SpectrochimicaActaPartB64(2009)961–967 ContentslistsavailableatScienceDirect Spectrochimica Acta Part B journal homepage: www.elsevier.com/locate/sab Thermodynamic and spectroscopic properties of Nd:YAG–CO Double-Pulse 2 ☆ Laser-Induced Iron Plasmas ⁎ Matthew Weidman, Santiago Palanco, Matthieu Baudelet, Martin C. Richardson TownesLaserInstitute,CREOL–TheCollegeofOptics&Photonics,UniversityofCentralFlorida,P.O.Box162700,Orlando,FL32816-2700,UnitedStates a r t i c l e i n f o a b s t r a c t Articlehistory: Double-PulseLaser-InducedBreakdownSpectroscopyofironusingbothNd:YAGandTEA–CO lasershas 2 Received15December2008 beeninvestigatedtobetterunderstandmechanismsofsignalenhancement.Thesignaldependenceonthe Accepted27July2009 delaybetweenthetwolaserpulsesshowsanenhancedsignalwhentheCO laserpulseinteractswiththe 2 Availableonline4August2009 samplebeforetheNd:YAGpulse.SignalkineticsandasimplemodelofsampleheatingbytheCO pulseshow 2 that the enhancement during the first 700ns is due primarily to sample heating. Images of the sample Keywords: surfaceafterablationaswellastime-integratedpicturesoftheplasmasuggestthatparticlesareejectedfrom Laser-inducedbreakdownspectroscopy the surface during the first microseconds after the arrival of the CO pulse and provide fuel for the DoublepulseLIBS 2 Laserablation subsequentplasmacreatedbytheNd:YAGlaser. Laserheating ©2009ElsevierB.V.Allrightsreserved. Laser-inducedparticles 1.Introduction (anglebetween thelaserbeams), differentlaserwavelengths and/or pulsedurationsandinterpulsedelay,aswellasdifferentpulseenergies. Optical emission spectroscopy of laser-induced plasmas is a Acollinearapproachcombinestwopulsesfollowingthesamepath powerful spectroscopic diagnostic technique for sensing and other and focused upon the same point of the sample. The orthogonal applicationsbecauseofitsabilitytoidentifyalltypesofmaterials(solid, configurationusesmultipleopticstofocusatdifferentlocations(double- liquid,gas),ataclosedistanceaswellasinastand-offconfiguration. focus collinear configuration has also been demonstrated [2]). Two Despitetheincreasingpopularityofthistechnique(alsocalledLIBS— configurationsarepossiblewithanorthogonalgeometry:apre-ablation Laser-Induced Breakdown Spectroscopy) its sensitivity and precision spark to produce plasma above the sample prior to the ablation or a are relatively poor compared to other well established analytical reheatingsparkfocusedupontheexpandingplasmacreatedbythefirst techniques.Thisisbecauseoftheuncertaintyinlaserenergycoupling pulse. tothesample,significantmatrixeffectsandrelativelyhighbackground From femtosecond to microsecond pulses, several combinations signal in the atomic and ionic spectra, among other reasons. One have been studied: fs–fs [3], fs–ns [4], ns–ns [5], ns–µs [6]. Other approachtoimprovingsensitivity(byincreasingthesignal-to-contin- works have studied the influence of the combination of different uum-backgroundratio)istheuseofadouble-pulseconfiguration(DP– wavelengthsfromultraviolet(UV)tonear-andmid-infrared(NIRand LIBS).TheaimofDP–LIBSistoimprovethecouplingofthelaserenergy MIR):UV–NIR[5],Visible–NIR[8],NIR–NIR[5],NIR–MIR[6],NIR–MW tothetargetandtotheablatedmaterial,leadingtoahighernumberof [9]andthecombinationofpulseswithdifferentenergy. emittersfromtheanalyzedsampleintheplasma. In Babushok et al. [10] and Scaffidi et al. [4], overviews of the Since the first demonstration of double-pulse LIBS in 1969 by different mechanisms leading to emission enhancement in DP–LIBS PiepmeierandMalmstadt[1],ithasbeendemonstratedthattwolaser experiments are given. Depending on the delay time between the pulses for LIBS lead to enhanced emission intensities, longer plasma pulses,severalexplanationstotheenhancementaregiven.Fromzero- lifetimes and higher plasma temperatures. Tooptimize theseeffects, delaytotensofms,thephysicsbehindthephenomenonchanges.In severalcombinationshavebeenproposedinvolvingvariousgeometries Scaffidi et al., three mechanisms are mainly detailed: Pulse-plasma coupling(re-excitingorexcitingoftheplasmacomponents),sample heating (heating by the hot plasma close to the surface resulting in ☆ Thispaperwaspresentedatthe5thInternationalConferenceonLaser-Induced increasedablation)andatmosphericeffects(creationofahotregion Breakdown Spectroscopy (LIBS 2008), held in Berlin, Adlershof, Germany, 22–26 withlowdensityabovethesample).InBabushoketal.,anextensivelist September2008,andispublishedintheSpecialIssueofSpectrochimicaActaPartB, ofpossibleeffectsisgivenfromthepreparationofthesamplebythefirst dedicatedtothatconference. ⁎ Correspondingauthor. pulse(smoothing,firstcrater,onsetofmelt)totheenergycouplingwith E-mailaddress:[email protected](M.C.Richardson). theplasma(ionyield,plasmare-heating,electrondensity). 0584-8547/$–seefrontmatter©2009ElsevierB.V.Allrightsreserved. doi:10.1016/j.sab.2009.07.023 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Thermodynamic and spectroscopic properties of Nd:YAG?CO2 W911NF-06-1-0446 Double-Pulse Laser-Induced Iron Plasmas 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Townes Laser Institute, CREOL ? The College of Optics & NUMBER ; 50351.17 Photonics,University of Central Florida,P.O. Box 162,Orlando,FL,32816-2700 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, 11. SPONSOR/MONITOR’S REPORT NC, 27709-2211 NUMBER(S) 50351.17 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 7 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 962 M.Weidmanetal./SpectrochimicaActaPartB64(2009)961–967 In this paper, we present the results of a double-pulse LIBS symmetricresonatorandemitsat10.6µm.Anintra-cavityirisisused experimentwhereananosecondNIRpulseiscombinedwithaMIR tolimitthenumberofhigherordertransversemodesandprovidea CO laserpulseandfocusedonanironsample.An8-foldenhancement circularlysymmetricbeamprofileasviewedusinganIRpyroelectric 2 isreachedbyirradiatingthesamplefirstwiththeCO laserpulseand beamcamera(SpiriconPyrocamIII).Thelaserenergyiscontinuously 2 thenablatingitwiththeNd:YAGlaser.Theeffectofinterpulsedelay tunablebetween70μJand80mJbyusingasetofcrossedpolarizers. allows us to advance a combination of mechanisms leading to the Thepulseenergyismeasuredusingthesamepyroelectricjoulemeter enhancement of the LIBS signal compared to that obtained with a described above. The peak-to-peak and RMS fluctuations in pulse singleNd:YAGlaserpulse. energy are 3.5% and 0.98%, respectively. The temporal profile is measured with a multiple junction photovoltaic detector (Vigo 2.Experimentalsetup Systems PVM-10.6) with nanosecond response time. The temporal profileiscomposedofa100nspulsefollowedbya1μstail(Fig.7a). TheexperimentalconfigurationisshowninFig.1.Twolasersare Thelaserisfocusedwitha26cmfocallengthlensat13degreesfrom fired onto the same spot of a sample and the light emitted by the normal,andthelens-to-sampledistanceis25.5cm.Thebeamradius plasmaiscollectedandguidedtoaspectrometer.Thespatialoverlap atthesamplelocationisapproximately280μmasdeterminedusinga ofthetwopulsesisshownontheinsetinFig.1. knife-edgescan.Anirradianceof30×106W/cm2(assumingapulse durationof1µs)wasobtainedwiththelaseroperatingat75mJper 2.1.Lasersources pulse. TheNd:YAGlaser(QuantelBrilliant)isQ-switchedandoperatedat 2.2.Collectionopticsandspectrometer thefundamentalwavelengthof1064nm.Itisexternallytriggeredat 0.33Hz as limited by the CO laser. A thin-film polarizer is used in Theplasma emission iscollectedusingan f/1 quartz lensand is 2 conjunctionwithaλ/2platetoprovidecontinuouscontrolofthelaser coupledtoa1mround-to-lineUV-gradefiberbundleusingasecond energy from 5mJ up to 340mJ without changing the flashlamp (f/2)lens.Thecollectionopticsareat40°fromthesurfacenormal.The voltageortheQ-switchdelaytime.Thepulseenergyismeasuredwith fiber bundle is f-matched to a 0.5m Czerny-Turner imaging a calibrated pyroelectric joulemeter (Gentec SOLO 2 with a QE-25 spectrometer (Acton 2500i, Princeton Instruments) with a 1800 head). The peak-to-peak and RMS fluctuations in pulse energy are lines/mm grating. The light is detected using an intensified charge 1.51%and0.44%respectively.Thefullwidthhalfmaximum(FWHM) coupled device (Andor iStar DH720-25F-03) with 1024×256pixels pulsedurationis5nsasmeasuredwithafastphotodiode(Thorlabs) anda25mmGenIIintensifier.Theintensifierdelayismeasuredfrom placedbehindadielectricturningmirror.Thelaserisfocusedwitha therisingedgeofthesecondpulse.Eachspectrumistheaverageof30 13.5cmfocallengthlensatnormalincidence,andthelens-to-sample singleacquisitions. distanceis13cm.Thebeamradiusatthesamplelocation,determined bytheknife-edgescantechnique,isapproximately230µm.TheNd: 2.3.Timing YAG laser was operated at 39mJ per pulse, corresponding to an irradianceof4.7×109W/cm2. Thetimingoftheexperimentiscontrolledusingtwodigitaldelay TheCO laserisatransverselyexcitedatmospheric(TEA)CO laser generators(StanfordResearchModelsDG-645andDG-535).TheDG- 2 2 withcomponentsmadebyLumonics.Itutilizesanexternal1mhalf- 645triggerstheflashlampoftheNd:YAGlaserandalsotriggersthe DG-535at10Hz.TheDG-535dividesthefrequencyto0.33Hzand triggerstheQ-switchoftheNd:YAGlaser,theCO laserandtheICCD 2 camera. Timing uncertainty between Nd:YAG and CO pulses is 2 primarily limited by the jitter in the CO laser pulse onset and has 2 peak-to-peak fluctuations of approximately 42ns and a standard deviation of 9ns. The timing configuration for the interpulse delay andtheacquisitionisshowninFig.2. 2.4.Samples Thetargetsampleswerea100μm-thickfoilof99.9+%pureiron (Product#:356808,Sigma-Aldrich,St.Louis,MO,USA).Eachfoilwas cleaned with acetone and mounted so that it remained flat and verticaltominimizeanydepositionofmaterialaftertheablation.The Fig.2.Timingconfigurationoftheexperiment.TheinterpulsedelayTpissetaspositive whentheNd:YAGlaserprecedestheCO2laserpulseandnegativeintheoppositeorder. The acquisition delay Td is set to 1µs after the second pulse and the duration of Fig.1.Experimentalsetup. acquisitionTwto25ns. M.Weidmanetal./SpectrochimicaActaPartB64(2009)961–967 963 samplewastranslatedbetweeneachdoublepulselaserirradiationin timewaschosenfordetermininginstantaneousplasmatemperature. ordertopresentafreshlocationforeachshot. Spectraforthesingle-pulsecaseofNd:YAGandCO areshownina) 2 andb)respectively,andthedouble-pulsecaseforNd:YAGpreceding 3.Resultsanddiscussion theCO pulseby1μsandNd:YAGfollowingtheCO pulseby1μsare 2 2 showninc)andd)respectively.Inallcases,theenergyofNd:YAGand Theoriginalintentionofthisdouble-pulseLIBSstudywastouse CO laserswere23Jcm−2and30Jcm−2respectively. 2 10.6µm radiation from the CO laser to re-heat or raise the ThespectrallinesinFig.3aareofsingly-ionizediron.Theweak 2 temperatureoftheplasmacreatedbytheNd:YAGlaserafterithad signalinFig.3bcanbeattributedtominimalablatedmassandlow diffusedawayfromthesurface.Sincethecriticaldensityofaplasma, plasmatemperatureduringtherelativelylonginteractiontimeofthe the point at which light is reflected, scales as the square of the CO pulse. For the double pulse case, with the CO laser pulse 2 2 wavelength, reheatingtheplasma(Fig.3c),thereisnosignalenhancementrelative (cid:1) (cid:3) to the signal acquired from the Nd:YAG only. This can be partially Ncr = 2πc 2ε0me attributed to the acquisition delay time of 1μs measured from the e e λ2 second laser pulse; therefore, 2µs after the Nd:YAG pulse. This measurementdoesnotimplysignificantplasmaheatingbytheCO 2 longerwavelengthlightwillinteractwiththeplasmafartherdown pulse.However,theeffectsofplasmareheatingusingaCO laserpulse 2 thedensitygradientinthecoronaoftheplasmaproducedbytheNd: (increasedlineintensities)havebeendemonstratedpreviously. YAG laser. With the relatively long scale lengths produced in the InworkbyKillingeretal.[6],anenhancementofbothatomic(up plasma,inverseBremsstrahlungabsorption(IBA)occursatdensities toafactorof60)andionic(uptoafactorof300)aluminumlinesfora wellbelowthecriticaldensity. highpurityaluminasamplewasobservedwhenaNd:YAGpulse(5ns, Previousstudiesusingmultiplewavelengthsfordouble-pulseLIBS 50mJmm−2)wasfollowedbyaCO pulse(100nspeakand5μstail, 2 hasbeenreported[5]usingbothUVandNIRpulses,andacorrelation 70mJmm−2).Thedifferenceinbehaviorcomparedtoourresultscan wasfoundbetweensignalenhancementandplasmatemperature[5] be attributed to both the different energy densities used, since the showingthatthesignalincreaseswiththetemperature. signalfromananosecondlaserplasmaisapproximatelyproportional Acomparisonbetweensingle-pulseanddouble-pulseLIBSspectra toI3/2[7],Ibeingthelaserintensity,andsampleproperties.Ametal is shown in Fig. 3. Each spectrum represents the average of 30 samplewasusedinourcaseandaninsulatorintheircase,eachhaving separateshotsobtainedwith1μsdelay(measuredwithrespecttothe differentthermodynamicproperties.Acompletecomparisoncannot secondlaserpulse)andanacquisitiontimeof25ns.Thisacquisition be made with our work since the timing configuration is not mentionedintheirpublication. TounderstandtheeffectoftheCO pulseindouble-pulseLIBS,the 2 time delay between pulses has been varied from the CO pulse 2 precedingtheNd:YAGpulseby5mstotheCO pulsefollowingNd: 2 YAGpulseby10μs.Forclarity,Fig.4showstheintensityoftheFe(II) 274.65nm ionic line for a delay between −10μs and +10μs. A negativedelaymeanstheCO pulsereachesthesamplebeforetheNd: 2 YAGpulse.AlthoughthereisnoplasmareheatingbytheCO pulse,a 2 signalenhancementofapproximately8timesoccursforaninterpulse delay of −1μs. This signal enhancement is closely correlated to an enhancementinplasmatemperature,ascalculatedusingaBoltzmann plot[11]withtheparameterslistedinTable1.Thetemperaturefora Fig.3.LIBSspectraofironfroma)asingleNd:YAGpulse,b)asingleCO2laserpulse, Fig.4.Background-correctedpeakintensityoftheFeII274.65nmlineasafunctionof c)doublepulsespectrawithCO2followingNd:YAGby1µscomparedwithNd:YAG theinterpulsedelay.AnegativedelaymeanstheCO2pulsereachesthesamplesbefore aloneLIBSspectrumandd)doublepulsespectrawithCO2precedingNd:YAGby1µs. theNd:YAGpulse.Apositivedelayisfortheoppositetimingconfiguration.Comparison (Acquisitiondelay:1µs,durationofacquisition:25ns).Ina),thedottedlineshowsa ismadewiththesingle-pulsecases.Theerrorbarsrepresentthestandarddeviation background spline interpolation and the stars indicate the lines used for plasma over30singleacquisitions.Theinsetintheupperrightcornerisazoombetween−3µs temperaturecalculation.Baselinecorrectionisappliedforallspectra. and0µsshowingthemaximumenhancementat−1µs. 964 M.Weidmanetal./SpectrochimicaActaPartB64(2009)961–967 Table1 given in Table2. Thetemporalprofile of theheat sourceI (t) is an 0 Parametersofthespectrallinesusedintheplasmatemperaturecalculations[12]. experimental profile acquired from a 75mJ CO pulse. The model 2 Wavelengthλul UpperlevelenergyEu Degeneracy TransitionprobabilityAul yields an estimate of the temperature on the sample surface and (nm) (eV) gu (s−1) doesn'tincludeplasmashieldingorablationofthesamplebythelaser 268.48 8.43 10 1.4108 (theenergyatthesurfaceisconsideredcompletelytransformedinto 269.26 8.37 12 1.2108 heat).Thelackofabsorptionofthelaserpulsebytheplasmaleadsusto 270.40 7.97 8 1.2108 consider that this simple model will give a higher estimate of the 271.44 5.55 6 5.5107 temperatureatthesurfaceofthesample.However,noconclusionson 273.96 5.51 8 1.9108 theablationproductsortheplasmacharacteristicscanbeextracted. 274.65 5.59 6 1.9108 274.93 5.55 8 2.1108 Thecalculatedtemperaturedistributioninthetargetisplottedasa 275.57 5.49 10 2.1108 function of time as shown in Fig. 5. The first conclusion is that the 278.37 7.70 10 7.0107 meltingpointT (1811Kforiron)isnotreachedwiththeirradianceof m theCO laserpulseused.Themaximumtemperatureatthesurfaceis 2 approximately 860K and occurs at 550ns. This is supported by the single-pulseNd:YAGplasmais15000±2000Kand23000±2000K microscope images of the sample irradiated by only the CO laser 2 fordoublepulsewith−1µsinterpulsedelay. (Fig.6b)wheresmalldegradationofthematerialbytheCO pulseis 2 WhentheCO pulseisfiredbeforetheNd:YAG,twomechanisms observedafter30shotsonthesamespot.Thecraterdepthafter30shots 2 mayoccur:(i)theCO pulseheatsthesamplebeforethearrivalofthe (using a Zygo NewView 6300 3D optical profiler) is not discernible 2 Nd:YAGpulse,(ii)theNd:YAGinteractswiththeweakplasmacreated withintheroughnessofthesamplebytheinstrumentandissmaller by the CO pulse, ablating the sample softly and extracting non thantheabsorptionlength(30nm)whichisindicativeofnanometric 2 excitedparticlesfromthesamplewithsizedistributionrangingfrom layersbeingablatedbyeachCO pulse.Givenminimalmaterialremoval 2 atomictoclusters. by melting and vaporization, the Nd:YAG pulse following the CO 2 ablationisnotinfluencedbysignificantsampledeformation. 3.1.HeatingofthesamplebytheCO pulse Giventhemaximumtemperatureoccursatt=550ns,amaximum 2 signalenhancementataninterpulsedelayof1µsisnotcompletely Several studies have shown a positive correlation between the explainedbysampletemperatureeffects. intensity of the LIBS signal intensity and the sample temperature [13,14].Thisphenomenonisexplainedbylessenergybeingrequired 3.2.InteractionoftheNd:YAGlaserpulsewithCO laserinducedplasma 2 tomeltorvaporizethesample—theimportantparametersinlong- pulseablationaboveroomtemperature.Furthermore,thereflectivity WithlittleapparentsampledegradationasaresultoftheCO laser, 2 of metals decreases when the surface temperature increases [15]. acontinuum-likeemissionisdetectedasshowninFig.3b. Thesetwofactorscouldleadtoabetterenergycouplingbetweenthe This continuum can be attributed to bremsstrahlung and/or poly- Nd:YAGpulseandthesampleifpreviouslyheatedbytheCO pulse.To atomicclusters.TheseemittersareextractedbytheCO laserpulseduring 2 2 understandtheimportanceofthisphenomenon,asimplemodelof the interaction with the surface, when a nanometric layer is ablated. heatconductionisused. Whenthelaserremovesmaterialfromthesurface,thesizedistributionof Themodelisone-dimensional(1D)sincetheabsorptionlengthof particlesislimitedbytheabsorptiondepth1/α[17].Twotypesofemitters a radiation with a 10.6µm-wavelength at 298K in the target is arelocalizedintime-integratedpicturesoftheplasmainthevisibleregion approximately 30nm (lα=1/α, with α=3.3 107m−1), which is shown in Fig. 7b (using a manually triggered Nikon D40x DSLR with muchsmallerthaneitherlaserbeamdiameter.The1Dheatequation 300mm1:1macrozoomlensatf/8with1to2secondexposuretimeto hasthefollowingform: integratetheentireplasmalifetime).Lightemissionisobservedattwo differentlocations:onecomponentalongthenormalandtheotherclose " ! # tothesurface.Theparaxialemissioncanbeattributedtosmallemitters ∂Tðx;tÞ ∂ κ ∂Tðx;tÞ α = + Sðx;tÞ (atomsandions),ejectedwithhighspeedfromthesample(tensof ∂t ∂x C ρ ∂x C ρ p p withS(x,t)=I (t)e−ax(1−R)·I (t)isthelaserirradiance(inWcm−2) 0 0 andtheotherparametersarelistedinTable2.Thiscalculationisdone via a matricial implicit algorithm for solving parabolic partial differential equations[16]. Theconditionsofthe algorithmare also Table2 Physicalandnumericalparametersusedinour1Dheatequationmodel. Parameters Values Thermalconductivity,κ(Wcm−1K−1) 0.802 Specificheat,Cp(Jg−1K−1) 0.449 Massdensity,ρ(gcm−3) 7.87 Absorptioncoefficient,α(m−1)(λ=10.6µm) 3.3107 Reflectivity,R(λ=10.6µm) 0.967 Meltingpoint,Tm(K) 1811 Spacerange [x0=0µm;xf=10µm] Spacesampling 701points Timerange [t0=−650ns;tf=1849ns] Timesampling 2500points Initialcondition T(x,t=0)=300K Boundaryconditionsonx0andxf ∂Tðx∂=xx0;tÞ=0,∂Tðx∂=xxf;tÞ=0 Fsaigm.p5l.eCaalfcteurlattheeditrermadpiaetriaotnurweidthisttrhibeultaisoenripnutlhseetdaerpgiectteasdainfuFnigct.i7oan.o(fsetiempehfyosricaanliarnond Thevaluecorrespondingtothesolidformisgivenbytheliterature[19]. algorithmicparametersinTable1). M.Weidmanetal./SpectrochimicaActaPartB64(2009)961–967 965 Fig.6.Microscopepicturesoftheironsampleaftera)asingleNd:YAGlasershot,b)anaccumulationof30CO2lasershots,c)acombinationofaNd:YAGlasershotfollowedbyaCO2 lasershot1μslaterandd)acombinationofaCO2lasershotfollowedbyaNd:YAGlasershot1μslater. kms−1)[18],whereasthemarginalemissioncanbeduetoslowheavy 3.3.CombinationofmechanismsforLIBSsignalenhancement emitters (clusters) (hundreds of m s−1) [18]. This spatially divided emissioniscomparedwiththelightemissionoftheplasmacreatedby MaximumsignalenhancementoccurswhentheCO precedesthe 2 theNd:YAGlaseronly(acquiredinthesameconditions)wheretheplasma Nd:YAGpulseby1µs.ThisconditionisshowninFig.8alongwiththe ishomogeneouslyconfinedtothesurfaceanditsexpansioniscomparable normalizedplasmaemissionandcalculatedsurfacetemperature.We tothebeamwaist. candividethetimescaleintwostages: The spatially integrated temporal trace of the visible emission is showninFig.8c.Thefirstpeakisduetobremsstrahlungfromelectronic 3.3.1.Thefirst700ns collisionswithfastemitters,andisshownbytheparaxialemissionin Duringthefirst700ns,thereisastrongcorrelationbetweenthe Fig. 7b. During the course of the CO laser pulse, there is a second surfacetemperatureandtheplasmaemission.The100nspeakofthe 2 emissionincreasepeakingat800ns.Thisisattributedtoheavyparticles CO laserpulsequicklyheatsthesamplefromapproximately300Kto 2 extracted from the surface during the relatively long CO pulse 650K.Thetailofthepulsereachesahotsurfaceandheatsthesample 2 evolution.Thelowvelocityoftheseemittersrestrictstheirpositionto to 860K. The signal follows the same trend until approximately withinhundredsofmicronsofthesample,asseeninFig.7b. 700ns. This enhances the production of emitting products. These When the Nd:YAG pulse arrives 1µs after the CO pulse, a products are mainly heavy emitters rather than ions or atoms 2 maximumcouplingwiththeCO inducedplasmaoccursbecausethe commontomostLIBSplasmasandthereislittlesurfacemodification, 2 maximum number of particles has been extractedfrom the sample leadingtotheconclusionthattheseheavyparticleshavenanometer (since there is no excitation by the CO laser anymore). Particle size. When the Nd:YAG pulse reaches a hot surface, less energy is 2 ablationbytheNd:YAGlaserisefficientbecauseoftheirhighsurface- needed for ablation resulting in increased mass ablation and LIBS to-mass ratio, and at this time an enhanced ionic LIBS spectrum is signal. observed(Fig.3d)comparetothesurfaceablationbytheNd:YAGonly (Fig.3a).Thereisasignificantdifferenceinthevisibleemissionforthe 3.3.2.Between700nsand10µs case of CO pulse preceding the Nd:YAG pulse by 1μs and the CO The extraction of particles from the surface increases until 2 2 pulsefollowingtheNd:YAGpulseby1µsasreflectedinFig.7candd. approximately 0.7 to 1µs. At this time, the coupling between the Theseimagesshowalessintensesurfaceplasmainthesecondcase CO induced plasma and the Nd:YAG pulse is maximum. Emission 2 suggesting the absorption of the Nd:YAG above the surface. This is fromtheablationofparticleswithadistributionofvelocityaround alsoobservedinthecraterimagesshowninFig.6.Theedgesofthe 500mpersecondwillremainwithinthefieldofview(approximately craterinducedbytheNd:YAGinthedoublepulsecaseofCO firstare 2mm)forapproximately4µs.However,noticeableenhancementof 2 smootherthaninthecasewhenasingleNd:YAGpulsereachesthe theLIBSsignaloccursuntil10µs.Furtherexperimentsareinprogress samplefirst(Fig.6aandc). tobetterexplainthemechanismsofsuchalongenhancement. 966 M.Weidmanetal./SpectrochimicaActaPartB64(2009)961–967 Fig.7.Time-integratedpicturesoftheplasmaproducedbya)asingleNd:YAGlasershot,b)asingleCO2lasershot,c)acombinationofanNd:YAGlasershotfollowedbyaCO2laser shot1μslaterandd)acombinationofaCO2lasershotfollowedbyaNd:YAGlasershot1μslater.Thearrowsrepresentthedirectionoftheincominglaserandthedottedlinesthe laserbeamdiameter2w0. 4.Conclusion sample before the arrival of the Nd:YAG laser pulse during the first 700ns, without melting the sample or creating noticeable surface Theopticalemissionfromlaser-inducedplasmainadouble-pulse deformation.Nevertheless,thebrightcontinuumemissionrepresenta- LIBSexperiment(Nd:YAGat1064nmandCO laserat10.6µm)oniron tiveofheavyandslowmovingparticlesextractedandejectedduringthe 2 hasbeenstudiedtounderstandwhichmechanismsareresponsiblefor CO laserinteractionwiththeironsample.Theseparticlesactasfuelfor 2 signalenhancementinthisconfiguration.TheCO laserpulseheatsthe the second pulse, and lead to greatest signal enhancement approxi- 2 matelyonemicrosecondafterthebeginningoftheCO laserpulse. 2 Acknowledgments ThisworkissupportedbytheUSARO-MURIprogramon“Ultrafast LaserInteractionProcessesforLIBSandotherSensingTechnologies”, andbytheStateofFlorida. References [1] E.H.Piepmeier,H.V.Malmstadt,Q-Switchedlaserenergyabsorptionintheplume ofanaluminumalloy,Anal.Chem.41(1969)700–707. [2] J.BruceIII,AlexanderDennis,Collineardualpulse-dualfocusenhancementof femtosecond LIBS, 5th International Conference on Laser-Induced Breakdown Spectroscopy(Berlin,Germany,2008),2008,22–26September. [3] V.Pinon,C.Fotakis,G.Nicolas,D.Anglos,Doublepulselaser-inducedbreakdown spectroscopywithfemtosecondlaserpulses,Spectrochim.ActaPartB63(2008) 1006–1010. [4] J.Scaffidi,S.M.Angel,D.A.Cremers,Emissionenhancementmechanismsindual-pulse LIBS,Anal.Chem.78(1969)24–32. [5] L.St-Onge,V.Detalle,M.Sabsabi,Enhancedlaser-inducedbreakdownspectros- copyusingthecombinationoffourth-harmonicandfundamentalNd:YAGlaser pulses,Spectrochim.ActaPartB57(2002)121–135. Fig.8.OptimaltimingforthemaximumofLIBSsignalenhancement:a)CO2laserpulse [6] D.K.Killinger,S.D.Allen,R.D.Waterbury,C.Stefano,E.L.Dottery,Enhancementof intensity,b)Nd:YAGlaserintensity,c)theplasmaemissionfromtheCO2pulseonlyand Nd:YAGLIBSemissionofaremotetargetusingasimultaneousCO2laserpulse, d)thecalculatedsurfacetemperatureofthesample. Opt.Express15(2007)12905–12915. M.Weidmanetal./SpectrochimicaActaPartB64(2009)961–967 967 [7] S.Palanco,C.López-Moreno,J.J.Laserna,Design,constructionandassessmentofa [13] S.Palanco,L.M.Cabalín,D.Romero,J.J.Laserna,Infraredlaserablationandatomic field-deployable laser-induced breakdown spectrometer for remote elemental emissionspectrometryofstainlesssteelathightemperatures,J.Anal.At.Spectrom. sensing,SpectrochimicaActaPartB61(2006)88–95. 14(1999)1883–1887. [8] C.Gautier,P.Fichet,D.Menut,J.-L.Lacour,D.L'Hermite,J.Dubessy,Studyofthe [14] S.H. Tavassoli, A. Gragossian, Effect of sample temperature on laser-induced double-pulse setup with an orthogonal beam geometry for laser-induced breakdownspectroscopy,Opt.LaserTechnol.41(2009)481–485. breakdownspectroscopy,Spectrochim.ActaPartB59(2004)975–986. [15] M. von Allmen, A. Blatter, Laser-beam interactions with materials — physical [9] B.Kearton,Y.Mattley,Laser-inducedBreakdownspectroscopy—sparkingnew principlesandapplications,2ndedition,Springer,Berlin,1998. applications,Nat.Photonics2(2008)537–540. [16] J.P.Nougier,Méthodesdecalculnumérique,3rdedition,Masson,Paris,1985. [10] V.I.Babushok,F.C.DeLuciaJr.,J.L.Gottfried,C.A.Munson,A.W.Miziolek,Double [17] E.N.Sobol,Phasetransformationsandablationinlaser-treatedsolids,JohnWiley pulselaserablationandplasma:laserinducedbreakdownspectroscopysignal &Sons,NewYork,1995. enhancement,Spectrochim.ActaPartB61(2006)999–1014. [18] S.Noel,J.Hermann,T.E.Itina,Nanoparticlegenerationinplasmasproducedby [11] D.A.Cremers,L.J.Radziemski,Handbookoflaser-inducedbreakdownspectroscopy, ultra-shortlaserpulses,Appl.Surf.Sci.253(2007)6310–6315. JohnWiley&SonsLtd,Chichester,2006. [19] D.R.Lide,Handbookofchemistryandphysics,82ndedition,CRCPress,NewYork, [12] Y.Ralchenko,A.E.Kramida,J.ReaderandNISTASDTeam(2008).NISTAtomicSpectra 2001. Database (version 3.1.5), [Online]. Available: http://physics.nist.gov/asd3 [2008, December2].NationalInstituteofStandardsandTechnology,Gaithersburg,MD.