RespiratoryPhysiology&Neurobiology167(2009)235–246 ContentslistsavailableatScienceDirect Respiratory Physiology & Neurobiology journal homepage: www.elsevier.com/locate/resphysiol Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus SaschaK.Hookera,RobinW.Bairdb,AndreasFahlmanc,∗ aSeaMammalResearchUnit,ScottishOceansInstitute,UniversityofStAndrews,StAndrews,FifeKY168LB,Scotland,UnitedKingdom bCascadiaResearchCollective,2181/2West4thAvenue,Olympia,Washington98501,USA cBiologyDepartment,Mailstop50,WoodsHoleOceanographicInstitution,WoodsHole,MA02543,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Amathematicalmodel,basedoncurrentknowledgeofgasexchangeandphysiologyofmarinemammals, Accepted30April2009 wasusedtopredictbloodandtissuetensionN2(PN2)usingfielddatafromthreebeakedwhalespecies: northernbottlenosewhales,Cuvier’sbeakedwhales,andBlainville’sbeakedwhales.Theobjectivewas Keywords: todetermineifphysiology(bodymass,divinglungvolume,diveresponse)ordivebehaviour(divedepth NCuovrtiehre’rsnbbeaoktteldenwohsealwehale adnecdodmupraretisosnio,nchsaicnkgneessisn(aDsCcSe)nrtirsaktbe,edtwieelebnehspaveicoieusr.)DwivoiunlgdlluenagdvtoolduimffeeraenndceesxitnenPtNo2flethveeldsiavnedretshpeorenbsye BDleacinomvilplere’sssbieoankseidckwnheassle hadalargeeffectonend-divePN2.Thediveprofilehadalargerinfluenceonend-divePN2thanbodymass Divingphysiology differencesbetweenspecies.Despitedielchangesindivebehaviour,PN2levelsshowednoconsistenttrend. ModeloutputsuggestedthatallthreespecieslivewithtissuePN2 levelsthatwouldcauseasignificant proportionofDCScasesinterrestrialmammals.Cuvier’sbeakedwhaledivingbehaviourappearstoput themathigherriskthantheotherspecies,whichmayexplaintheirprevalenceinstrandingsaftertheuse ofmid-frequencysonar. ©2009ElsevierB.V.Allrightsreserved. 1. Introduction thatthesemammalslivecontinuouslywithelevatedlevelsofN 2 (Coxetal.,2006)whichcouldrenderthempronetodecompression Multiple mass strandings of beaked whales have been doc- sickness(DCS)iftheyalteredtheirdivingbehaviour.Suggestions umented over the last decade following acoustic exposure to include disturbance caused by an acoustic signal that could (1) anthropogenicsounds(reviewedinCoxetal.,2006).Intermsof affectthenormaldivingbehaviour,e.g.increasedordecreasedsur- species composition, Cuvier’s beaked whale (Ziphius cavirostris) face interval, ascent rate, or dive duration, leading to increased have predominated, with Blainville’s beaked whale (Mesoplodon supersaturation,therebyincreasingDCSrisk,(2)theacousticsig- densirostris)alsooccurringinseveralevents,andoccasionaloccur- nalcouldactivateexistingstabilizedbubblenucleiallowingthem renceofotherbeakedwhalespecies(northernbottlenosewhale togrowbypassivediffusion,and/or,(3)driveactivatedbubblesto Hyperoodonampullatus,andGervais’beakedwhaleM.europaeus, expandthroughrectifieddiffusion(Coxetal.,2006).Eachofthese SimmondsandLopez-Jurado,1991;Coxetal.,2006).Gas-bubble hypothesesassumesthatthesebreath-holddivingmarinemam- disease, induced through a precondition of tissue N supersatu- malslivewithsignificantlyelevatedbloodandtissuetensionN 2 2 rationcoupledwithabehaviouralresponsetoacousticexposure, (P )levels. N2 has been suggested as a possible pathologic mechanism for Increasing concentrations of N have been observed in bot- 2 these beaked whale deaths (Jepson et al., 2003; Cox et al., tlenose dolphin (Tursiops truncatus) tissues following trained 2006). repetitive dives (Ridgway and Howard, 1979), in freely diving Beaked whales dive deeply more frequently than most other Weddell seals (Leptonychotes weddellii, Falke et al., 1985) and cetaceanspecies(HookerandBaird,1999;Bairdetal.,2006,2008; forceddivingWeddell,harbour(Phocavitulina)andelephantseals Tyacketal.,2006;Minamikawaetal.,2007)andthisbehaviourhas (Miroungaangustirostris,Kooymanetal.,1972).Houseretal.(2001) beensuggestedtoresultintissueN supersaturation.Itispossible usedtheresultspublishedbyRidgwayandHoward(1979)inathe- 2 oreticalmodelbasedongasdiffusiontoshowthatbeakedwhale divingpatterns(basedonsimulateddivedata)couldleadtochronic ∗ Correspondingauthor.Tel.:+15082892180. tissue accumulation of N2 gas. Their simulations illustrated the E-mailaddress:[email protected](A.Fahlman). potentialincreaseinN2causedbyrelativelyshallow(100m,9min) 1569-9048/$–seefrontmatter©2009ElsevierB.V.Allrightsreserved. doi:10.1016/j.resp.2009.04.023 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Respiratory Physiology & Neurobiology 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Sea Mammal Research Unit,Scottish Oceans Institute,University of St REPORT NUMBER Andrews, St Andrews, Fife KY16 8LB, Scotland, United Kingdom, , 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 12 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 236 S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 diveswithshort(1min)surfaceintervals.However,theirsimulated 2. Materialandmethods timeatthesurface(5minatsurfacein60minofdiving)wasmuch shorterthanrecordedfromloggedfield-data(30–38%timespentat 2.1. Model thesurface,HookerandBaird,1999),suggestingthatre-evaluation ofDCSriskbasedonlogged-datawouldbevaluable.Zimmerand The first model, Model A, was adapted from the breath-hold Tyack(2007)havepreviouslyestimatedbloodandtissueP val- model developed by Fahlman et al. (2006) with addition of pul- N2 uesforaCuvier’sbeakedwhale,andalsoemphasizedthedanger monaryshuntandexchangeofO andCO asdetailedinFahlman 2 2 of repetitive shallow dives rather than deep dives per se. How- etal.(2009)andsummarizedbelow.Thebodywaspartitionedinto ever,bothofthesepreviousmodelsincorporatedtheassumption four different tissue compartments (brain, fat, muscle, and cen- thatalveolarcollapseisimmediateandoccursatapre-determined tralcirculation)andonebloodcompartment(arterialandmixed depth (∼70m, Zimmer and Tyack, 2007). Here we use a revised venous).Thecentralcirculatorycompartmentincludedheart,kid- model(describedinFahlmanetal.,2009)whichincorporatesthe ney, liver and alimentary tract while the muscle compartment recentlungcollapsemodeldevelopedbyBostrometal.(2008)and includedmuscle,skin,bone,connectivetissueandallothertissues thecirculatoryadjustmentsofthedivingresponse(Fahlmanetal., (Fahlmanetal.,2009). 2006). Gasexchangeoccurredbetweenlungandbloodandbetween Sincesonar-relatedstrandingshaveoccurredforseveralspecies blood and each compartment. The same assumptions were used ofbeakedwhale,wecompareandcontrastresultsforpreviously forthebloodN storesasthosedetailedinFahlmanetal.(2006). 2 publishedtimedepthrecorderdata(HookerandBaird,1999;Baird The Q˙tot and fraction of blood to each tissue were not fixed and et al., 2006, 2008) from Cuvier’s beaked whale (referred to as couldbevariedtomimicdivingbradycardiaandchangesinregional Ziphius),Blainville’sbeakedwhale(referredtoasMesoplodon)and bloodflowduetoperipheralvasoconstriction.Hence,cardiovascu- northernbottlenosewhale(referredtoasHyperoodon).Weinves- larchangesseeninfreelydivinganimalscouldbesimulated(Zapol tigate how differences in behaviour and physiology would affect etal.,1979;Andrewsetal.,1997;Frogetetal.,2004). end-divetissueandbloodP andthusthesusceptibilitytoDCS- Unless specified, in the instances in which we had no direct N2 likesymptoms. anatomicalorphysiologicaldataforthespeciesinthisstudy,we WholebodyN saturationisareliableindexofDCSriskinter- usedthedatareportedfortheWeddellseal(DavisandKanatous, 2 restrial animals of varying body size (Berghage et al., 1979). To 1999).Weusedamodelthatpredictedalveolarvolume(V )with A predictDCSriskinbeakedwhalesitisthereforeimportanttouse depth(Bostrometal.,2008)andestimatedpulmonaryshuntfrom agasexchangemodelthathasbeencalibratedagainstempirical theratiobetweenV andthetotalalveolarcapacity(TAC)aspre- A data and to compare these estimated levels against those in ter- viously detailed (Fahlman et al., 2009). The relative size of each restrial mammals. A previously published model that has been compartmentwasestimatedfromdatareportedbyMead(1989) calibratedagainstknowntissueandbloodN ,O andCO levels forthegenusMesoplodonandfromScholander(1940)forthegenus 2 2 2 in several different species of marine mammals (Fahlman et al., Hyperoodon,as57.0%formuscle,3.0%forcentralcirculation,0.2%for 2009)wasusedandwe(1)examinedthepredictedbloodandtis- brain,20.7%forfatand19.1%forblood.Itwasassumedthattherel- sueN levelsresultingfromdifferencesinnormaldivingbehaviour ativeproportionofeachcompartmentremainedconstantbetween 2 (divedepthandduration).Severaloftherecordedbeakedwhale speciesandforanimalsofdifferentsize. strandingsappeartohavecontainedadisproportionatenumberof Asecondvariation(ModelB)wasderivedfromModelA,and subadultwhales(Freitas,2000;Anon.,2001;Martinetal.,2004), thiswasusedtodeterminetheextenttowhichthedivingbrady- possiblysuggestinganeffectofbodymass(Mb).Togetherwithour cardia affected inert gas uptake. The mass specific Q˙tot (sQ˙tot) lackofknowledgeofthediveresponseordivinglungvolumein wasestimatedasdetailedintheappendix.TheresultingsQ˙tot at thesespecies,wethereforeinvestigate(2)theeffectofchangesin thesurfacewas206mlmin−1kg−1forMesoplodon(M =1000kg), b bodymass(M ),divinglungvolume(andchangesinpulmonary 172mlmin−1kg−1forZiphius(M =2050kg)and138mlmin−1kg−1 b b shunt), and cardiac output (Q˙tot) on blood and tissue PN2 levels. forHyperoodon(Mb=5000kg).FormodelA,itwasassumedthat In terms of behaviour, in addition to looking at dive depth and Q˙totduringdivingwas50%ofthatatthesurface,whileformodelB duration,we(3)assessedwhetherchangesinascentrate(Jepson itwas12.5%. etal.,2003;ZimmerandTyack,2007)anddielchangesindiving Bloodflowdistributiontoeachtissueatthesurfacewasassumed behaviour(Bairdetal.,2008)wouldinfluencethelikelihoodofDCS similartothatmeasuredinforceddivedWeddellsealsrestingat in these whales, the latter of which could help direct mitigation thesurface(Zapoletal.,1979;Fahlmanetal.,2009).Duringdiving, effortsforsonar-relatedthreatstothesewhales.Whilewedonot weassumedthatbloodflowwasdirectedtoeachtissueaccording know the underlying physiology for these species, this compari- tothemetabolicrate(V˙ )ofthattissueandtheavailableO in O2 2 sonenablesustodeterminewhetherdifferencesindivebehaviour thetissue(seeFahlmanetal.,2009fordetailsonhowtissueV˙ O2 or in the aspects of physiology we investigate using this model andO storeswereestimated).Consequently,duringdivingboth 2 couldexplainpossibledifferencesinestimatedPN2andtherebyDCS ModelAandBassumedthat80%ofQ˙totwasdirectedtothecentral risk. circulation,1%tothemuscle,12%tothebrainand7%tothefat. Table1 Estimatedbodymass(kg),metabolicrate(V˙O2,lO2min−1)andO2store(l)forthecentralcirculation(CC),muscle(M),brain(B),fat(F),lung(L),andblood(Bl)compartments forBlainville’sbeakedwhale(Mesoplodondensirostris),Cuvier’sbeakedwhale(Ziphiuscavirostris)andnorthernbottlenosewhale(Hyperoodonampullatus). Genus Bodymass(kg) Metabolicrate(lO2min−1) O2store(l) CC M B F Total CC M B F L Bl Total Mesoplodon 1000 0.6 0.7 0.04 0.08 1.4 0.05 41 0.02 1.7 3.1 61 106 Ziphius 2050 1.0 1.2 0.06 0.14 2.4 0.1 84 0.04 3.6 6.4 124 218 Hyperoodon 5000 2.0 2.4 0.12 0.27 4.8 0.2 204 0.10 8.7 16 303 532 S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 237 2m.2a.TtehTdeissfmuroeemtmabettohalebicodlriacattraeastpefraoenrsdeenOatc2ehdsttoiirnsessuDeavciosmapnadrtmKaennattowuesre(1e9s9t9i-, oftissueand(Hyperoodonmberofdives Mean(m) ±537263±509243±513314±468278±259181±585179 aTanbdletis1s)u.eThsteorOe2sa(mvaailianblylemduusrcinleg, saeedibveelocwam).eThfreomOstluwnagld, bslooloud- ationhalesm.Nu m) 424407505459322347 mw ( ±±±±±± aJHObmrmwtirb4cttc1noorreilo.sil9a23oaeiionlygpesmamt%ilt4muoITontecohtwlinyoophghsbmdymtroreaa,tnlnuaoelwecfraoe1oaeslsr,gtontnt9dbadodpteoOb1olahe,mds8oidndfe9ltsf2inetmoab2.cfictis8owe0et(ooliwui)t(c0oy.in.SfinoOcSed2omrimto)fTtaeoctteh6n.2augeaPsmnpwnpweTgnesskpllDtodtohrotetd9ueaghaiMaoso)wrbend7sstiveeultargniocbi−%esaeainvndts−adlta1dsidaeeaswbys1vaiomsocidssufeabillasfoaamoosnunalsielcantasfocurngobme,utoud1olsvenHhocvs2ldvnrs.oemaeke0aidea0coeycdfilrtdnelf6teudl0pfmopiuioceealtent0be5ekleatrrdnictuertt.oitoO)agny0amorlditoa.stnisaet2all2oocltIifhs−csulno,lnytdla6fum0yua1.hecnsidmo1ttcv.etlc1ei(icshuanioreslKl3a(ooa(vcteesseOs6aSlea3tumuecualafnu3mty2yfilnnllemtemeprdaa,lhghOctospea−,triaueieaeukttoith2ni1ereoaen.smgsftweoendlOtbcnbd−m−ne.Otitalol2oa.b1s1enotasalw2eg-sFsllh.ooltditbo,-nolomlsiaaecon1bdooistlhtrmssonv9bh,is,gudm(asntmwdeu2u9ieWe.suhvnddiW70eusnc8eipmenbiene.l)0so7nO(eaage.dhacfgHe5u%g,rWsag2lted)tcsstmebthiBc.mnocuanes)OaeatuTcyopamnhceprneuoht2ocntaasisalnasdumoenegetcbtlbtectcerindligrybmompidotaaunctytruwtbaaoaryltethuaaeatnnnrfihnaaeiioatsndttnndddeeass-----tf,. (SI),maximum(Max)andmeandepth(Mean)fordivedatausedforestiZiphiuscavirostris,Bairdetal.,2006,2008)andtwonorthernbottlenose≤m,intermediatediveswere>50mand200m,anddeepdiveswere>200 Deepdives Max(m)Mean(m)nDD(min)SI(min)Max ±±±±11948723011(7)38.917.41.31.0886±±±±10151633246(39)40.116.81.91.6818±±692211(0)41.320.13.21.1786±±±±6415481232(24)45.224.21.41.0716±±±±1062160203(0)18.97.50.040.03475±±±±11343733224(11)34.910.91.30.6992 2lWedebvt22ueTBfT(aiTTbdup(Tt2tesro22rilsaso..hLhLLy00eiirsmomoa34vnvv50tteahceCCClued009cmet..eiiueigTEThve0demmi:mhnhs7y89=%sotwtmhhsisr6DLt,Twtdeeg8;h)oelttVeaamreeolui.if,asiLhaioiaF-eu-masoskwttamvTvfn2TatsChlwdaeee)pcausmgrrseTsenhag+e0,ahialiedsaaa=eol−teLtvyntsaaddes0tttsdVsloncrtshcaCi1teei2mDlehdaeta8ogsniAdav1dwpfkw,peer5eaetd(cuVom)dhb0e.SDgeaeeoiarButbseheIermlalaoAtcllm0nndwVtpDv,obruaiaarsehtnOf·leso0eVowrelVspelAaanoeVfbnneeaoha.deiq2nrtalT,drtkAusrgbrddArauucsurloDuwn1chafe=g−atsborhsMvsfmsmsveohe9vahiwiVneelu1mltepoee2moaoqb.srteii9so.ved.,dAnerddstlsrn.ailutepn7d22Hurieio(uaeheeschs=amraeVaeeot)0ff5o:amunlsrttymeeetooo.ksslnc0,uTiunef0aaimspldltorr1eio)etasa,,nseodsel9teeft,on9i(ad.nDenteleeotst,hrrZ)sHblvaaipan4daed2oooatodroVt(ieweatdeynwuiepldd01hosc0wnmPgsnLotmtteylddhh)dh-alu0htamiNosraBll=de.uansnaieoataeiash8p2aisuDsomrhscn1bxpoitcnrtnltT)rpip)nesehseelhute2opntglt.e.eggagatehesixbughFane.mapvsbardtbaxat5crcsya,obcrdohhretinolssdiliihp(eanmpryoelvelemmr=eHD1dsr,usesaepetoeuois(tdpT92sDpaanxwVoncrsaase,sudthLMa8.at·ciateVgofepelcgadA(reeueECicrth9caeitDkenim)Aeaoisdieeoantp,refan;.onesdyVlEnoomact=ant.unvvaoIdnbrivhhtqrcnAlTMseost1lpg(eo.apaaecmoe·t.hhiTuotd0lelVssrtniuure(uo(hsfaLrDasmlti.eyie2o4Ao2adralevadmitseCrtd(mVpgr0)n)cdhrb5leduomBs,ie−BaocbLe0as,einoouyepotllvdtbnautr,aoor.8rusnotwcaniot,1t.iPDyarrthoctb)rtrFterrBFla9rtyNecdahaiadVnuaayadlesoosro8me2wscelatmhmshAyedorn(se9entBiatlr1liwaau,tfst=aaeaeom)nesesoiar(9lsanlvnitithsaeonaDsirslndn9inearte(oupsTe.luemslusgVg,Vcad9.drnylratmac,ipnssa5sl.tsLA)iwriobnu1ieacecsM.eetoa0ewn)e−furl9idsadcThtt,trtm%vwemdadsod9itotiewaVfiaaoneneeeha.orae67tmtrola1lleTlsddddoooygleee8..sr--;fl...,.,, Table2±Animalcode,loggerattachmentduration(Duration),numberofdives(n),mean(1SD)diveduration(DD),surfaceintervaldurationtensionsfortwoBlainville’sbeakedwhales(Mesoplodondensirostris,Bairdetal.,2006,2008),twoCuvier’sbeakedwhales(bloodN2≤ampullatus,HookerandBaird,1999).Adivewasdefinedasasubmergencetoadepth>5mfor>10s.Shallowdiveswere>5mand50Pequilibriumperiod(seetextfordetails).inparenthesesfollowsremovaloftheinitialN2 AnimalcodeDuration(h)ShallowdivesIntermediatedives nDD(min)SI(min)Max(m)Mean(m)nDD(min)SI(min) ±±±±±±Md22108(105)4.53.60.30.616910618(12)10.12.60.20.322±±±±±±78186(186)6.95.51.61.32515181262(58)12.42.62.11.7Md78±±±±95(0)0.70.20.20.3127741(0)13.8–Zc9±±±±±±3470(64)5.07.10.50.819111286(5)12.26.30.70.9Zc34±±±±±±29(0)1.81.41.21.1112715(0)9.02.61.21.4Ha2±±±±±±28120(73)1.71.71.61.614106618(8)9.22.91.60.9Ha28 238 S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 Adivewasdefinedasasubmergencefor>10stoadepth>5m. intheproportionofshallow(P>0.4),intermediate(P>0.1)ordeep Dives were separated into shallow, intermediate and deep dives dives(P>0.5)betweenspecies. dependingonthemaximumdepthrecorded.Forallspecies,shal- Exceptfortheshort2-hdivetracefromHyperoodon,themean low dives were defined as >5m and ≤50m, intermediate dives dive duration, maximum and mean dive depths for deep dives were>50mand≤200m,anddeepdiveswere>200m.Thesecat- were similar between individuals and species. For intermediate egories were based on the assumption that shallow dives <50m dives,boththemeanandmaximumdivedepthwasshallowerfor mayservetoreducebubbleformationandbepotentiallyhelpful ZiphiuscomparedwithMesoplodonandHyperoodon(Table2).Forall asdecompressiondives(Fahlmanetal.,2007),intermediatedives species,therewasasignificantcorrelationbetweenthemaximum 50–200marelikelytoincludegasexchangeforahighproportion depthandthemeandepthforeachdive(P<0.05). ofthedive,whereasdeepdives>200mwillalmostcertainlyhave nogasexchangebeyondthisdepthandsothelungsarelikelyto 3.1. PredictingtissueandbloodP modelvariations becollapsedforaportionofthedive(Bostrometal.,2008).Within N2 thesecategorieswepresentmeanmaximumdivedepth(themaxi- RatherthanassigninganarbitraryinitialP atthestartofthe mumdepthreachedduringthedive),meandivedepth(theaverage divetrace,wesimplyassumedthismatchedwNit2hsurfaceN atthe 2 depthofthedive),andsurfaceinterval(thetimespentatthesur- modeloutset.Fortissueswithafasttimeconstant(centralcircula- efascteimbaettewdeethnrdoiuvgehs)o.uFtortheeacehndtiirveedseurriaetsi,otnissoufethanedsebrloieosd.FPoNl2lsowwienrge tfiirosntafenwdbdrivaiens)w,ahdiliveifnogrPtNis2sueqeusiwlibitrhiuamslwowasteimstaebcloisnhsetadndtu,eriqnugiltihbe- this,weextractedtheend-divePN2 valuesforeachdiveandthese riumtookseveralhours(Fig.1).Toavoidbiaswethereforeremoved end-divelevelsarepresentedfordifferentcategoriesofdivesfor the initial 4h for Mesoplodon, 8h forZiphius and 13h for Hyper- eachseries. oodon.Wealsoexcludedthe9hdatasetforZiphius(Zc )andthe 9 To look at diel changes in dive behaviour and how these 2hdatasetforHyperoodon(Ha ).Therefore,thenumberofdives 2 affectestimatedbloodandtissuePN2,thedivedataweredivided reportedinTable2includesalldivesandthenumberwithinparen- into day (D) or night (N) based on location and times for thesesisthenumberofdivesafterexcludingtheinitialperioduntil each dive. We used sunrise and sunset to separate D and N equilibrium. Equilibrium values converged when the model was (http://aa.usno.navy.mil/data/docs/RSOneDay.php, Table 4), for startedwithdifferentinitialconditionsandthetimetoequilibrium thelongertraces(Md22,Md78,Zc34andHa28). wasthesame. ModelA(50%bradycardia)generallyshowedhighestP levels N2 3. Results forZiphius,althoughhighfasttissueP levelswerealsoseenfor N2 intermediatedivesofHyperoodon(Table3ModelA).Predictedend- Theaveragehourlydiveratewassignificantlydifferent(P<0.01) diveP increasedlinearlywithmeandivedepth(Fig.2A)ordive betweenZiphius(2.5divesh−1)andHyperoodon(7.1divesh−1),but duratiNo2n(Fig.2B)untilamaximumatwhichtimeestimatedmixed neitherwasdifferentfromthehourlydiverateof5.0divesh−1for venousP (Pv )levelledoff.Comparingbetweendiveclassesand N2 N2 Mesoplodon(P>0.3,MixedmodelANOVA).Therewasnodifference bodycompartments,end-diveP forcentralcirculationincreased N2 Fig.1. Divetracefor:(A)Blainville’sbeakedwhale(Md78);(B)Cuvier’sbeakedwhale(Zc34);(C)northernbottlenosewhale(Ha28);and(D)estimatedfatPN2againsttimeof divetraceshowingthetimetoequilibrium(brokenverticallines)foreachofthese. S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 239 Table3 Sensitivityanalysisofstandardmodel(A:50%bradycardia)andthatwithmoreextensivediveresponse(B:12.5%bradycardia)onN2 levelsineachofthefourtissue compartmentsandmixedvenousblood(V).Tissuecompartmentsarecentralcirculation(CC),muscle(M),brain(B),fat(F).Seetextfordetailsonthevariationofphysiological variablesforeachmodel.Divedatasetsusedwerea78h(Md78)anda22h(Md22)traceforBlainville’sbeakedwhales,a34h(Zc34)tracefromaCuvier’sbeakedwhaleanda 28h(Ha28)tracefromanorthernbottlenosewhale. ID Model Bodymass(kg) Meanend-divePN2(ATA) Dives<50m Dives>50mandDives<200m Dives>200m CC M B F V CC M B F V CC M B F V Md22 A 1000 1.5 1.0 1.6 2.4 1.2 3.8 1.1 4.2 2.7 2.0 3.8 1.1 4.0 2.6 2.0 Md78 A 1000 1.9 1.0 2.1 3.1 1.3 3.2 1.1 3.6 3.3 1.8 4.3 1.1 4.4 3.3 2.2 Zc34 A 2050 1.8 1.3 1.8 3.3 1.5 4.1 1.5 4.2 3.6 2.4 4.9 1.5 5.0 3.7 2.6 Ha28 A 5000 1.2 1.0 1.6 3.0 1.1 4.6 1.0 4.7 3.0 2.2 4.8 1.0 4.7 3.1 2.2 Mean 1.6 1.1 1.8 2.9 1.3 3.9 1.2 4.2 3.2 2.1 4.4 1.2 4.6 3.2 2.2 Md22 B 1000 1.6 1.1 1.6 1.9 1.3 4.4 1.2 4.1 1.9 2.2 5.5 1.1 4.6 2.0 2.6 Md78 B 1000 2.1 1.1 2.3 2.6 1.5 4.2 1.2 4.0 2.6 2.2 5.5 1.1 5.1 2.6 2.5 Zc34 B 2050 1.6 1.5 2.1 2.4 1.6 3.7 1.7 3.7 2.4 2.4 6.2 1.7 5.5 2.8 3.1 Ha28 B 5000 1.0 1.0 1.6 1.9 1.0 3.8 1.0 3.0 1.9 1.9 4.8 0.9 3.9 1.9 2.1 Mean 1.6 1.2 1.9 2.2 1.3 4.0 1.3 3.7 2.2 2.2 5.5 1.2 4.8 2.3 2.6 by107%forMesoplodon(146%and67%),131%forZiphiusand275% for Pv . For the shallow dives, a 75% reduction in DV reduced N2 L for Hyperoodon for the intermediate compared with the shallow mixed venous P by between 12% and 19% for all individuals N2 dives([intermediate-shallow]/shallow×100,Table3).Forthedeep and species except Md , for which the reduction was only 4% 22 dives,end-diveP forcentralcirculationonlyincreasedbyanaddi- (Fig.3A).Thereductioninend-diveP forcentralcirculationand N2 N2 tional1–34%(Table3).Similarchangeswereseenforthebrain,with muscle were similar to Pv and ranged between 5% and 21%, N2 end-diveP increasingsubstantiallyasdepthincreased(shallow whileitwassubstantiallyhigherforbrain(range:9–31%)andfat N2 tointermediate,Table3).Formuscleandfat,end-diveP didnot (range:28–51%). N2 changemuchandevendecreasedinsomecasesfordeeperdives A 75% reduction in DV reduced Pv between 16% and 43% L N2 (Table3). for the intermediate depth dives. For the deep dives, the same reductioninDV resultedinareductioninPv between32%and L N2 3.2. Theeffectofcardiacoutput,Q˙tot,onestimatedtissueand 45%(Fig.3BandC).Interestingly,itappearedthatend-divePvN2 bloodP decreased exponentially toward a minimum value for the shal- N2 low and intermediate dives but this became more or less linear With enhanced diving bradycardia (Q˙tot, 12.5% of the surface forthedeepdives(Fig.3).Thereductioninend-divePN2 forthe value during diving), central circulation P and Pv generally tissue compartments varied between animals without any obvi- increasedwhilefatP decreasedinallaniNm2alsandaNt2alldepths ous trends except that as depth increased the relative reduction (Table3,ModelAvs.NB2).Agreaterdiveresponse(i.e.reductionin inend-divePN2 increased.Themostnotableexceptionwasthefat Qm˙teotn)tsonfloyrrienstuelrtmedediniatleowanerdednede-pdidveivePsN2osffHorypaellrobooddoync(oTmabplear3t-, rceolmatpivaerltymuennatfffeocrtwedhbicyhtthheedrievdeudcetpiotnhaangadinwshteDnVDLVaLppweaasrereddtuocebde ModelAvs.B).ForMesoplodonandZiphiusresultsweremorevari- by75%theend-divePN2 reductionrangedbetween33%and49% abledependingonbodycompartment. foralldepths,presumablyduetotheslowresponsetimeofthis tissue. 3.3. Theeffectofdivinglungvolume(DV )onestimatedtissue L andbloodP 3.4. Theeffectofbodymass,M ,onestimatedtissuePv N2 b N2 ToinvestigatetheeffectofpartialinhalationonN levels,we WhileModelAdidnotindicateanyobvioustrendsinend-dive 2 varied DV for each dataset and examined the effect on model P against M when the species were compared (Table 3), we L N2 b output(ModelA)forblood(Fig.3)andtissueP .Asdivinglung wereconcernedthatthismightbeduetospecies-specificdiffer- N2 volume was reduced, end-dive P decreased for all tissues and encesindivetraceprofiles.Wethereforeranthemodelforeach N2 Fig.2. Estimatedend-divemixedvenousPN2against(A)meandivedepthor(B)divedurationforeachofthedivetraces. 240 S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 Fig.4. Averagepredictedend-divemixedvenousPN2 (ATA)againstvaryingbody Fig.3. Averagepredictedend-divemixedvenousPN2 (ATA)againstproportionof mass(kg)fortheentiredivetracefor(A)shallow(B)intermediateand(C)deep divinglungvolume(%ofmaximum)fortheentiredivetracefor(A)shallow,(B) divesfortwoBlainville’sbeakedwhales(Md22andMd78),Cuvier’sbeakedwhale intermediateand(C)deepdivesfortwoBlainville’sbeakedwhales(Md22andMd78), (Zc34)andnorthernbottlenosewhale(Ha28). oneCuvier’sbeakedwhale(Zc34)andonenorthernbottlenosewhale(Ha28). dive trace and varied Mb within each (Fig. 4). As Mb decreased ent in the near surface waters for several of the dives analyzed from 5000kg to 100kg, end-dive mixed venous PN2 decreased here.Todeterminehowsuchchangesinascentratewouldaffect exponentially for all depths (Fig. 4). From 5000kg to 500kg the end-diveP ,wemodifiedoneofthedivesfromtheMesoplodon N2 reductionwaslinearbybetween2%and14%fortheshallowdives 78-h trace (Fig. 5). Model A was used to determine end-dive (Fig. 4A), 7% to 21% for the intermediate dives (Fig. 4B) and 3% P for this dive trace before and after the ascent rate had been dtoec1r8e%asefodrwtihtheadreeedpucdtiivoensin(FMigb.,4ceCn).trMalucsicrcleulaantidonbPrNa2indePcNr2eaaslesdo mamNo2bdiiefinetdNa2spthreesswurheal(ePaampbp)robaucbhbeledstmheaysuforframce,.aWndhethnePevxNt2en>t orincreasedbetween17%and27%,whilefatPN2increasedbetween of the supersaturation is a measure of the risk of DCS (Fahlman 4%and40%. et al., 2001). As the ascent rate increased for the modified dive trace, the P gradient between mixed venous blood and the N2 3.5. TheeffectofascentrateonestimatedtissueandbloodP ambient pressure increased rapidly and then decreased rapidly N2 as the animal surfaced. A similar increase was seen in the par- Somebeakedwhaledivesappeartoshowadecelerationinthe tial pressure gradient for the original dive profile but here the ascent rate prior to surfacing. This was first noted for northern gradientremainedelevatedastheanimalslowlyapproachedthe bottlenose whales (Hooker and Baird, 1999) but is also appar- surface. S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 241 despitelowerdepthsandshorterdurationdives.Incontrast,the onlysignificantincreaseforthe78-hMesoplodontracedeepdives wasforslowtissue(fat)atnight(Table4).Thenumberofdeepdives perhourforHyperoodonincreasedatnightalthoughthedepthand duration were reduced, which resulted in an increase in muscle, brainandfatend-diveP . N2 For the shallow dives, there was a significant correlation betweendivedurationandthedurationofthesurfaceintervalthat followedadivebothduringthenightanddayforMd ,Md and 78 22 Zc (P<0.001), but there was no correlation for intermediate or 34 deep dives (P>0.7). For Ha there was no relationship between 28 divedurationandsubsequentsurfaceintervalforanydepth. 4. Discussion This work uses gas exchange models of diving to analyze the effectofphysiology(extentofdivingbradycardia,divinglungvol- umeandbodymass)anddivingbehaviour(divedepthandduration, variation in ascent rate, and diel variation) on tissue and blood P levelsandtherebytheriskofdecompressionsicknessinthree N2 species of beaked whales. The near impossibility of conducting physiological experiments on beaked whales necessitates such a modellingapproach. Overall,ourworkconcurswithpreviousmodellingeffortsshow- ingthatbloodflow(Fahlmanetal.,2006,2007)andthelevelof pulmonaryshunt(Bostrometal.,2008;Fahlmanetal.,2009)dur- ingdivingwillgreatlyaffectbloodandtissueP levels.Thedive N2 behaviourofZiphius,withlongerdivesandshortersurfaceinter- Fig.5. One15mindiveto160mfroma78hdiverecordfromBlainville’sbeaked valscomparedwiththeotherspecies(Tables2and4)resultedin whaleshowing(A)pressureagainsttimeand(B)pressureduringtheascent(solid estimatedtissueandbloodP sthatweregenerallyhigherforall blackline).Theblackdottedlineisforahypotheticaldiveinwhichtheascentrate N2 depthranges(Zc34,ModelA,Table3).ZimmerandTyack(2007) ismaintainedratherthandecreasedasthewhaleapproachesthesurface.Thesolid anddottedlinesarepredictedmixedvenousPN2fortheactualandhypotheticaldive previouslypublishedestimatedbloodandtissuePN2 valuesfora trace,respectively,whilethebluesolidanddottedlineistheinstantaneousrisk.The Cuvier’sbeakedwhale.Theyusedtheassumptionthatalveolarcol- instantaneousriskwasdescribedbasedonthepressurehistoryofthediveandthe lapseisimmediateandoccursatapre-determineddepth(∼70m, wePsahmtiebmr(eaFtarehidslmtmhaienxieendtstvaale.n,nt2oa0un0se1oN)u.2streinsksi.oBny(tPhviNs2d)eafinnditdioenfi,nreidsa0sa;tra=n(yPvtNim2−ewPahmebn)·PPavmNb2−<1, Zvaimlumese,reanndd-dTivyeacPkN,22f0o0r7t)h.eWcheinletrtahlecyircduidlantiootnrerepaocrhteednd1-.6diAvTeAP,vfNo2r thebrainreached1.3ATA,andformuscleandfatreachedvaluesas highas2.0ATA(seeFig.2inZimmerandTyack,2007).Equivalent 3.6. Dielvariationindivebehaviourandestimatedtissueand valuesinthecurrentstudyaregenerallyhigher(Table3)empha- bloodP N2 sizingtheimportanceofproperlyunderstandinghowgasexchange changeswithdepth. The three species varied in the extent of differences between dive profiles in the day and night (see examples in Fig. 1), with Cuvier’sbeakedwhalesshowingthemostpronounceddifferences 4.1. Theimportanceoflongdiveprofileseriesforestimationof indecreasedfrequencyofdives>200m,andincreasedfrequency Pv andDCSrisk N2 ofdives<50matnight(seealsoBairdetal.,2008). Therewasnoclearcutconsistentelevationofend-diveP for Althoughthedeepandlongdivesofbeakedwhalesareremark- N2 dayvs.nightacrossallspecies.ThetwoMesoplodontracesdiffered ableinthemselves,alonethesewouldbeunlikelytotriggerDCS. intheirday/nightdifferencesinbothbehaviourandresultingend- Ratheritistheaccumulationofdivesthatwouldresultinsequential diveP (Table4).Thiswasmoststrikingforshallowdiveswith increaseofN intissuescausingahigherriskofDCS.AsScholan- N2 2 the 22-h trace showing higher values in the day while the 78-h dernoted,“byrepeateddives,conditionsasregardsdivingdisease traceshowedhighervaluesatnight.Forthelatter,itappearsthat would certainly tend to be worse on account of an accumula- theincreaseinmaximumandmeandivedepth,anddiveduration tionofinvadedN .Thereiseveryreasontobelievethatthisrisk 2 atnightincreasedend-diveP foralltissuesandmixedvenous existsunlessthereissufficientventilationbetweendives”(p.112, N2 blooddespitethe75%increaseinthesurfaceinterval(Md Nvs. Scholander,1940). 78 D,Table4).Forthe22-htrace,onlythefasttissuesandthemixed Ouranalysisdemonstratedthatmodelswhichincorporategas venousbloodchangedasdivedepthchangedwithoutconcomitant exchange within multiple body compartments will necessitate changesindivedurationorsurfaceinterval(shallowdives,Table4). longerdatasetsparticularlyforlargeranimals.Shortdatasetsare ForHyperoodonandZiphius,areductionindivedepthandduration notaproblemfortissueswithshorttimeconstants,e.g.thecentral during shallow dives at night reduced end-dive P for the slow circulationandbrain,asthesetissuesrapidlyreachaequilibrium N2 tissues(fatandmuscle). state in which end-dive P remains more or less constant (see N2 Theintermediatedivesshowedsomeofthehighestend-diveP Fahlmanetal.,2006).However,tissueswithalongtimeconstant, N2 levels,particularlyforthefasttissuesofbothHyperoodonatnight suchasfat,arehighlydependentonthelengthofthedataset(Fig.1). andforZiphiusintheday,associatedwithdeeperandlongerdives End-diveP forthesetissuesslowlyincreaseswitheachrepeated N2 (Table4).Forthe22-hMesoplodontracedeepdives,end-diveP diveandonlyreachesequilibriumafterhours(Fig.1)orevendays N2 increasedinthedayforfasttissues(centralcirculationandbrain) (Fahlmanetal.,2007). 242 S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 Table4 Animalidentification(ID),numberofdives(n)duringday(D)ornight(N),meanmaximumdivedepth(Max,m),meandepth(Mean,m),meandiveduration(DD,min),mean surfaceintervalduration(SI,min),estimatedtissueandmixedvenous(V)PN2(ATA)forcentralcirculation(CC),muscle(M),brain(B),fat(F)usingModelA(50%bradycardia) fora78h(Md78)anda22h(Md22)Blainville’sbeakedwhaledivetrace,a34h(Zc34)Cuvier’sbeakedwhaledivetraceanda28h(Ha28)northernbottlenosewhaledivetrace. Numberofdivesisthatafterremovingdivesbeforeequilibrium. ID n Day/night Max Mean DD SI CC M B F V Dives<50m Md22 37 D 19±10 13±7 4.4±3.2 0.3±0.5 1.7±0.6 1.0±0.1 1.8±0.7 2.4±0.3 1.3±0.2 Md22 68 N 14±9† 9±5† 4.5±3.8 0.4±0.6 1.4±0.4† 1.0±0.1 1.5±0.5† 2.3±0.3 1.1±0.2† Md78 117 D 19±12 13±8 5.2±5.0 1.2±1.0 1.6±0.7 1.0±0.1 1.7±0.7 3.0±0.2 1.2±0.2 Md78 69 N 35±14† 26±12† 9.8±5.0† 2.1±1.5† 2.5±0.8† 1.1±0.1† 2.7±0.8† 3.1±0.3† 1.5±0.3† Zc34 13 D 22±9 14±6 1.5±0.9 0.2±0.2 1.7±0.7 1.4±0.2 1.7±0.5 3.7±0.5 1.5±0.3 Zc34 51 N 18±11 12±9 5.9±7.8 0.6±0.9 1.7±0.8 1.3±0.1† 1.8±0.8 3.2±0.3† 1.4±0.3 Ha28 44 D 14±9 7±6 1.8±1.8 1.4±1.2 1.2±0.5 1.0±0.1 1.6±0.6 2.9±0.6 1.1±0.2 Ha28 29 N 13±10 6±7 1.4±1.4‡ 2.0±2.0 1.1±0.6 1.0±0.2‡ 1.7±0.7 2.6±0.5† 1.1±0.2 Dives>50mand<200m Md22 7 D 138±38 80±26 10.4±2.3 0.1±0.1 3.4±0.7 1.1±0.1 3.9±0.7 2.4±0.4 1.8±0.3 Md22 5 N 88±47† 59±34 9.8±3.3 0.3±0.4 3.8±0.9 1.2±0.1 4.1±0.9 2.7±0.4 2.0±0.4 Md78 30 D 126±50 76±35 12.2±2.5 1.8±1.1 3.3±0.7 1.1±0.1 3.8±0.7 3.2±0.3 1.8±0.2 Md78 28 N 72±33† 47±18† 12.8±2.6 2.5±2.0‡ 3.2±0.5 1.1±0.1 3.5±0.6† 3.3±0.2 1.8±0.2 Zc34 2 D 74±18 58±10 18.7±4.6 1.8±0.1 4.7±0.6 1.6±0.2 4.9±0.5 4.0±0.8 2.6±0.2 Zc34 3 N 60±14 43±10 8.9±4.2 0.2±0.2 3.9±0.6 1.5±0.2 3.9±0.8 3.4±0.2 2.2±0.3 Ha28 4 D 81±14 51±8 8.8±2.1 1.6±0.5 4.4±0.4 1.0±0.1 4.5±0.4 3.0±0.6 2.1±0.1 Ha28 4 N 146±36† 94±32† 9.6±3.6 1.2±0.3‡ 5.1±0.7† 1.1±0.1† 5.1±0.5† 3.3±0.4† 2.4±0.3† Dives>200m Md22 5 D 730±447 419±246 33.4±19.3 1.2±1.0 4.0±0.4 1.0±0.1 4.2±0.4 2.2±0.7 2.0±0.2 Md22 2 N 1159±205‡ 745±139† 48.6±7.8‡ 1.6±1.0 3.4±0.2† 1.1±0.1 3.7±0.1† 2.4±0.4 1.8±0.1 Md78 22 D 730±491 437±281 34.4±19.0 1.5±1.4 4.2±0.4 1.1±0.1 4.4±0.4 3.0±0.6 2.1±0.2 Md78 17 N 944±193† 612±120† 48.2±1.7† 2.6±1.7† 4.3±0.2 1.2±0.1‡ 4.4±0.2 3.4±0.2† 2.2±0.1 Zc34 17 D 666±509 419±293 43.5±25.5 1.5±1.0 4.6±0.7 1.5±0.3 4.7±0.7 3.5±0.9 2.5±0.4 Zc34 7 N 844±275 594±196‡ 49.7±21.2 1.1±1.0 4.8±0.4 1.3±0.1 5.0±0.3 3.2±0.3 2.5±0.1 Ha28 4 D 1230±190 704±97 39.4±11.2 1.3±0.6 4.7±0.6 1.0±0.1 4.5±0.4 2.7±0.8 2.2±0.2 Ha28 7 N 753±301† 467±165† 30.4±8.9† 1.2±0.6 4.8±0.4 1.1±0.1† 4.8±0.3‡ 2.8±0.4 2.3±0.2 P-valuesrepresentdifferencesbetweendayandnight. † P<0.05. ‡ P<0.1. It has previously been suggested that tissues with slow time P ),butasubstantialreductioninP inbrainandcentralcircu- N2 N2 constants could help buffer P at the beginning of a dive bout, lation(Fahlmanetal.,2007).Thesesurprisingresultssuggestthat N2 buttheywouldbealiabilityafteralongboutandpossiblyleadto thedivingrelatedreductioninbloodflowdoesnotalwaysreduce diveboutterminations(Fahlmanetal.,2007).Consequently,these N levelsduringrepeateddiving.Theresultsinthecurrentstudy 2 modelsrequiresufficientdatafortheN levelstoreachequilibrium suggestasimilarlycomplexrelationshipbetweenend-diveP and 2 N2 sothatappropriateconclusionscanbemade.Withthisdataset,it bloodflowduringdiving.AreductioninQ˙tot generallyincreased tookMesoplodon4h(Md78),Ziphius8h(Zc34)andHyperoodon13h end-divePN2infasttissueswhileitcausedareductioninPN2infat (Ha28)toreachsteadystatevaluesfortheslowtissues(Fig.1).The (Table3).Consequently,modellingpredictsthatbloodflowadjust- lowermassspecificQ˙tot inlargerwhalesappearstoincreasethe ment is an efficient strategy for reducing end-dive N2 levels in timetoequilibriumandemphasizestheneedforlongerdivetraces divinganimals.However,asthecirculatorysystemisalsorespon- fromlargerspecies.Toavoidsuchabiasothershaveincreasedthe sible for removing CO and supplying O , blood flow changes to 2 2 tissuePN2 atthestartofthedivetrace(ZimmerandTyack,2007). eachtissueareatrade-offbetweentheneedtoexchangemetabolic However,itisunclearwithouttheanalysispresentedinFig.1,what gases and the need to reduce DCS risk. The question is to what startingvalueshouldbechosenandwethereforedonotadvocate extentbloodflowchangesareusedasameanstoreduceextreme thisapproach. P without ischemic injury and this will be an interesting area N2 ofresearch. 4.2. Theeffectofcardiacoutput,Q˙tot,onestimatedtissuePvN2 4.3. Theeffectofdivinglungvolume,DV ,onestimatedtissue L Thediveresponseisprimarilythoughttoextendtheaerobicdive Pv N2 durationbyconservingavailableO tothecore(heartandbrain), 2 butithasbeensuggestedthatthisredistributionofbloodflowis AdjustmentofDV canhelpadjustthedepthatwhichthealveoli L alsoausefulmechanismforalteringinertgasuptake(Scholander, collapse(Bostrometal.,2008)andincreasethelevelofthepul- 1940;Ponganisetal.,1999;Fahlmanetal.,2007).Thismakesintu- monaryshunt(Eq.(6A)and(6B),inFahlmanetal.,2009),thereby itivesenseandonestudyshowedthatmixedvenousP couldbe reducingtheN takenupduringthedive(KooymanandSinnett, N2 2 reducedbyasmuchas45%whenananimalexhibiteddivingbrady- 1982).Asmostspeciesofmarinemammals(e.g.cetaceans,otariid cardiaduringthedescentandbottomphasewithareducedascent seals)diveoneitherfullorpartialinhalation,wetestedhoweffi- rateandapre-surfacetachycardia(Fahlmanetal.,2006).However, cientthisadjustmentwouldbeforbeakedwhalestomodifygas thatstudyonlyanalyzeda1-hdiveboutconsistingof23dives.A exchangeduringadive.Fahlmanetal.(2009)concludedthatend- morerecenttheoreticalstudy,estimatingtissueandbloodP lev- divePv decreaseswithadecreasingDV ·V −1ratioandthatgas N2 N2 Ao D elsindeepdivingkingpenguinsduringaforagingtrip,showedthat exchangeandthelevelofpulmonaryshuntcannotbeinvestigated anincreaseinbloodflowduringdivingledtoanincreasedP at separatelybecausetheyarecorrelated.Thus,gastensionsreported N2 theendofanextendeddiveboutinsometissues(muscleandfat fromgasexchangemodelsthatdonotaccountforthepulmonary S.K.Hookeretal./RespiratoryPhysiology&Neurobiology167(2009)235–246 243 shuntshouldbeviewedwithcautionandconclusionsfromsuch studies may have to be re-assessed (Fahlman et al., 2006, 2007; ZimmerandTyack,2007). Whilepreviousworkshowedthatpre-diveexhalationorpar- tialinhalationisanefficientwaytoreducethecollapsedepth,and thereby limit gas exchange at depth, this investigation was only doneforasingledive(Fahlmanetal.,2009).Visualobservations suggestthatbeakedwhalesdiveoninhalation(BairdandHooker, unpublished observations), but the actual DV is not known and L mayvarybetweendives.Wewerethereforeinterestedindetermin- ingtheextenttowhichDV affectstissueandbloodP inwhales A N2 thatdiverepeatedly.Inthecurrentstudy,ModelAsuggestedthat a75%reductioninDV decreasedend-divePv byasmuchas43% L N2 and45%fortheintermediateanddeepdives,respectively(Fig.3B and C), while the reduction for shallow dives was only between 6%and19%(Fig.3A).Consequently,pre-diveexhalationappearsto bemostefficientforreducingend-diveP duringintermediateor N2 deepdivesandonewouldthereforeexpectlargervariationinDV L duringshallowdives. 4.4. Theeffectofbodymass,M ,onestimatedtissuePv b N2 There is an allometric relationship between M and resting b metabolicrate(RMR),orQ˙tot,betweenspecies(e.g.Kleiber,1975). AsinertgasuptakeandremovalisaffectedbyQ˙tot,onewouldexpect thatDCSriskcorrelateswithM .Infact,paststudieshaveshown b acorrelationbetweenDCSriskandM ,bothwithinandbetween b animal species (Berghage et al., 1979; Lillo et al., 2002) and the allometricmassexponentbetweenMbandDCSriskwasshownto Fig.6. EstimatedN2saturationpressure(ATA)thatwouldresultin50%decompres- be0.79forsevenspeciesofterrestrialmammals(Fahlmanetal., sionsickness(DCS)inarangeofterrestrialanimalsafterarapiddecompression (Flynn et al., 1971; Berghage et al., 1979). Black circles are tissue satura- 2ev0e0n6)w,riatnhgsiinmgiflraormen2d2-gditvoe7P8vkNg2(Bleevreglhs,agoeneetwalo.,u1l9d7e9x).pTehcetrleafrogreer, tloiognEDP5N02=f0o.r73t0er−re0s.t2r0ia5l·laongiMmba.lsO.pTehneasnodligdreliynesyimndbioclastaersetahveerbaegsetmfitixreedgrveesnsoiouns animalstobemoresusceptibletoDCS.Assumingthephysiology inertgastension(PvN2)forBlainville’sbeakedwhale(Md78),Cuvier’sbeakedwhale ofDCSisthesamebetweenspecies,andthatmetabolicrateand (Zc34)andnorthernbottlenosewhale(Ha28)usingModelA. Q˙tot scalestothesamemassexponent,itwouldbeexpectedthat Hyperoodonwouldbemostsusceptibleforthesameend-diveP areliablemeasureoftheoverallsaturationofananimal,estimated N2 level,followedbyZiphiusandMesoplodon(Table1).Inadditionto end-divePv levelsfromthebeakedwhalesallowacomparison N2 physiologicaladjustment,i.e.diverelatedchangesinDVL,Q˙totand withterrestrialspecies(Fig.6).Itappearsthatallthreespeciesof bloodflowdistribution,divebehaviourisanotherwayforspecies beakedwhaleslivewithend-divePv levelsthatwouldresultina N2 ofdifferentsizetoreducebloodandtissueP andthereforereduce highincidenceofsevereDCSinterrestrialmammals.Althoughour N2 theriskofDCS. estimatedN levelsprobablyhaveanuncertaintyofatleast20%,it 2 RunningModelAforarangeofM sforeachdatasetallowedusto isclearthatthesewhaleslivewithhighbloodandtissueN levels b 2 investigateifdifferencesindivebehaviouraffectedestimatedend- duringmostoftheirlives. divePv .IrrespectiveofchangesinM ,Ziphius’diveprofilehadthe How do they avoid DCS during routine diving? One possibil- N2 b highestend-diveP sforeachdepthrange(Fig.4),suggestingthat ity is that there is a minimum pressure difference, or threshold, N2 thedivebehaviourofCuvier’sbeakedwhalesmakesthemmostsus- thatisnecessarytoformbubblesfrompre-existingnuclei(Tikuisis ceptibletosufferDCS.Interestingly,thisisthespeciesthatappears andGerth,2003).Forexample,ina70kghumantheP satura- N2 tobeparticularlysensitivetoanthropogenicsoundandtheirdiving tion pressure to cause 50% DCS was 2.2 ATA while in a 1000kg, behaviourmaybeanunderlyingfactorforthisobservstion(Coxet 2000kg and 5000kg animal the predicted values were, respec- al.,2006). tively1.3ATA,1.1ATAand0.9ATA,valuesnotverydifferentfrom Ingeneral,reductioninbodysizeshoweddecreasingend-dive P atthesurface(0.74ATA).Ifweassumethattherelationship amb P sformostbodycompartments,whichwouldsuggestthatlarger holdsforend-divePv forlargewhales(M >1000kg),thiswould N2 N2 b animalswouldbeatincreasedriskofDCSforthesamediveprofile haveresultedina50%DCSincidencefortheintermediateanddeep (Figs.4and6).However,resultsforcentralcirculationwerevari- divesforallspecies.Ithasbeenshownthatrepeateddecompression able,andfatP increasedwithdecreasingM .Itispossiblethat stressinterrestrialmammalsreducesDCSrisk(Montcalm-Smith N2 b higherfatP insmalleranimalscouldbelinkedtotheprevalence et al., 2005). Consequently, the DCS incidence in Fig. 6 is prob- N2 of immature and sub-adult animals in strandings (Freitas, 2000; ably much less in acclimated animals such as deep diving Anon.,2001;Martinetal.,2004).Currentexperimentalworkdetail- whales. ing the behavioural response to anthropogenic sound may help Althoughbeakedwhalesappeartodiveoninhalation(Hooker shedsomelightonthis. andBaird,unpublishedobservations),thismaynotbeafullinhala- tion. If DV were 50% of TLC, this would reduce end-dive Pv L N2 4.5. CalculatingDCSrisk for Ziphius during deep dives by 25% (Fig. 3C) resulting in an end-dive P of 1.96 ATA. This is still a high saturation par- N2 ThereisagoodcorrelationbetweenM andthesaturationpres- tial pressure, but because of the sigmoidal shape of the DCS b sure resulting in 50% DCS in terrestrial mammals after a rapid risk curve against saturation pressure (Dromsky et al., 2000), decompression(Berghageetal.,1979).IfweassumethatPv is small changes in inert gas load (5%) result in large changes N2