This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER On a class of Laplace inverses involving doubly-nested square roots and 5b. GRANT NUMBER their applications in continuum mechanics 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Dept. of Mathematics,University of New Orleans,New Orleans,LA,70148 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 4 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Author's personal copy MechanicsResearchCommunications37(2010)282–284 ContentslistsavailableatScienceDirect Mechanics Research Communications journal homepage: www.elsevier.com/locate/mechrescom On a class of Laplace inverses involving doubly-nested square roots and their applications in continuum mechanics P. Puria,1, P.M. Jordanb,* aDept.ofMathematics,UniversityofNewOrleans,NewOrleans,LA70148,USA bCode7181,NavalResearchLaboratory,StennisSpaceCenter,MS39529,USA a r t i c l e i n f o a b s t r a c t Articlehistory: TheexactinversesofaclassofLaplacetransformsinvolvingdoubly-nestedsquarerootsandtwobranch Received14January2010 pointsarepresented.FromtheseresultstheexactsolutionofStokes’firstproblem,awellknowninitial- Availableonline4April2010 boundaryvalueproblems(IBVP)influidmechanics,foramicropolarfluidisdetermined. PublishedbyElsevierLtd. Keywords: Laplacetransform Stokes’firstproblem Micropolarfluids Dipolarfluids 1.Introductionandproblemformulation uðy;0Þ¼utðy;0Þ¼0 ðy>0Þ: ð1:3Þ InIBVP(1), thevelocityvectorhas theformv= (u(y, t), 0, 0), UsingtheLaplacetransform,we(JordanandPuri,1999)derived wheretheincompressibilityconditionr(cid:5)v=0isidenticallysatis- theexactsolutiontoStokes’firstproblemfor a dipolarfluid(see fied;h((cid:5))denotestheHeavisideunitstepfunction;I,c,k,andthe Cowin (1974), Straughan (1987) and the references therein) that dynamic viscosity l are positive constants; here, m=l/q denotes isvalidforarbitraryvaluesofthematerialparametersd(P0)and the kinematic viscosity; U is a nonzero constant; M is taken as 0 s l(>0). The present Note is devoted to extending this earlier work constant;andwehavesetj:=k/qforconvenience. of ours to the case of micropolar fluids, the theory of which was formulatedbyEringen(1966).Indoingso,wealsoextendthere- Remark 1. The boundary conditions (BC)s assumed in Eq. (1.2), sultsofJordanetal.(2000)onLaplaceinversesinvolvingdoubly- whichinthepresentcontextareequivalenttoBCsof‘‘typeA”in nestedsquarerootswithonebranchpointtoamoregeneralclass dipolarfluidtheory(Straughan,1987),weresuggestedbyKirwan ofsuchinversespossessingtwobranchpoints. and Newman (1972). For more on the question of what BCs are Tothisend,weobservethatbyreplacingthestraightchannelof appropriateinthemicropolarcontext,seealsoEringen(1966)and KirwanandNewman(1972),2whoconsideredtheunsteadyplane Cowin(1974). Couette flow of an incompressible micropolar fluid, with the half- spacey>0,andsettingthepressuregradienttermintheirequation ofmotiontozero,onepossiblewaytoformulationStokes’firstprob- 2.ExactsolutionviatheLaplacetransform lemforamicropolarfluidisastheIBVP qIuttþ2kut(cid:2)kð2mþjÞuyy(cid:2)½cþIðlþkÞ(cid:3)uyyt ingTnoorneddiumceentshioennaulmqubaenrtoitfiecso:euffi0c=ieun/Uts,,wy0e=iyn/tLro,dtu0=cet/tTh,ewfohlelorwe- þcðmþjÞu ¼0; ðy;tÞ2ð0;1Þ(cid:4)ð0;1Þ; ð1:1Þ 0 0 0 yyyy rcffiffiffiffiþffiffiffiffiffiIffiffiffiffiðffiffi2ffiffilffiffiffiffiffiþffiffiffiffiffikffiffiÞffiffi 2L2 uð0;tÞ¼U0hðtÞ; uð1;tÞ¼0; uyyð0;tÞ¼Ms; uyyð1;tÞ¼0 ðt>0Þ; L0¼ 2k and T0¼2mþ0j; ð2Þ ð1:2Þ andrecastIBVP(1)inthesimplerform * Correspondingauthor.Tel.:+12286884338;fax:+12286885049. hu þu (cid:2)u (cid:2)u þ‘2u ¼0; ðy;tÞ2ð0;1Þ(cid:4)ð0;1Þ; ð3:1Þ tt t yy yyt yyyy E-mailaddress:[email protected](P.M.Jordan). 1 Presentaddress:812RochelleAve.,Monroe,LA71201,USA. uð0;tÞ¼hðtÞ; uð1;tÞ¼0; uyyð0;tÞ¼M; uyyð1;tÞ¼0 ðt>0Þ; 2 Themassdensity,q,appearstohavebeeninadvertentlyomittedfromEqs.(7)–(9) ð3:2Þ ofKirwanandNewman(1972);seeDevakarandIyengar(2009),whereinthefirsttwo uðy;0Þ¼uðy;0Þ¼0 ðy>0Þ; ð3:3Þ oftheseequationsarecorrectlystatedinEqs.(3.1)and(3.2),respectively. t 0093-6413/$-seefrontmatterPublishedbyElsevierLtd. doi:10.1016/j.mechrescom.2010.03.006 Author's personal copy P.Puri,P.M.Jordan/MechanicsResearchCommunications37(2010)282–284 283 8 9 whereMisthenondimensionalformofM andallprimeshavebeen s ><1 1 Z 1=h e(cid:2)gtsin½yxðgÞ(cid:3)dg >= (s0u,p1p/2re)sasreedgibvuetnrbeymain understood. Furthermore, ‘>0 and h2 u2ðy;tÞ¼hðtÞ>:2ð1(cid:2)e(cid:2)y=‘Þ(cid:2)2p 0 gqffiðffigffiffiffiffi(cid:2)ffiffiffiffi1ffiffiffiÞffiffi2ffiffiþffiffiffiffiffi4ffiffigffiffiffi‘ffiffi2ffiffiðffiffi1ffiffiffiffi(cid:2)ffiffiffiffihffiffigffiffiffiÞffiffi>; ‘¼L10sffikfficffiðffiðffi2ffilffiffilffiffiffiþffiþffiffiffikffiffikffiÞffiÞffiffi; h¼Ið24lkLþ20 kÞ: ð4Þ (cid:2)hðtÞ8>>>>>>>>>>>><ZZ01g(cid:7)eexðxgpp½þ½(cid:2)(cid:2)1ttð=ðgghþÞþqq11ffi½=ffi=ffiðffiffiffihffighffiffiffiffiÞffiffiÞþffiffi(cid:3)ffi(cid:3)ffiffisffisffiffiffi1ffiiffiiffinffiffin=ffiffiffiffi½ffiffih½ffiyffiyffiffiffiÞffixffixffiffiffi(cid:2)ffiffiffiffi(cid:2)ffiffi(cid:2)ffi1ffiffiffiðffiðffiffigffi(cid:3)gffiffi2ffiffiffiÞffiÞffiffi(cid:2)(cid:3)ffiffi(cid:3)ffifficffifficffiffi4ffioffioffiffiffiffigsffiffisffiffi½ffiffi‘½ffiyffiyffi2ffiffiffixffixffiðffiffiffihffiffiffiþffiffiþffigffiffiffiðffiðffiffiffigþffigffiffiffiffiÞffiÞffiffi1ffi(cid:3)ffi(cid:3)ffiffidffidffiÞffiffiffigg;; ‘6ð4hÞ(cid:2)1=2; assoonlldvuOit(nni3og.an2pt)ihp,seluyfsoirinuengsngudtlththteionetgbeinemsiutpibaoslriadcloianLradypitleiaoqcnuesattrgiaoivnnes,nfothrinmeE,trqLa.n½((cid:5)s3(cid:3)f,.o3tro)m,Eaqndsdo.m(t3ha.e1inn) p >>>>>>>>>>>>:þ0Zg(cid:7)1ðegxðþgp½þ1(cid:2)=1thð=ÞghþÞq½ð1gffij=ffi½ffihþðffiffigffiÞffi1ffi(cid:3)þffisffi=ffiiffiffih1nffiffiÞ=ffihffiffi(cid:2)hffi½ffiyffiÞffi1xffi(cid:2)ffiffi(cid:3)ffi2ffi(cid:2)1ffiffi(cid:2)ðffi(cid:3)ffig2ffiffi4ffi(cid:2)Þffiffig(cid:3)ffiffic4ffi‘ffioffi2gffiffisðffi‘ffih½ffi2yffigffiðffixffihffiþffigffiþffiffi1ðffiþffigffiÞffiffi1Þffiffi(cid:3)ffiÞdffiffijffig; ‘>ð4hÞ(cid:2)1=2; ‘2½e(cid:2)r2yr2(cid:2)e(cid:2)r1yr2(cid:2)Mðe(cid:2)r2y(cid:2)e(cid:2)r1yÞ(cid:3) ð12Þ u(cid:2)ðy;sÞ¼ qffiffiffiffiffiffiffi1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; ð5Þ 8 9 s s2ð1(cid:2)4h‘2Þþ2sð1(cid:2)2‘2Þþ1 ><1 Z 1=h e(cid:2)gtsin½yxðgÞ(cid:3)dg >= wheresisthetransformparameter,abaroveraquantitydenotes u3ðy;tÞ¼hðtÞ>:2p 0 qffiðffigffiffiffiffi(cid:2)ffiffiffiffi1ffiffiffiÞffiffi2ffiffiþffiffiffiffiffi4ffiffigffiffiffi‘ffiffi2ffiffiðffiffi1ffiffiffiffi(cid:2)ffiffiffiffihffiffigffiffiffiÞffiffi>; the image of that quantity in the Laplace transform domain (e.g., 8Z 1exp½(cid:2)tðgþ1=hÞ(cid:3)sin½yx ðgÞ(cid:3)cos½yx ðgÞ(cid:3)dg ur(cid:2)1ð;y2T;¼soÞ1‘s:¼ivuutmLpffisffiffil½ffiþiffiuffifffiðyffi1ffiyffiffi;ffit(cid:6)ffitffihffiÞffieffiq(cid:3)ffi)ffiffi,ffitffiffiðaffiaffiffisffiffiffisnffiffiffiþffikffiffidffiffiffiffiffiffio1ffiffiffiffiffi2ffifÞffiffiffiffi2ffiffiiffiffiffinffi(cid:2)ffiffiffiffivffiffiffiffiffiffie4ffiffiffiffirffiffi‘ffiffisffiffi2ffiffiiffiffisffiffioffiffiðffiffinffihffiffiffiffiffis,ffiffiffiffiffiffiiþffiffiffitffiffiffiffiffiffiffii1ffiffisffiffiffiffiÞffiffiffiffi:convenienttorecastEð6qÞ. þhpðtÞ>>>>>>>>>>>><>>>>>>>>>>>>:Zþ00Zgg(cid:7)(cid:7)1exepx½p(cid:2)q½qt(cid:2)ðqffi½gtffi½ffiðffiðffiðffiffigþffiggffiffijffiffiffiffi½ffiþffiffiffiðþþffiffi1ffiffiffiffigffiffiffi=ffiffi1ffi11ffiffiffiþffiffihffi=ffiffiffi==ffiffiffiffiÞffiffihffiffih1hffi(cid:3)ffiffiffiffiffiÞffisÞÞ=ffiffiffiffiffiffi(cid:2)(cid:3)iffiffi(cid:2)hffiffiffinffisffiffiffiffiÞffiffii11ffiffi½ffinffiffiffiy(cid:2)ffiffiffi(cid:3)ffiffi(cid:3)ffi2xhffiffiffi2ffiffi1ffiffiffiffi(cid:2)½ffiffi(cid:2)ffi(cid:2)ffi(cid:2)ffiyffi(cid:3)ffiffiffi2ffiffiffix4ðffiffiffi4ffiffiffi(cid:2)gffiffiffigffiffigffi(cid:2)ffiffiffiÞffiffiffi‘4ffiffi‘(cid:3)ffiðffiffi2ffiffi2fficgffigffiffiffiðffiffiðoffiffiffiÞh‘ffihffiffiffiffis(cid:3)ffi2ffiffigffiffigcffiffi½ffiðffiffiffiyoffiffihffiþffiffiþffixffiffiffisgffiffiffiffiffiffi1½ffiffi1ffiþffiffiþyffiþffiffiffiÞffiffiÞffixðffiffiffi1gffiffiþffiÞÞffiffij(cid:3)ffiðdggÞ(cid:3);;dg; ‘‘6>ðð44hhÞÞ(cid:2)(cid:2)11==22;; (5)as ð13Þ u(cid:2)ðy;sÞ¼u(cid:2) ðy;sÞ(cid:2)ð2‘2M(cid:2)1Þu(cid:2) ðy;sÞþu(cid:2) ðy;sÞ; ð7Þ where 1 2 3 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi where xðgÞ¼1uutg(cid:2)1þqffiðffigffiffiffiffi(cid:2)ffiffiffiffiffi1ffiffiffiÞffiffi2ffiffiffiþffiffiffiffiffi4ffiffihffiffiffi‘ffiffi2ffiffigffiffiffiðffiffi1ffiffiffi=ffiffihffiffiffiffi(cid:2)ffiffiffiffiffigffiffiffiÞffi; ð14Þ e(cid:2)r2yþe(cid:2)r1y e(cid:2)r2y(cid:2)e(cid:2)r1y ‘ 2 uu(cid:2)(cid:2)1¼¼su(cid:2) : 2s ; u(cid:2)2¼2sqffiðffisffiffiffiþffiffiffiffiffi1ffiffiffiÞffiffi2ffiffiffi(cid:2)ffiffiffiffiffi4ffiffiffi‘ffi2ffiffiffisffiffiðffihffiffiffisffiffiffiþffiffiffiffiffi1ffiffiffiÞffiffi; ð8Þ x(cid:6)ðgÞ¼21‘sffi(cid:3)(cid:3)(cid:3)(cid:3)ffiðffiffigffiffiffiffiþffiffiffiffiffi1ffiffi=ffiffiffihffiffiffiÞffiffi(cid:2)ffiffiffiffiffi1ffiffiffiffi(cid:6)ffiffiffiffiffi2ffiffiffi‘ffiffiqffiffiffiffiffihffiffiffiffiffigffiffiffiffiffiffiðffiffiffiffigffiffiffiffiffiffiffiffiþffiffiffiffiffiffiffiffiffiffi1ffiffiffiffi=ffiffiffiffiffiffihffiffiffiffiffiÞffiffiffi(cid:3)(cid:3)(cid:3)(cid:3)ffiffi; ð15Þ 3 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1(cid:2)hð1þ2‘2(cid:2)2‘ ‘2þh(cid:2)1Þ Sincetheinverseswerequiredonotappeartobegiveninanyof g(cid:7)¼ ; ð16Þ hð4h‘2(cid:2)1Þ teh.ge.,sDtaunfdfya,r2d0t0a4b)leasn,wdeobtusernrvteotthhaetctohmepinlevxerisnevseorsfiothnefotermrmuslain(sEeqe., andweobservethatg*>0ifandonlyif‘>1=pffi4ffiffihffiffiffi. (7)aregivenby 3.Special/limitingcasesandotherapplications 1 Z rþiT u ðy;tÞ¼ lim estu(cid:2) ðy;sÞds ðt>0Þ; ð9Þ 1;2;3 2piT!1 r(cid:2)iT 1;2;3 Remark 2. The steady-state solution, u1(y), is defined as u (y):=lim u(y,t) and is given by u (y):=1(cid:2)M‘2[1(cid:2) whereu (y,t)=0fort<0andthearbitraryrealnumberr>0lies 1 t?1 1 1,2,3 exp((cid:2)y/‘)], which is identical in form to that of the dipolar fluid to the right of all singularities. The first step in evaluating these case(seeJordanandPuri,1999,Eq.(4.3)). integralsisdeterminingthesingularitiesoftheirintegrands.Omit- tingthedetails,itcanbeshownthattheonlynon-removablesingu- Remark 3. If we take h=1(cid:2)‘2, implying ‘22(cid:4)1;1(cid:5), then u(cid:2) laritiesofu(cid:2)1;2 consistofasimplepoleats=0andbranchpointsat simplifytosuchanextentthattheycanbeeasily2invertedusi1n;2g;3, s={(cid:2)1/h,0}whilethoseofu(cid:2)3consistofonlythetwobranchpoints. e.g., the tables of Laplace inverses given in (Erdélyi, 1954, Chap. Thus,byCauchy’stheoremwehave V).Thus,forthisspecialcaseuðy;tÞ¼Uðy;tÞ,whereUisdefinedas 21piICestu(cid:2)1;2;3ðy;sÞds¼0; ð10Þ Uðy;tÞ:¼hðtÞ(erfc(cid:6)2pyffitffi(cid:7)(cid:2)a2‘2eat(cid:8)eypffiaffierfc(cid:6)2pyffitffiþpffiaffiffitffiffi(cid:7) wtehrcelroeckthweisBerodmirewcitcihonc.ontourC(seeFig.1)istraversedinthecoun- þe(cid:2)ypffiaffierfc(cid:6) pyffiffi(cid:2)pffiaffiffitffiffi(cid:7)(cid:2)ecypffiaffiþffiffiffibffierfc(cid:6) cpyffiffiþqffiðffiaffiffiffiffiþffiffiffiffiffibffiffiÞffiffitffiffi(cid:7) 2 t 2 t Followingstandardtechniquesofcontourintegration(see,e.g., pffiffiffiffiffiffi (cid:6) cy qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(cid:7)(cid:9) Duffy,2004),itcanbeestablishedthat,forallh2 (0,1/2)and‘>0, (cid:2)e(cid:2)cy aþberfc pffiffi(cid:2) ðaþbÞt 2 t u1ðy;tÞ¼hðtÞ(12ð1þe(cid:2)y=‘Þ(cid:2)21pZ01=he(cid:2)gtsin½ygxðgÞ(cid:3)dg) (cid:2)M‘2(cid:8)erfc(cid:6)2pyffitffi(cid:7)(cid:2)12eat(cid:8)eypffiaffierfc(cid:6)2pyffitffiþpffiaffiffitffiffi(cid:7) hðtÞ8>>>>>>>><ZZ01g(cid:7)eexxpp½½(cid:2)(cid:2)ttððggþþ11==hhÞÞ(cid:3)(cid:3)ssiginnþ½½yyx1x=þhððggÞÞ(cid:3)(cid:3)ccooss½½yyxx(cid:2)ððggÞÞ(cid:3)(cid:3)ddgg; ‘6ð4hÞ(cid:2)1=2; þe(cid:2)ypffiaffierfc(cid:6)2pyffitffi(cid:2)pffiaffiffitffiffi(cid:7)(cid:2)ecypffiaffiþffiffiffibffierfc(cid:6)2cpyffitffiþqffiðffiaffiffiffiffiþffiffiffiffiffibffiffiÞffiffitffiffi(cid:7) (cid:2) p >>>>>>>>:þ0Zg(cid:7)1exp½(cid:2)tðgþ1=hÞ(cid:3)gsiþng½1þy=xþh1þ=hðgÞ(cid:3)cosh½(cid:2)yx(cid:2)ðgÞ(cid:3);dg; ‘>ð4hÞð(cid:2)11=12;Þ þ(cid:2)ee(cid:2)(cid:2)ccyyppffiaffibffiffiþeffiffiffibrffiefcr(cid:6)fc2(cid:6)cp2ycffitpffiy(cid:2)ffitffi(cid:2)pffibqffiffitffiffi(cid:7)ffiðffiaffiffi(cid:9)ffiffiþ(cid:9)ffiffiffi(cid:10)ffiffibffi:ffiÞffiffitffiffi(cid:7)(cid:9)(cid:2)12(cid:8)ecypffibffierfc(cid:6)2cpyffitffiþpffibffiffiðtffiffi1(cid:7)7Þ Author's personal copy 284 P.Puri,P.M.Jordan/MechanicsResearchCommunications37(2010)282–284 Fig.1. Bromwichcontour,C,usedtoevaluatetheintegralsinEq.(10).Here,(cid:2)andearesmallpositivequantities. Here,erfc((cid:5))denotesthecomplementaryerrorfunctionandthe References positive constants a, b, and c are defined as a= (2‘2(cid:2)1)(cid:2)1, b= pffiffiffiffiffiffiffiffiffiffiffiffiffi (1(cid:2)‘2)(cid:2)1,andc¼‘(cid:2)1 1(cid:2)‘2. Christov,C.I.,Jordan,P.M.,2009.Commenton‘‘StokesfirstproblemforanOldroyd- Bfluidinaporoushalfspace”[Phys.Fluids17,023101(2005)].PhysicsofFluids 21,069101. Remark 4. Setting ‘=l2 and letting h?0 reduces u to the l1=1 Cowin,S.C.,1974.Thetheoryofpolarfluids.In:Yih,C.-S.(Ed.),AdvancesinApplied special case of (Jordan and Puri, 1999, Eq. (3.4)), i.e., the Mechanics,vol.14.AcademicPress,NewYork,pp.279–347. corresponding solution for the case of a dipolar3 fluid. On the Devakar, M., Iyengar, T.K.V., 2009. Stokes first problem for a micropolar fluid throughstate–spaceapproach.AppliedMathematicalModelling33,924–936. other hand, letting ‘?0 reduces u to the solution of Stokes’ first Duffy, D.G., 2004. Transform Methods for Solving Partial Differential Equations, problemforan Oldroyd-B liquid;see pp.354–355 ofDuffy(2004), seconded.Chapman&Hall/CRC,BocaRaton,FL. andalsoChristovandJordan(2009). Erdélyi,A.(Ed.),1954.TablesofIntegralTransforms,vol.I.McGraw–Hill,NewYork. Eringen, A.C., 1966. Theory of micropolar fluids. Journal of Mathematics and Mechanics16,1–18. Guenther, R.B., Lee, J.W., 1996. Partial Differential Equations of Mathematical Remark 5. It is noteworthy that Eq. (1.1), which is identical in PhysicsandIntegralEquations.Dover,Mineola,NY.pp.217–218. formtotheequationofmotionforthisprobleminvolvingamicro- Jordan, P.M., Puri, P., 1999. Exact solutions for the flow of a dipolar fluid on a structure-ladenfluidofthetypedescribedbythetheoryof Kline suddenlyacceleratedflatplate.ActaMechanica137,183–194. Jordan,P.M.,Puri, P.,Boros, G.,2000. Anewclass ofLaplace inversesandtheir and Allen (1970), also arises in the study of incompressible flow applications.AppliedMathematicsLetters13,97–104. infracturedorfissuredmedia(GuentherandLee,1996).Eq.(1.1) Kirwan,A.D.,Newman,N.,1972.Timedependentchannelflowofamicropolarfluid. canalsoberegardedasthegoverningequationforaparticulartype InternationalJournalofEngineeringScience10,137–144. Kline,K.A.,Allen,S.J.,1970.Nonsteadyflowsoffluidswithmicrostructure.Physics oftwo-speciesreaction–diffusionsystem. ofFluids13,263–270. Quintanilla, R., Straughan, B., 2005. Bounds for some non-standard problems in porousflowandviscousGreen–Naghdifluids.ProceedingoftheRoyalSocietyA Acknowledgements 461,3159–3168. Straughan, B., 1987. Stability of a layer of dipolar fluid heated from below. ThisworkwascarriedoutwhileP.M.J. helda NASAGSRPFel- MathematicalMethodsintheAppliedSciences9,35–45. lowship(NGT-13-52706).Thepresentmanuscriptwascompleted while this author was supported by ONR/NRL funding (PE 061153N). 3 Inthecontextofthepresentproblem,dipolarfluidtheoryandGreen–Naghdi theoryyield,allowingfordifferencesinthecoefficients,thesameequationofmotion; see,e.g.,QuintanillaandStraughan(2005)andthereferencestherein.