Inorg. Chem. 2008, 47, 7062-7064 High-Extinction Ruthenium Compounds for Sunlight Harvesting and Hole Transport Aaron Staniszewski,† William B. Heuer,*,‡ and Gerald J. Meyer*,† Departments of Chemistry and Materials Science and Engineering, Johns Hopkins UniVersity, 400 North Charles Street, Baltimore, Maryland 21218, and Chemistry Department, United States NaVal Academy, Annapolis, Maryland 21402 ReceivedJanuary29,2008 The compounds Ru(bpy)(BTL)(PF) and Ru(deeb)(BTL)(PF), Scheme1 2 62 2 62 wherebpyis2,2′-bipyridine,deebis4,4′-(CHCO)-bpy,andBTL 2 5 22 g is 9′-[4,5-bis(cyanoethylthio)]-1,3-dithiol-2-ylidene]-4′,5′-diazafluo- or s. rene, were found to have very high extinction coefficients in the c a bs.h visible region. In an acetonitrile solution, the extinction of u1 http://pc80017 4R7u0(dnemeb.)T2(wBoTLq)u(aPsFi-6r)e2vwearssib(cid:1)le)ox4id4a0ti0o0n(wa1v0e0s0,EM1/-21)cm+-01.8a8tλan)d EMY on September 4, 2009 | arch 26, 2008 | doi: 10.1021/i +qiocotnooubb-1amassli.geen1p0arrt6.ovvu1neeumdVMddnd,ycwLivheawiieaCtlndhrardlsgOsΦuse4psa-/featon)rccufaeetninrr0rtodrsro.eos3fnevcctior(eetorrnipelspeei0xichb.ce2olp(ieltetFerfoococdirtnrp+erjoe5d/es0lr3)utyct.ai2ctteett.eAsi5.eo,tlInecnoτ,hcr-rtae4Er)4rog1ap0ner7csn2t)ne°e5miCrrniasn,t-toltisiivgca.1ehT.oT6tissOfheota2aiVxlsatc,ewrmistcwaiaetwehtemtilaoalrsaeelns-, aopdwcRrolfiuieisltc(cohroabourtfpevtitthohyedeenne).r2ne(iibdinnBTupmTemthyhxeL-aacdn)ptei(yotssPthshlpeFyieeoon6pcf)leryi2tr2unrrgao0tieyhdss0eyc(wc0nBolo0eipTnucl0ilvomLcMeam)(rsIsp-laIaiio1)nogdundcacemnnoarddosi-rvssre1eads.d7phmtioinroTvbxeawehcltieilnweoupslndio.arteowrhWcespofeeeumitxrnhnrttpteiecieencoitnsriecuosntnaientodopllayynsf-l DM asustainedphotocurrentwasobservedwithamaximumincident AVAL ACADate (Web): painhbjeoscototripnot-natonf-rccoeumrrseapnetscientrfgafilcewieeenxrcceyiteiondf gs0to.a4ot.ed.Tahgerepehmoteonctu,rrceonntsaisctteionnt wanitdh gTcahnrioOadur2gpptehshoiftntrooarfienbllsemficnestrdraiohnrcaeghvreteeompamoilcsreatoesldobmpehoeeetrnrhoeouqindsu.san.Tnahtniefioecydriyelbsdtyaslsfliopnreecint(ratoensrafctaoacpsieiac)l d by US Nublication Coordination compounds that efficiently harvest solar dwiatThsihoerle-c2lie-gnyatlnliyddencoeof]m-i4nm′t,e5ur′ne-idsctia,atze9ad′fl-[ui4no,r5e-Inbneiosr(agcbaybnarniecoveiCtahtheyedlmthiaisost)r]yB-1Tf,L3o-r, ade P energy are of great importance in inorganic chemistry. applications in supramolecular chemistry.8 The preparative o wnl Rutheniumtris(bipyridine)hasattractedmuchinterestinthis procedure employed here was similar and involved a Do regardwithmetal-to-ligandcharge-transfer(MLCT)absorp- phosphite-mediatedcouplingtothe“dafo”bpyligandshown tion bands in the visible region and a molar extinction in Scheme 1. Coordination to cis-Ru(bpy) (Cl) or cis- 2 2 coefficient ((cid:1)) of about 15000 M-1 cm-1.1 Substitution on Ru(deeb) Cl (wheredeebis4,4′-(C H CO ) -bpy),isolation, 2 2 2 5 2 2 thebipyridineringsand/orcoordinationofnonchromophoric and purification yielded the desired Ru(bpy) (BTL)2+ and 2 ligands allow the absorption to be tuned throughout the Ru(deeb) (BTL)2+ compounds usually as PF - salts. 1H 2 6 visibleandnear-IRregionswithmodestextinctioncoefficient NMR, elemental analysis, and spectroscopic data were changes.2–6 In contrast, natural and synthetic organic pig- consistent with the proposed formulations. ments also absorb solar photons but with extinctions that Figure 1 shows the UV–visible absorption spectrum in a CH CN solution. The inset displays the concentration *Towhomcorrespondenceshouldbeaddressed.E-mail:[email protected] 3 (W.B.H.),[email protected](G.J.M.). dependence of the Ru(deeb)2(BTL)(PF6)2 compound. The †JohnsHopkinsUniversity. normalized absorption spectra were concentration-indepen- ‡UnitedStatesNavalAcademy. (1) Kalyanasundaram,K.PhotochemistryofPolypyridineandPorphyrin Complexes;AcademicPress:London,1992. (5) Jiang,K.-J.;Xia,J.-b.;Masaki,N.;Noda,S.;Yanigada,S.Inorg.Chim. (2) Wang,P.;Klein,C.;Humphry-Baker,R.;Zakeeruddin,S.M.;Gratzel, Acta2008,361,783. M.J.Am.Chem.Soc.2005,127,808. (6) Karthikeyan,C.S.;Peter,K.;Wietasch,H.;Thelakkat,M.Sol.Energy (3) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C. Angew. Mater.Sol.Cells2007,91,432. Chem.2006,45,5822. (7) Hasselman,G.M.;Watson,D.F.;Stromberg,J.;Bocian,D.F.;Holten, (4) Jang, S.-R.; Lee, C.; Choi, H.; Ko, J. K.; Lee, J.; Vittal, R.; Kim, D.;Lindsey,J.S.;Meyer,G.J.J.Phys.Chem.B2006,110,25430. K.-J.Chem.Mater.2006,18,5604. (8) Baudron,S.A.;Hosseini,M.W.Inorg.Chem.2006,45,5260. 7062 InorganicChemistry, Vol.47,No.16,2008 10.1021/ic800171hCCC:$40.75 2008AmericanChemicalSociety PublishedonWeb03/26/2008 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED JAN 2008 2. REPORT TYPE 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High-Extinction Ruthenium Compounds for Sunlight Harvesting and 5b. GRANT NUMBER Hole Transport 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION United States Naval Academy (USNA),Chemistry REPORT NUMBER Department,Annapolis,MD,21402 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 3 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 COMMUNICATION Figure 1. Absorption spectra of Ru(deeb)2(BTL)(PF6)2 (solid line) and Ru(bpy)2(BTL)(PF6)2(dashedline)inneatacetonitrile.Theinsetshowsthe concentrationdependenceoftheRu(deeb)2(BTL)(PF6)2absorbanceat470nm. Thebest-fitlineyieldedanextinctioncoefficientof44300M-1cm-1. dent,andmultiplemeasurementsyielded(cid:1))44000(1000 g M-1cm-1atλ)470nm.Thecorrespondingbpycompound s.or showedpropertiessimilartothoseofthedeebanalogue(cid:1)) c bs.ah 32000 ( 2000 M-1 cm-1 at λ ) 468 nm. The free BTL pu71 ligand has an extinction coefficient of 34700 M-1 cm-1 at 4, 2009 | http://10.1021/ic8001 4Tpti1ooh6unensnv9dmisosinibbsultethcoedamibBdspTonlrioLcptatlaitioebgndsaonswrdpbietalchisgtrowhuvtmeealrlplopaafprsetphRciienuagbrfuliytnhtbBereanTyliiLuogmnaadnn(dI4dI5)tRr0cauonnmmsfi--. ber oi: bpy MLCT transitions. The higher extinction for the md pte08 | Ru(deeb)2(BTL)2+ compound was expected because it is Se20 known that substituents with low-lying π orbitals (such as MY on ch 26, acraonmeanthicasn,ceestMersL,CcTarbeoxxtiynlcictioacnidcso,eoffircuinesnattsurraetleadtivoergtaoniucns-) DEMar substitutedbpy.10–12Interestingly,4and4′disubstitutionof Figure2.Absorptiondifferencespectrumobserved1µsafterpulsed532.5 AVAL ACADate (Web): 2asul,s2bo′s-tabiltilupotywiroienddiinfnoerthbieninc5dreianansgdetso5′m(cid:1)peosmsoioptirooernosue.1sf1fne,1ac2ntiTovcherelyysetsatthlelarinngerToduoiOpess2 n°CaCbmHsoa3lCinrgpdNhtit(oaBentx)rccoaihontaamcnthigotoeenrmemodpfoetRnorauitat(oudrnreeeaed.nbToa)h2ct(re5Byi4sTn0tsLaeln)lt(imPnineF.p6T)a2irOt(AB2)tshihninonwfiesalmtaasicinentg0ol.ne1iwtMrialveLeailCten-lOg4t4h0/ Nn thin films from an acetonitrile solution. ownloaded by US Publicatio fbTRoywurT(coRdhyeeucqel(ruibbeca)pd2svyo(ioB-x)rltTe(paBvLrmoeT)rmp(LsPeie)rbF(ttrlPi6eye)F2si,ono)Exf0,i1td/.2Eh1ae)tMicoo+)nLm0iwC+p.8ola08Ouv.n8e4a/sd5nasdcVwew+teoevr1nree.eir1tsroc6uihblseVasrefs,aeroacvrlnrtueeoddtriciooezfnnneosdeer. iwocRmofuamms(adpeeexrrseisipsbeneed)gcd2l(tieenoBdfT0ptf.Lrh1ooe+rMd)Tou/TxicLOitidiO2Cia(z2els(eO-sedi)4-g,/s1)Cn3e.eHnTadsn3hiCdtetioNztwheraereeaapscknuohdlsataiebatrdigsnvoeieenr-lpsaetetbhcipsoetaronoarrappnitnpteiienodtahnTresanitnOreaecat2deer, D (Fc+/0). The2first oxida6ti2on1i/s2 assigned to the BDT ligand 520 nm was assigned to the oxidized dithioline ligand.14 Thus,within10nsoflightexcitation,anelectronisinjected and the second to the ruthenium(II) metal center. Our intoTiO andtheholeistranslatedfromthemetalcenterto inabilitytoresolvethemetal-centeredoxidationforthebpy 2 thedithioline-containingBTLligand.Thedrivingforcefor compoundprobablystemsfrominsolubilityoftheoxidized hole transfer after injection is -280 mV but was slightly product. Both compounds showed an irreversible reduction at E ∼ -1.6 V versus Fc+/0. Attempts to obtain the uphill from the MLCT excited state, which presumably pr explainswhyitwasnotobservedinafluidsolution(Figure absorption spectra of the reduced and oxidized forms were 2A). We note that, after electron injection by the N3 frustrated by sample decomposition. sensitizer,cis-Ru(dcb) (NCS) , a similar hole transfer from The compounds were only weakly emissive at room tem- 2 2 ruthenium(III) to the thiocyanate ligands has been pro- perature with excited-state lifetimes near our instrumental response,τ<10ns.At-40°CinCHCN,alonger-livedstate 3 wasobservedwithspectroscopicpropertiescharacteristicofan (10) Damrauer,N.H.;McCusker,J.K.J.Phys.Chem.A1999,103,8440. (11) Argazzi,R.;Bignozzi,C.A.;Heimer,T.A.;Castellano,F.N.;Meyer, MLCT excited state (Figure 2). The excited state decayed to G.J.Inorg.Chem.1994,33,5741–5749. thegroundstatewithfirst-orderkinetics,τ)25ns. (12) Liu,Y.;DeNicola,A.;Reiff,O.;Ziessel,R.;Schanze,K.S.J.Phys. Chem.A2003,107,3476. Pulsed-lightexcitationofaRu(deeb) (BTL)/TiO thinfilm 2 2 (13) Rothenberger,G.;Fitzmaurice,D.;Grätzel,M.J.Phys.Chem.1992, 96,5983. (9) Zhu, Q.-Y.; Bian, G.-Q.; Dai, J.; Jia, D.-X.; Zhang, J.-S.; Guo, L. (14) Torrance, J. B.; Scott, B. A.; Welber, B.; Kaufman, F. B.; Seiden, Inorg.Chim.Acta2003,351,177. P.E.Phys.ReV.B1979, 19,730. Inorganic Chemistry, Vol. 47, No. 16, 2008 7063 COMMUNICATION Ru(deeb)(BTL)2+*andRu(bpy)(BTL)2+*atroomtemperature 2 2 inafluidsolutionareconsistentwiththepresenceoflow-lying ligand-field (LF) states.1 Previous studies of ruthenium(II) bipyridyl“dafo”compoundshaveshownthatthebridgeopens the bite angle between the pyridyl nitrogens, which thereby reduces the metal-nitrogen σ overlap and stabilizes the LF states.21,22Wehavepreviouslypresentedcompellingevidence that MLCT deactivation by LF states in ruthenium and iron sensitizerscanlowertheelectroninjectionyieldsintoTiO.23–25 2 One method by which this can be avoided is to utilize coordination compounds that have LF states at much higher energy,suchasthosebasedonosmium(II).1 Inconclusion,aruthenium(II)bipyridinedithiolinecompound withanotablyhighextinctioncoefficientinthevisibleregion was found to photoinject electrons into TiO and support 2 Figure3.IPCEandabsorptancespectrumofaRu(deeb)2(BTL)/TiO2thin intramolecular hole transfer away from the ruthenium center. film.Thephotocurrentactionspectrumwasmeasuredin0.50MLiIand WhiledistinctintraligandandMLCTabsorptionswereapparent 0.50 M I2/acetonitrile, while the absorptance spectrum was measured in in the electronic spectrum of Ru(deeb)(BTL)2+, the photo- org 0.1MLiClO4/acetonitrile. physicalandelectron-transferbehaviorn2earroomtemperature acs. posed.15 Hole transfer to more weakly coupled electron onnanosecondandlongertimescaleswasconsistentwiththe ubs.1h donors has been demonstrated at sensitized interfaces.16–18 presence of a single MLCT excited state. The approach of http://pc80017 staItreraindjieacntcioendaantaddheomleotnrastnrsafteerdwthearet tthheesyaimeledsfofro5r3e2x.c5itaendd- ucotielifzfiicnigenitnstraanlidgapnrdomcohtaergheolteratnrsafnesrfetroweanshasunccceesesxfutiln.cTtiohne 4, 2009 | 10.1021/i 4ac1t7inonmmetelirgshthtaetxalcliotawtiaobns.olWuteemheaavseuredmeveenltoopfedthethqiunanfitulmm drpeiuptrhrsieuoseleidnnetaaplipvgriaaonbadlceshabolrtifedrginnianttrgiovdtehutecoi3nthgaencmdono3jr′uepgtoarsateidtdiiotignorsnoaoulfpabsnidpinywrtiihddeienl4ye September 2008 | doi: aeyxnietaillndyc(sstii)so,nfhrocoomweefvfidecarit,eanretliqtkhueairtetahscakctnosomhwpolawendnigeesincohfFatirhggeuerctehraa2nnBsgf.ee1r9i,ndTtahhtaee apcnrryodsdt4ua′clltpiinooensiTtioioOfnse.fifHfilmcigisehnoterxastloitnelacrnrtiaoctnievlselesgnesboiatmiszeeedrtrsioewnsowuthiltdihneninneharebrnleeannttholye- d by US NAVAL ACADEMY on ublication Date (Web): March 26, ttiwniWehhnnxoiaechtTttrtriheenaheocngbacextoehstsiiituenodenohslericnedzpbriteadocolnldteioioiotgnvre0etfhterfo.a5atbfiprspteamhcsuhitioufreoso4temnbott2oohtctpv0afeeuwtailirnnRleoreauemcenuxsedtn(tr,utitdofhnbtsoeechaceeferhettcdfibieato,yct)mhhu2initee(eehsiBncleewddocaToiylxeywtLfriihc(deeo)iIet(lioPhudlPz3llelCeisF4dwndE6pwe0b)a)os20esi.oerwt0ahnΦrΦIadfsMssaiitc)to)maia-pnzbl1le0eeia0alr.ctc.i1ssi2atmdnutyt.aaoiu1r-onre4oemt1nddssf. ldecceuSovooxinctwemopAhdierreiepcodncrrskloeiwctuinepunneradaoenfoytardiwcFttocseoioenonl.dmeuldobeFaepnuagar2noidensrdmvuaeaeilntds-reatid.otoobnuosnnotInnfhm.triuaa4nTreatvi,gtohs4nnhere′tde-ienoedraxaofsiutbts.itihmtuanothebbhcupolsteterirtoodsitrnvdouutasheinttctehamchokdteoirneonmsbontlihiiuwtppnseomay.elsfrereaSiddblautgiyfilnhgceelrdeahrsttunothtdosPhettdshueemNeenadtrrnihaiiiouuevdtilmsgimaeohtu(ntiaeIhvmraiIseees)lt ade P counter electrode and 0.5 M LiI and 0.05 M I2/acetonitrile Research Fund, administered by the American Chemical ownlo spohlouttoiocunrsr(eFnitgaucretio3n).aTnhdeambasxoirmptuamnceIPsCpEecwtraasw4e0r%e,ianngdotohde Society,forfinancialsupportofthiswork.W.B.H.acknowl- D edges support from the Naval Academy Research Council. agreement, consistent with injection from a single excited state. In other words, even though there was evidence for IC800171H RuII f deeb, RuII f BTL, and π f π* intraligand BTL (15) Clifford,J.N.;Palomeras,E;Nazeeruddin,Md.K.;Graztel,M.;Nelson, transitionsintheabsorptionspectrumofthiscompound,there J.;Long,N.J.;Durrant,J.R.J.Am.Chem.Soc.2004,126,5225. was no evidence for preferential injection from any one of (16) Argazzi,R.;Bignozzi,C.A.;Heimer,T.A.;Castellano,F.N.;Meyer, these excited states in the regenerative solar cell. This is G.J.J.Am.Chem.Soc.1995,117,11815. (17) Bonhote, P.; Moser, J. E.; Humphry-Baker, R.; Vlachopoulos, N.; consistentwiththefactthatinjectionandholetransferyields Zakeeruddin,S.M.;Walder,L.;Grätzel,M.J.Am.Chem.Soc.1999, were, within experimental error, the same with green and 121,1324. (18) Argazzi,R.;Bignozzi,C.A.;Heimer,T.A.;Castellano,F.N.;Meyer, blue light excitation. It is likely that the less than 0.5 G.J.J.Phys.Chem.B1997,101,2591. photocurrentefficiencyresultsfromthepoorinjectionyields (19) Bergeron,B.V.;Kelly,C.A.;Meyer,G.J.Langmuir2003,19,8389. inferred from the spectroscopic measurements. Rapid sen- (20) Clifford, J. N.; Palomeras, E.; Nazeeruddin, Md. K.; Graztel, M.; Durrant,J.R.J.Phys.Chem.B2007,111,6561. sitizer regeneration through iodide oxidation is indeed (21) (a)Wang,Y.;Rillema,D.P.Inorg.Chem.1998,1,27.(b)Wang,Y.; expected because of the positive ground-state reduction Jackman,D.C.;Woods,C.;Rillema,D.P.J.Chem.Crystallogr.1995, 25,549. potential.20 (22) Henderson,L.J.,Jr.;Fronczek,F.R.;Cherry,W.R.J.Am.Chem. A complete understanding of the factors that influence the Soc.1984,106,5876. (23) Qu,P.;Thompson,D.W.;Meyer,G.J.Langmuir2000,16,4662. injection and hole transfer yields for Ru(deeb)(BTL)/TiO is 2 2 (24) Yang,M.;Thompson,D.W.;Meyer,G.J.Inorg.Chem.2002,41,1254. absent.Theweakemissionandshortexcited-statelifetimeof (25) Liu,F.;Meyer,G.J.Inorg.Chem.2003,42,7351. 7064 InorganicChemistry,Vol.47,No.16,2008