ebook img

DTIC ADA524373: Self-Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA524373: Self-Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates

S N O I T A Inc.)undervacuumfor30mintoselectivelydegradethePMMAand Self-Organization of FePt C crosslinkPS,leavingbehindtheporousPStemplate. I Nanoparticles on Photochemically N Received:January24,2005 U Finalversion:July24,2005 Modified Diblock Copolymer M Publishedonline:September1,2005 Templates** M – O C [1] I.W.Hamley,ThePhysicsofBlockCopolymers;OxfordUniversity BySeth B. Darling,Nataliya A. Yufa, Press:NewYork,1998. Amadou L. Cisse,Samuel D. Bader, [2] G.H.Fredrickson,F.S.Bates,Annu.Rev.Mater.Sci.1996,26,501. andSteven J. Sibener* [3] M.Lazzari,M.A.López-Quintela,Adv.Mater.2003,15,1583. [4] I.W.Hamley,Angew.Chem.Int.Ed.2003,42,1692. Phase-segregated block copolymers have received signifi- [5] R.E.Segalman,Mater.Sci.Eng.Rev.2005,48,191. [6] T. Thurn-Albrecht, J. Schotter, A. Kästle, N. Emley, T. Shibauchi, cant attention in the last decade as enabling materials for L.Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. futuretechnologies.[1–6]Theirvaluetonanotechnologyderives Russell,Science2000,290,2126. fromtheexpedienttunabilityofthesize,shape,andperiodici- [7] M.Park,C.K.Harrison,M.Chaikin,R.A.Register,D.H.Adam- ty of the self-assembled domains by means of manipulating son,Science1997,276,1407. molecular characteristics. Recently, the potential opportu- [8] A.M.Urbas,M.Maldovan,P.DeRege,E.L.Thomas,Adv.Mater. nities for block copolymer applications have been bolstered 2002,14,1850. [9] H.Ma,A.K.-Y.Jen,L.R.Dalton,Adv.Mater.2002,14,1339. by new methods, which give fine control over long-range [10] J.T.Chen,E.L.Thomas,C.G.Zimba,J.F.Rabolt,Macromolecules ordering of the microdomain structures.[4,5,7,9] Thin polymer 1995,28,5811. films, by themselves, have limited device applications, but [11] W.Knoll,Annu.Rev.Phys.Chem.1998,49,569. myriadfunctionscanbeaddressedwithhybridhard/softmat- [12] W.Knoll,MRSBull.1991,16,29. tersystemsinwhichtheorganiclayerisusedasascaffoldfor [13] J.D.Swalen,J.Phys.Chem.1979,83,1438. [14] E.Kretschmann,Opt.Commun.1972,6,185. nanoscale organization of inorganic materials. Of specific [15] W. Knoll, in the Handbook of Optical Properties Vol. II, Optical interest is the interaction of surfactant-mediated colloidal Properties of Small Particles, Interfaces and Surfaces, (Eds.: R.E. nanoparticlesanddiblockcopolymerfilmsbecausethenano- Hummel,P.Wissmann),CRCPress,BocaRaton,FL1997. crystal capping molecules can be tailored to exhibit prefer- [16] U. Jeong, D.Y. Ryu, D.H. Kho, J.K. Kim, J.T. Goldbach, D.H. ence for one of the polymer blocks.[10–13] This hierarchical Kim,T.P.Russell,Adv.Mater.2004,16,533. approachtocreateorderednanostructuresremovesthelinear [17] W.R.Thompson,M.Cai,M.Ho,J.E.Pemberton,Langmuir1997, 13,2291. correlation of size and patterning time associated with tradi- [18] J.W.Robertson,M.Cai,J.E.Pemberton,Adv.Mater.2001,13,662. tional lithographic techniques by self-assembling the entire [19] P.Mansky,T.P.Russell,C.J.Hawker,M.Pitsikalis,J.Mayes,Mac- surface in parallel. Also, the spatial limits of lithography can romolecules1997,30,6810. be transcended and the approach can potentially be adapted [20] P. Mansky, Y. Liu, E. Huang, T.P. Russell, C.J. Hawker, Science toindustrial-scaleprocessing.Analternativeapproachtothe 1997,275,1458. colloidal nanocrystal methodology is to use spherical- or cy- [21] M.Maldovan,M.R.Bockstaller,E.L.Thomas,W.C.Carter,Appl. Phys.B2003,76,877. [22] C.G.Granqvist,O.Hunderi,Phys.Rev.B1978,18,2897. [23] Adecreaseofe from2.220to2.048wascalculatedfromcompari- D – sonbetweenthedielectricconstantoftheinitialfilm(e =e =2.402, x y e =2.429)andthatoftheporoustemplate(e =e =2.377,e=2.385). [*] Prof.S.J.Sibener,A.L.Cisse z x y z Then, the best fractional combination of air and PMMAwas de- JamesFranckInstituteandDepartmentofChemistry ducedtofittheeffectiveconstantof2.048,usingEquation2. TheUniversityofChicago Chicago,IL60637(USA) [24] Thefilmwassubjectedtotheexposureconditionsusedtoetchaway PMMAdomainsinathinPS-b-PMMAfilmofthickness∼L (D.H. E-mail:[email protected] 0 Dr.S.B.Darling,Dr.S.D.Bader Kim,Z.Lin,H.-C.Kim,U.Jeong,T.P.Russell,Adv.Mater.2003,15, MaterialsScienceDivisionandCenterforNanoscaleMaterials 811),whichisabouttentimesthinnerthanthethicknessusedinthis ArgonneNationalLaboratory study. Argonne,IL60439(USA) [25] D.E.Aspnes,ThinSolidFilms1982,89,249. N.A.Yufa [26] Notethatthevaluesofe ande are1.774and1.845,respec- PBS EtOH JamesFranckInstituteandDepartmentofPhysics tively. TheUniversityofChicago [27] K.H.A.Lau,L.-S.Tan,K.Tamada,M.S.Sander,W.Knoll,J.Phys. Chicago,IL60637(USA) Chem.B.2004,108,10812. [**] TheauthorsthankWardLopesforusefuldiscussionsandA.C.Sa- [28] J.L. Wang, T. Grimaud, K. Matyjaszewski, Macromolecules 1997, mia,J.Schleuter,andX.M.LinforprovidingtheFePtnanoparticles 30,6507. used in this study. The work was supported by the University of Chicago–ArgonneNationalLaboratoryConsortiumforNanoscience Research, the NSF-Materials Research Science and Engineering CenteratTheUniversityofChicago(NSF-DMR-0213745),andthe ______________________ AFOSR sponsored MURI Center for Materials Chemistry in the Space Environment. Work at Argonne is supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, underContract#W-31-109-ENG-38. 2446 ©2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim DOI:10.1002/adma.200500960 Adv.Mater.2005,17,2446–2450 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2005 2. REPORT TYPE 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Self-Organization of FePt Nanoparticles on Photochemically Modified 5b. GRANT NUMBER Diblock Copolymer Templates 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of Chicago,James Franck Institute ,Department of REPORT NUMBER Chemistry,Chicago,IL,60637 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 5 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 C O M M lindrical-phase diblock copolymers as etch masks to produce solution concentration, but higher concentrations typically U self-assembledarrays of nanoscale dots, pillars, or lines com- lead to excessive unwanted aggregation of the nanoparticles. N posed of various materials.[3,14–16] The advantage of our ap- Anotherroutetoobtainhighercoverageistoperformmulti- I C proachisthatthelength-scaleofthefinalfunctionalmaterial pledepositionsusingtheprocedureoutlinedabove.Following A is an order of magnitude smaller than the original polymer threesuccessivecastings,weobtainedclusterdensitiesonthe T I domains. surfaceof∼300/lm2. O N WehaveselectedFePtnanoparticlesbecausetheyarecen- StructuralcharacterizationoftheFePt/PS-b-PMMAsystem S traltomagneticapplicationsowingtotheirchemicalstability can be achieved using scanning or transmission electron mi- andthereporteduniaxialmagnetocrystallineanisotropyofK croscopy(SEMorTEM)oratomicforcemicroscopy(AFM). u ∼ 7×106Jm–3.[17] A large anisotropy correspondsto a stable High-energyelectronsfromSEMandTEMhaveahighpro- magnetic moment. The probability, P, of thermal activation pensitytodamageboththepolymerfilmandtheorganicsur- reversing the magnetic axis of an individual nanoparticle factant molecules surrounding the FePt cores, so AFM was scalesas: usedin theseexperiments. Imaging with AFM requirescare- (cid:1) (cid:2) fultuningofthetappingconditions.Theselectionofthetap- K V P(cid:1)exp (cid:2) u (1) ping mode AFM imaging parameters, in particular the tip k T B driving amplitude, has a significant effect, not only on what whereVistheparticlevolume,k isBoltzman’sconstant,and one observes but also on the structure of the system itself. B T is temperature. Even room temperature is sufficient to Verylighttapping(∼50mV)allowsonetoimagethenanopar- inducefluctuationsinthemagneticmomentsinsmallcrystals ticles resting on the polymer film, but not the fingerprint of most materials. For this reason, highly anisotropic nanos- domains of the polymer. The PS-b-PMMA cylindrical struc- cale FePt particles, which are unusually well protected from ture becomes apparent along with the nanoparticles as the unwantedmagnetizationreversals,havebecomelikelycandi- driving amplitude is increased to moderate levels (100– dates for future ultrahigh-density recording media.[18] Synth- 200mV).Thisistheimagingregimeusedtoanalyzetheselec- esisofFePtnanoparticlesisbasedonthepolyolprocessasde- tivity of nanoparticle adsorption. When the amplitude is scribedbySunetal.[19]Asprepared,thesenanocrystalsarein intensifiedbyafurther200%(∼300mV),manyofthenano- a chemically disordered face-centered cubic (fcc) phase and crystalsarepushedintothepolymermatrixordraggedacross require annealing above 803K to achieve the high-K L1 the surface by the tip. While a precise determination of the u 0 face-centered tetragonal (fct) phase. This annealing process minimumAFMtipforcenecessarytomovethenanoparticles hasprovenproblematicinthatthenanoparticlestendtocoa- ismadedifficultbycomplexinteractionsbetweenthetipand lesceathightemperatures,therebydefeatingtheadvantageof the soft substrate,[28] various theoretical analyses suggest the small, dispersed FePt particles for recording applications.[20] imaging conditions discussed above produce peak forces of Recentworkhasshown,however,thatthecoalescencecanbe theorderof40nN.[29–32]Theseeffectsarereadilyobservedby prevented by using suitable linker molecules or oxide coat- repeatedlyimagingthesameregionunderhardtappingcondi- ings, and there are reports that the fct phase can even be tions and watching individual nanoparticles disappearing or directlysynthesized.[21–24]Forthepresentstudy,wehavecho- plowingtroughsthroughthepolymerastheyarepulledalong. sentoworkwithfccFePttoestablishtheeffectivenessofthe Carewastakenduringthisstudytopreventtipinfluenceson polymeric-templatingmethodology.Sincetheassemblyisdri- thenanoparticlepositions. venbyinteractionsbetweenthesurfactantcappingmolecules Nanoparticleadsorptionontheas-preparedfilmsexhibited and the polymer substrate, the magnetization of the core is a moderate preference for the PS domains with 50–80% of assumedtoplayanegligiblerole.Creatingorderednanostruc- theFePtresidingthere(notshown),guidedbythehydropho- tureswiththeL1 phaseremainsthelong-termgoal. bic interactions between styrene and the alkane tails of the 0 Theasymmetricpoly(styrene)-block-poly(methylmethacry- oleic acid capping molecules. The distribution of nanoparti- late)(PS-b-PMMA)diblockcopolymerusedinthisstudyhas cles between the two domains displayed significant variation 29wt.-%PMMA,sointhebulkitformshexagonallypacked between different samples despite similar preparation condi- PMMAcylindersinaPSmatrixwithanaturallayerthickness tions.Inordertomaximizetheselectivityandstrengthenthe (L)of30nm.Usingtheprocedureoutlinedintheexperimen- nanoparticle–substrate communication, one must modify the talsection,weachievedfilmswithanaveragethicknessofL, chemistryofthepolymerand/orthecappingmolecules.Dual- whichhaveanunusualdualpresentationofPSandPMMAat surfacepresentationofthesePS-b-PMMAfilmsisararechar- the air interface due to the half-cylinder structure resulting acteristicthatisconvenientfortemplatingapplications,soitis fromsimilarsurfaceenergiesfortheblocks.[25]Theselaterally more straightforward to alter the chemistry post-casting alternating domains have significant short-range order but ratherthantobeginwithadifferentdiblockcopolymermate- form “fingerprint” patterns with no long-range order unless rial. guided by external constraints.[26,27] The FePt nanoparticle We modified the polymer templates with vacuum ultravio- deposition procedure described in the Experimental section let (VUV) radiation prior to FePt deposition. Fourier-trans- leadstonanocrystalclustersurfacedensitiesofapproximately form infrared(FTIR) spectroscopy, ultraviolet photoelectron 100/lm2. One can adjust the coverage by manipulating the spectroscopy, mass spectrometry, and NMR studies with Adv.Mater.2005,17,2446–2450 www.advmat.de ©2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 2447 S N O I T A PMMA homopolymer reported in the C literature have been used to character- I N ize its response to high-energy irradia- U tion, including VUV as used here- M in.[33–35] PMMA reacts through several M routes: severing the C–C main-chain O bonds, cleaving ester side-chain link- C ages, andgeneratingC(cid:1)Cbondsin the backbone. PS is believed to crosslink under VUV exposure resulting in a chemical presentation at the interface similar to that present before irradia- tion.Therefore,ourprocessisexpected to selectively etch away the PMMA half-cylinders leaving a highly corru- gated PS surface; thishas been verified bymeansofAFM(Fig.1).Figure2de- picts FTIR spectra of the PS-b-PMMA film before and after VUV irradiation. Spectra of PS and PMMA homopoly- mers (notshown)reveal that the decay of the peak centered at ∼1730cm–1, characteristic of a C(cid:1)O stretch (see inset), is indicative of PMMA degrada- tion. The chemical moieties displayed within the etched regions are inferred to be a combination of methyl methac- Figure1. Effect of VUV irradiation on a PS-b-PMMA ultrathin film depicted in schematic form rylate fragments and oxidized radical (a,d),withtappingmodeAFMphaseimages(2lm×2lm)(b,e),andwithlinescansshowingsur- bonds. These more reactive species facecorrugation(c,f).Pre-exposuresurfacecorrugationis∼0.6nm,withthePMMAphaseappear- attract the nanoparticles to the etched ingbrighter(higher).VUVirradiationcausesselectiveetchingofthesurfacePMMAhalf-cylinders domains. This results in two notable resultinginacorrugationof∼8nm.Theetchedsurfaceisahighlyselectivetemplateforthead- sorptionofFePtcolloidalnanoparticles. changes: 1)a reversal of the FePt do- main selectivity when compared with theoriginalfilm,i.e.,fromPStoetched PMMA; and 2)a significantly higher h c degreeofselectivity(Fig.3).Apossible et str adwsemeoldteiteclt-geuhhnwerteitneinadooatrtnttfiidhilnvyoetdgehmrtepiwreaeloxaihsdunpyerg,sdlonahtupanhsrl,areeiinbotttriegeloembcenaisynanpuyciaisstonelhhul-,toecenhawasdtassieietttntraiphsngstoeoegsm,lFeivmtaeoteiohcPonrhneet-t PS OOP ring bends PS IP bends &PMMA C-O-C C-C stretches A C=O stretch g M ttihmeesufrofracneainnotphaersteiclreesgitoonsd.[e36p]oWsiet hoanvtoe PS rin PM tested this latter, kinetic hypothesis by heating the FePt/VUV-PS-b-PMMA system to 367K, just below the PS-b- PMMA glass-transition temperature (T =378K), and have determined that g the adsorption selectivity presented in Figure2.FTIRspectraofPS-b-PMMAbefore(black)andafter(red)VUVirradiation.Decayofthe Figure3 is thermodynamically stable C(cid:1)Ostretchingvibrationpeakcenteredat∼1730cm–1indicatesetchingofthePMMAdomains.It and hence likely driven by chemical doesnotfullydisappearbecausethereisstillanintactPMMAlayerincontactwiththesiliconni- interactions rather than de-wetting be- tridesubstrate.IPandOOPstandforin-planeandout-of-plane,respectively. 2448 ©2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.advmat.de Adv.Mater.2005,17,2446–2450 C O M M tionwhileincreasingtheoverallsurfacecoverageandobtain- U ing the high anisotropy fct-FePt phase without inducing N interparticle sintering. A related issue important for future I C applicationsandfundamentalinvestigationsofone-andtwo- A dimensional nanoparticle interactions is the spatial ordering T I of the nanocrystals within the channels. We are investigating O N the driving forces that govern this ordering with the aim of S ultimately gaining control of both the interparticle spacing andthelong-rangeorder. Insummary,wereportanovelapproachforobtainingself- organizedassembliesofmagneticnanoparticlesusingamodi- fied polymeric template. A PS-b-PMMA diblock copolymer thin film was irradiated with VUV light to selectively etch the surface PMMA domains thereby producing a corrugated organic substrate. The exposed film was used as a template for the self-assembly of oleic acid-capped FePt nanocrystals that adsorb with nearly 100% selectivity within the photo- chemicallycreatednanoscopicchannels.Ramificationsofthis work extend to potential future bit-patterned magnetic-stor- agemedia.Themethoddoesnotrelyonthemagneticcharac- teroftheFePtcore.Itis,therefore,generaltoall surfactant- mediatednanoparticlessuggestingpossibleapplicationsinthe templatingofelectronic,photonic,andcatalyticsystems. Figure3.Representative2lm×2lmtappingmodeAFMphaseimages showing∼99%selectiveadsorptionofsingleFePtnanoparticlesontothe Experimental photochemically modified polymer domains (dark stripes) with a)low coverage (∼100clusters/lm2) and b)high coverage (∼225clusters/ lm2).Increasingthecoverageresultsinasomewhatlargerpopulationof AsymmetricPS-b-PMMAwithamolecularweightof77000gmol–1 multiparticle clusters but does not reduce the overall selectivity of the and a polydispersity of 1.09 was obtained from Polymer Source. singleparticles. ExcessPShomopolymerwasremovedviaSoxhletextractionincyclo- hexane. Thin films were then spin-cast at 5000rpm from 1.5wt.-% toluenesolutionontocleansiliconnitridesubstratesandannealedfor six hours at 518K in an inert atmosphere. FePt nanoparticles were havior. Indeed, further indication of the attractive interac- depositedontopreparedpolymerfilmsviaspin-coatinga5lldropof tionsisthatthenanoparticlesdonotevenmigratewithinthe dilute octane solution (∼0.5wt.-%) at 3000rpm. Imaging was etcheddomainsduringannealing. performedonaDigitalInstrumentsNanoscopeIVusingVeecotap- While the as-synthesized nanoparticles exist primarily as ping-mode etched silicon tips (radius of curvature ∼ 10nm, spring constant∼40Nm–1).VUVirradiationwascarriedoutatpressuresof isolatedsingleparticlesindilutesolutionmediatedbythesol- ∼2×10–7torr (1torr=133.32Pa) using a Hamamatsu L2793 deuter- vent, they have a tendency to aggregate into small clusters iumlampwithaMgF window.Thisconfigurationprovidescontinu- 2 duringdepositionduetoattractivevanderWaals’interactions umspectraloutputintherange115–400nm,withanaverageintensity betweenthesurfactantcappingmolecules.Asthesolventeva- of8×10–6Jcm–2s–1.Typicalexposurestimeswere7–15min. poratesduringspin-castingtheconcentrationofthedeposited nanoparticle solution increases, thereby inhibiting the ability Received:May11,2005 Finalversion:June17,2005 ofthesolventtopreventaggregation.Clusterscontainingtwo Publishedonline:August22,2005 particles represent20%ofthe surfacepopulation,andthose containing three or more particles represent 30%. The re- – maining50%areisolatednanoparticles.Astatisticalanalysis [1] C.Park,J.Yoon,EL.Thomas,Polymer2003,44,6725. ofnumerousAFMimagesrevealsthat99%ofthesingleFePt [2] F.S.Bates,G.H.Fredrickson,PhysicsToday1999,52,32. nanoparticles adhere to the exposed PMMA phase. Larger [3] M.Park,C.Harrison,P.M.Chaikin,R.A.Register,D.H.Adam- son,Science1997,276,1401. clustersoftenadsorbpartiallyontothePSphasebecausetheir [4] R.A.Segalman,H.Yokoyama,E.J.Kramer,Adv.Mater.2001,13, dimensionsarecomparableto,orlargerthan,thepolymermi- 1152. crodomainspacing.Thoselargerclustersthathavealinearas- [5] J.Y. Cheng, C.A. Ross, E.L. Thomas, H.I. Smith, G.J. Vancso, pectratio,i.e.,nanoparticlechains,alsoexhibitahighselectiv- Adv.Mater.2003,15,1599. ityfortheetchedregionsandalignsuchthattheirlongaxisis [6] S.B. Darling, S.D. Bader, J. Mater. Chem. 2005, DOI: 10.1039/ b506357d. parallel to the channels. Taken together, these data demon- [7] D.Sundrani,S.B.Darling,S.J.Sibener,NanoLett.2004,4,273. strate that exposing a PS-b-PMMA film to VUV radiation [8] D.Sundrani,S.B.Darling,S. J.Sibener,Langmuir2004,20,5091. resultsinasuperiortemplatefornanoparticleadsorption.Re- [9] S.O.Kim,H.H.Solak,M.P.Stoykovich,N.J.Ferrier,J.J.D.Pablo, maining challenges include minimizing nanoparticleaggrega- P.F.Nealey,Nature2003,424,411. Adv.Mater.2005,17,2446–2450 www.advmat.de ©2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 2449 S N O I T A [10] R.W. Zehner, W.A. Lopes, T.L. Morkved, H. Jaeger, L.R. Sita, A Reagentless Biosensing Assembly C Langmuir1998,14,241. I Based on Quantum Dot–Donor Förster N [11] R.W.Zehner,L.R.Sita,Langmuir1999,15,6139. U [12] M.R.Bockstaller,Y.Lapetnikov,S.Margel,E.L.Thomas,J.Am. Resonance Energy Transfer** M Chem.Soc.2003,125,5276. [13] Y.Lin,A.Böker,J.He,K.Sill,H.Xiang,C.Abetz,X.Li,J.Wang, M T.Emrick,S.Long,Q.Wang,A.Balazs,T.P.Russell,Nature2005, ByIgor L. Medintz,*Aaron R. Clapp, O 434,55. Joseph S. Melinger,Jeffrey R. Deschamps,and C [14] J.Y.Cheng,C.A.Ross,V.Z.Chan,E.L.Thomas,R.G.H.Lam- Hedi Mattoussi* mertink,G.J.Vancso,Adv.Mater.2001,13,1174. [15] M.Bal,A.Ursache,M.T.Tuominen,J.T.Goldbach,T.P.Russell, Appl.Phys.Lett.2002,81,3479. Reagentlessbiosensorscombine thespecific recognitionof [16] L. Cao, J.A. Massey, M.A. Winnik, I. Manners, S. Riethmüller, biochemical receptors, usually proteins, with the ability to R.Banhart,J.P.Spatz,M.Möller,Adv.Funct.Mater.2003,13,271. concomitantlyproducequantitativeoutputdatathatdoesnot [17] O.A.Ivanov,L.V.Solina,V.A.Demshina,L.M.Magat,Phys.Met. require further processing. These biosensors can help meet Metallogr.1973,35,81. the growing analytical demands in diverse applications such [18] X.Yang,C.Liu,J.Ahner,J.Yu,T.Klemmer,E.Johns,D.Weller, as healthcare, security, food and water assurance, environ- J.Vac.Sci.Technol.,B2004,22,31. [19] S. Sun,C.B.Murray, D.Weller,L.Folks, A.Moser,Science 2000, ment, and industrial process monitoring.[1,2] Bacterial peri- 287,1989. plasmicbindingproteins(bPBPs)haveprovidedmanyofthe [20] Z.R.Dai,S.Sun,Z.L.Wang,NanoLett.2001,1,443. biorecognition elements used in reagentless biosensors, tar- [21] M. Mizuno, Y. Sasaki, A.C.C. Yu, M. Inoue, Langmuir 2004, 20, getingvarioussugar,peptide,andionanalytes.[3,4]Uponbind- 11305. ingofaspecificallyrecognizedanalyteintheirbindingpock- [22] C.Liu,X.Wu,T.Klemmer,N.Shukla,D.Weller,A.Roy,M.Tanase, D.Laughlin,Chem.Mater.2005,17,620. ets, these hinge-bending proteins undergo an obligatory [23] B. Jeyadevan, K. Urakawa, A. Hobo, N. Chinnasamy, K. Shinoda, conformational change. Cass and co-workers have demon- K.Tohji,D.D.J.Djayaprawira,M.Tsunoda,M.Takahashi,Jpn.J. stratedthatjudiciousplacement ofa dyewithinthemaltose- Appl.Phys.,Part22003,42,L350. binding protein (MBP) structure allows fluorescent signaling [24] X.Teng,H.Yang,J.Am.Chem.Soc.2003,125,14559. ofchangesinmaltoseconcentration,derivedfromchangesin [25] T.L.Morkved,H.M.Jaeger,Europhys.Lett.1997,40,643. the dye emission.[5] MBP has further served as a versatile [26] J. Hahm, W.A. Lopes, H.M. Jaeger, S.J. Sibener,J. Chem. Phys. 1998,109,10111. platformfortestingvariousreagentlessbiosensingmodalities [27] E.Huang,P.Mansky,T.P.Russell,C.Harrison,P.M.Chaikin,R.A. including redox-active sensing and an elegant fluorescence Register,C.J.Hawker,J.Mays,Macromolecules2000,33,80. resonance-energy transfer (FRET)-based multifluorescent [28] F.Dubourg,J.P.Aimé,Surf.Sci.2000,466,137. protein–MBPfusionsensor.[6,7]Hellingaandco-workershave [29] J.Tamayo,R.García,Langmuir1996,12,4430. alsoshownthatthebindingpocketofbPBPscouldberemo- [30] R.García,A.S.Paulo,Phys.Rev.B1999,60,4961. deled to target non-natural analytes, such as trinitrotoluene [31] A.S.Paulo,R.García,Phys.Rev.B2002,66,041406. [32] R.W.Stark,W.M.Heckl,Surf.Sci.2000,457,219. (TNT), using computationally intensive redesign and muta- [33] P.W.Bohn,J.W.Taylor,H.Guckel,Anal.Chem.1981,53,1082. [34] K.K.Okudaira,S.Hasegawa,P.T.Sprunger,E.Morikawa,V.Saile, K.Seki,Y.Harada,N.Ueno,J.Appl.Phys.1998,83,4292. [35] A.Gupta,R.Liang,F.D.Tsay,J.Moacanin,Macromolecules1980, – 13,1696. [*] Dr.I.L.Medintz [36] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, CenterforBio/MolecularScienceandEngineering T.A.Witten,Nature1997,389,827. Code6900,U.S.NavalResearchLaboratory Washington,DC20375-5320(USA) E-mail:[email protected] Dr.H.Mattoussi,Dr.A.R.Clapp ______________________ DivisionofOpticalSciences Code5611,U.S.NavalResearchLaboratory Washington,DC20375-5320(USA) E-mail:[email protected] Dr.J.S.Melinger ElectronicsScienceandTechnologyDivision Code6800,U.S.NavalResearchLaboratory Washington,DC20375-5320(USA) Dr.J.R.Deschamps LaboratoryfortheStructureofMatter Code6812,U.S.NavalResearchLaboratory Washington,DC20375-5320(USA) [**] The authors acknowledge NRL and A.Ervin and L.Chrisey at the Office of Naval Research (ONRgrant no. N001404WX20270) and A.KrishnanatDARPAforsupport.A.R.C.is supportedby a Na- tionalResearchCouncilFellowshipthroughNRL.SupportingInfor- mation is available online from Wiley InterScience or from the author. 2450 ©2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim DOI:10.1002/adma.200500722 Adv.Mater.2005,17,2450–2455

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.