanagashi,T.Tohda,J. Am.Ceram.Soc.1996,79,796.c)H.Yanagi,S.Mashiko, SampleswereanalyzedusingaLeo1550scanningelectron L.A. Nagahara, H. Tokumoto, Chem. Mater. 1998, 10, microscope(SEM)andaHitachiH-9000high-resolutiontrans- 1258. c) S. Tamil Selvan, M. Nogami, A. Nakamura, Y. mission electron microscope (HRTEM). The SEM samples Hamanaka,J.Non-Cryst.Solids1999,255,254. were prepared by cleaving and sputter coating with <5 nm [8] a)F.Akbarian,B.S.Dunn,J.I.Zink,J.RamanSpectrosc. Pd–Au,andtheextractionvoltagewaskeptto3–5kVtomini- 1996,27,775.b)B.Kutsch,O.Lyon,M.Schmitt,M.Men- mizechargingeffects.Edge-mountedslicesfromthemonolith nig,H.Schmidt,J.Non-Cryst.Solids 1997,217,143.c)T. orpowderedsamplessupportedonholey-Algridswereused Gacoin,F.Chaput,J.-P.Boilot,G.Jaskierowicz,Chem.Ma- forHRTEM.N -physisorptionmeasurementswereperformed 2 ter.1993,5,1150.d)M.Mennig,M.Schmitt,U.Becker,G. on a Micromeritics ASAP 2010 accelerated surface area and Jung,H.Schmidt,SPIESol–GelOpt.III1994,2288,130.e) porosimetrysystem,withreportedporesizedistributionsde- J. Wang, P.V.A. Pamidi, Anal. Chem. 1997, 69, 4490. f) rivedfromprogramsincludedintheinstrumentsoftware. L.M.Liz-Marz(cid:181)n,M.Giersig,P.Mulvaney,Chem.Com- mun.1996,731.g)L.M.Liz-Marz(cid:181)n,M.Giersig,P.Mul- 6.Conclusions vaney,Langmuir1996,12,4329.h)S.L.Westcott,S.J.Old- enburg,T.R.Lee,N.J.Halas,Langmuir1998,14,5396. Using silica sol as a nanoglue, we have demonstrated [9] C.A.Morris,M.L.Anderson,R. M.Stroud,C.I.Merz- broadflexibilityinthedesignofnanocompositematerialsfor bacher,D.R.Rolison,Science1999,284,622. ADVANCEDENGINEERINGMATERIALS2000,2,No.8 487 Andersonetal./TailoringAdvancedNanoscaleMaterialsThroughSynthesisofComposite S [10] a)R.Russo,A. J.Hunt,J.Non-Cryst.Solids1986,86,219. [15] a) E. Hummer, X. Lu, T. Rettelbach, J. Fricke, J. Non- W b)L. M.Ellerby,C.R.Nishida,F.Nishida,S.A.Yama- Cryst.Solids1992,145,211.b)C.Lorenz,A.Emmerling,J. E naka, B. Dunn, J.S. Valentine, J.I. Zink, Science 1992, Fricke,T.Schmidt,M.Hilgendorff,L.Spanhel,G.M(cid:252)l- I V 225,1113. ler,J.Non-Cryst.Solids1998,238,1.c)A.Martino,S. A. E [11] M.L.Anderson,C.A.Morris,R. M.Stroud,C.I.Merz- Yamanka,J.S.Kawola,D.A.Loy,Chem.Mater.1997,9, R bacher,D.R.Rolison,Langmuir1999,15,674. 423.d)M.T.Reetz,M.Dugal,Catal.Lett.1999,58,207. [12] a) S. Bharathi, O. Lev, Chem. Commun. 1997, 2303. b) F. [16] Z.Deng,J.Wang,A.Wu,J.Shen,B.Zhou,J.Non-Cryst. Fujiki,T.Ogasawara,N.Tsubokawa,J.Mater.Sci.1998, Solids1998,225,101. 33, 1871. c) S. Bharathi, N. Fishelson, O. Lev, Langmuir [17] J.N.Armor,E.J.Carlson,Appl.Catal.1985,19,327. 1999, 15, 1929. d) W.M. Risen, Jr., X. Hu, S. Ji, Abstr. [18] a) J. Philippou, T. Woignier, M. Prassas, J. Mater. Sci. Pap.—Am.Chem.Soc.1998,216,U323. 1990,25,3111.b)T.Woignier,J.Philippou,M.Prassas, [13] a) N. Aharonson, M. Altstein, G. Avidan, D. Avnir, A. J.Mater.Sci.1990,25,3118. Bronshtein, A. Lewis, K. Lebrman, M. Ottolenghi, Y. [19] G.Dagan,M.Tomkiewicz,J.Non-Cryst.Solids1994,175,294. Polevaya, C. Rottman, J. Samuel, S. Shalom, A. Strin- [20] M.Schneider,A.Baiker,Catal.Today1997,35,339. kovski,A.Turniansky,Mater.Res.Soc.Symp.Proc.1994, [21] M.L. Anderson, D.R. Rolison, C.I. Merzbacher, SPIE 346,519.b)Z. X.Yang,C.Z.Xu,B.Wu,L. R.Dalton,S. Eng.Nanostruct.FilmsMater.1999,3709,38. Kalluri,W.H.Steier,Y.Q.Shi,J.H.Bechtel,Chem.Ma- [22] M.L. Anderson, R. M. Stroud, D. R. Rolison, unpub- ter.1994,6,1899.c)K.Kumura,T.Sunagawa,S.Yajima, lished. S.Miyake,M.Yokoyama,Anal.Chem.1998,70,4309.d) [23] a)M. P.Hogarth,G. A.Hards,PlatinumMet.Rev.1996, P.-H.Sung,T.-F.Hsu,Y.-H.Ding,A. Y.Wu,Chem.Ma- 40, 150. b) K. Kordesch, G. Simader, Fuel Cells and their ter. 1998, 10, 1642. e) H.K. Kim, S.-J. Kang, S.-K. Choi, Applications,VCH,Weinheim1996. Y.-H. Min, C.-S. Yoon, Chem. Mater. 1999, 11, 779. f) N. [24] J.Cross,R.Goswin,R.Gerlach,J.Fricke,Rev.Phys.Appl. Leventis, I.A. Elder, D. R. Rolison, M.L. Anderson, 1989,24,C4–185. C.I. Merzbacher, Chem. Mater. 1999, 11, 2837. g) R. U. [25] J.V. Ryan, A. D. Berry, M.L. Anderson, J.W. Long, Boes,J.A.Belmont,D.J.Kaul,D.M.Smith,W.C.Ack- R. M.Stroud,V.M.Cepak,V.M.Browning,C. I.Merz- erman,USPatent58074941998. bacher,D.R.Rolison,unpublished. [14] a) M.R. Ayers, X.Y. Song, A.J. Hunt, J. Mater. Sci. 1996,31,6251.b)X.-Y.Song,W.Cao,M.R.Ayers,A. J. Hunt,J.Mater.Res.1995,10,251. ______________________ 488 ADVANCEDENGINEERINGMATERIALS2000,2,No.8