Enhanced Electro-Optic Phase Shifts in Suspended Waveguides T.H.Stievater,1 D.Park,1 W.S.Rabinovich,1 M.W.Pruessner,1, S.Kanakaraju,2 C.J.K.Richardson,2 andJ.B.Khurgin3 1NavalResearchLaboratory,Washington,DC20375 2LaboratoryforPhysicalSciences,CollegePark,MD20740 3JohnsHopkinsUniversity,Baltimore,MD21218 Email:[email protected] Abstract: We demonstrate enhanced electro-optic phase shifts in sus- pended InGaAs/InGaAsP quantum well waveguides compared to attached waveguides. The enhancement stems from an improved overlap between the optical mode and the multiple quantum well layers in thin waveguides when the semiconductor material beneath the waveguide is selectively etched.Themeasuredvoltagelengthproductis0.41V-cmandthemeasured propagationlossis2.3±0.7dB/cmfortheTEmodeintheopticalL-band. © 2009 OpticalSocietyofAmerica OCIS codes: (160.6000) Semiconductors, including MQW; (230.3990) Microstructure de- vices;(160.2100) Electro-opticalmaterials Referencesandlinks 1. T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A Surface-Normal Coupled- Quantum-WellModulatorat1.55Microns,”IEEEPhoton.Technol.Lett.(16),2036–2038(2004). 2. E.Kunkee,C.-C.Shih,Q.Chen,C.-J.Wang,andL.J.Lembo,“ElectrorefractiveCoupledQuantumWellMod- ulators:ModelandExperimentalResults,”IEEEJ.QuantumElectron.(43),641–650(2007). 3. J.Shin,S.Wu,andN.Dagli,“BulkUndopedGaAs–AlGaAsSubstrate-RemovedElectroopticModulatorsWith 3.7-V-cmDriveVoltageat1.55μ m,”IEEEPhoton.Technol.Lett.(18),2251–2253(2006). 4. J.Shin,Y.-C.Chang,andN.Dagli,“0.3VdrivevoltageGaAs/AlGaAssubstrateremovedMach–Zehnderinten- sitymodulators,”Appl.Phys.Lett.(92),201,103–201,105(2008). 5. T.H.Stievater,W.S.Rabinovich,D.Park,J.B.Khurgin,S.Kanakaraju,andC.J.K.Richardson,“Low-loss suspendedquantumwellwaveguides,”Opt.Express(16),2621–2627(2008). 6. D.Park,T.H.Stievater,W.S.Rabinovich,N.Green,S.Kanakaraju,andL.C.Calhoun,“Characterizationof hydrogensilsesquioxaneasaCl2/BCl3 inductivelycoupledplasmaetchmaskforair-cladInP-basedquantum wellwaveguidefabrication,”J.Vac.Sci.Technol.B.(24),3152–3156(2006). 7. R.J.DeriandE.Kapon,“Low-lossIII-Vsemiconductoropticalwaveguides,”IEEEJ.QuantumElectron.(27), 626–640(1991). 8. S.Pogossian,L.Vescan,andA.Vonsovici,“Thesingle-modeconditionforsemiconductorribwaveguideswith largecrosssection,”J.Lightwave.Technol.(16),1851–1853(1998). 9. T.Ikegami,“Reflectivityofmodeatfacetandoscillationmodeindouble-heterostructureinjectionlasers,”IEEE J.QuantumElectron.(8),470(1972). 10. P.C.Kendall,D.A.Roberts,P.N.Robson,M.J.Adams,andM.J.Robertson,“Newformulaforsemiconductor laserfacetreflectivity,”IEEEPhoton.Technol.Lett.(5),148–150(1993). 11. E.M.Skouri,P.Martin,L.Chusseau,C.Alibert,C.Coriasso,D.Campi,andC.Cacciatore,“Measurement oftherefractiveindexofGaInAs/InPquantumwellsbyagratingcouplingtechnique,”Appl.Phys.Lett.(67), 3441–3443(1995). 12. S.Nishimura,H.Inoue,H.Sano,andK.Ishida,“ElectroopticeffectsinanInGaAs/InAlAsmultiquantumwell structure,”IEEEPhoton.Technol.Lett.(4),1123–1126(1992). 13. J.E.Zucker,PropertiesofLattice-MatchedandStrainedIndiumGalliumArsenide,inEMISDatareviews(IN- SPEC,1993).(andreferencescontainedtherein). 14. S.Adachi,PhysicalpropertiesofIII-Vsemiconductorcompounds:InP,InAs,GaAs,GaP,InGaAs,andInGaAsP (Wiley-VCH,1992). #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 885 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Enhanced Electro-Optic Phase Shifts in SuspendedWaveguides 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Washington,DC,20375 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 8 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 15. J.Mendoza-Alvarez,L.Coldren,A.Alping,R.Yan,T.Hausken,K.Lee,andK.Pedrotti,“Analysisofdepletion edgetranslationlightwavemodulators,”J.Lightwave.Technol.(6),793–808(1988). 16. Q.Lu,W.Guo,D.Byrne,andJ.F.Donegan,“DesignofLowVπHigh-SpeedGaAsTravelling-WaveElectrooptic PhaseModulatorsUsingann-i-p-nStructure,”IEEEPhoton.Technol.Lett.(20),1805–1807(2008). 1. Introduction Compound-semiconductor-based electro-optic modulators are poised to displace lithium nio- bate(LiNbO3)asthematerialofchoiceforapplicationsthatrequiremodulationvoltages(the so-calledVπ)(cid:2)1V.Suchapplicationsincludesystemsformicrowavephotonics,on-chipin- terconnects,andultra-highfrequencymodulators.Forexample,inmicrowavephotonics,arrays ofmodulatorshavebeenproposedtosimultaneouslyencodemultiplemicrowavesignalsonto an optical carrier. RF power scaling dictates that these systems use modulators that operate at the lowest possible Vπ, ideally much less than one volt. To reduce Vπ, compound semi- conductor heterostructures such as coupled quantum wells [1, 2] enable the enhancement of electro-optic coefficients at wavelengths near the material bandedge. In addition, compound semiconductorheterostructuresenablethedesignofwaveguidesthatconfinetheopticalmode between two closely spaced electrode layers, reducing the voltage needed to achieve a large electric field. This second advantage can be further extended by removing the semiconductor materialfromaboveandbelowthewaveguide,providingthetightestpossibleout-of-planeop- ticalconfinementbymaximizingtheindexcontrastinthatdimension.Infact,suchasubstrate removaltechniquehaspreviouslybeenreported[3,4]intheGaAs/AlGaAssystem,withare- porteddrivevoltagelengthproductof0.21Vcm.Thesubstrateremovalwasachievedusinga low-index transfer substrate that allowed complete etching of the GaAs substrate beneath the waveguide. (a) 1 - 4 µm top (b) contact 70 nm 165 nm n-InGaAsP (3 -10 x1017 cm-3) 10 µm InGaAs/ InGaAsP 408 nm i-InGaAs/InGaAsP MQW air gap 235 nm p-InGaAsP (1- 3 x1017 cm-3) [011] 1 µm InP 1600 nm p-InAlAs (1x1018 cm-3) bottom (sacrificial layer) contact [011] 50 nm p-InGaAs (5x1018 cm-3) (etch stop) p-InP (5x1018 cm-3) Fig.1.(a):Theepitaxiallayerstructureandwaveguideribdimensions(nottoscale).(b): Afalse-colorSEMimageofasuspendedquantumwellwaveguidecomprisedofashallow ribboundedbyetchholes,priortothedepositionofthemetalcontacts.Inset:thefacetof a2μ mwiderib. Inthiswork,wereportonanovelprocessthatusessurfacemicromachiningtoremovethe semiconductormaterialbeneathInGaAs/InGaAsPmultiplequantumwell(MQW)waveguides grownonanInPsubstrate[5].BygrowingthequantumwellwaveguidesonaInAlAssacrificial layer,asimpleselectiveetchsuspendsthewaveguidesinairforhigh-indexconfinementinthe out-of-planedirection.SincetheInAlAssacrificiallayerhasalowerrefractiveindexthanthe waveguide,wecancomparetheelectro-opticphaseshiftbeforeandafterthislayerisselectively etched.ThiscomparisondemonstratesthatsuspendingtheMQWwaveguidesresultsintighter opticalmodeconfinementandenhancedelectro-opticphaseshifts. #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 886 2. Fabrication The waveguides are comprised of a 32-period In.48Ga.52As/In.82Ga.18As.40P.60 MQW that is grown between two partially doped 235 nm thick InGaAsP layers, forming a p-i-n diode. A structureschematicisshowninFig.1.Thefirst20nanometersofthebottomInGaAsPlayerim- mediatelybelowtheMQWisundoped,followedbyp-dopingthatisgradedfrom1×1017cm−3 to3×1017 cm−3 atthesacrificiallayer.Similarly,thefirst20nanometersofthetopInGaAsP layer is undoped, followed by n-doping that is graded from 3×1017 cm−3 to 10×1017 cm−3 at the waveguide top. This 880 nm thick waveguide layer is grown on a p-InAlAs sacrificial layerusingmolecularbeamepitaxy.TheMQWisdesignedtohaveaheavy-holebandedgeat approximately1475nm,allowingforoperationintheopticalL-band[5].Thewaveguidesare designedtohaveaphosphorusfractioninanylayerbelow0.65topreventetchingduringexpo- suretotheHCl:H2O(3:1)selectiveetch.Thesampleisetchedforapproximately15minutes, whichresultsinlateraletchingoftheInAlAsofapproximately20 μ m.Inaddition,thewave- guide alloy fractions were chosen such that the waveguide would have a small amount of net tensilestraintoensureflatnessuponreleasefromthesacrificiallayer:toomuchtensilestrain andthematerialcracks,whereasevensmallamountsofcompressivestraininducebucklingin thesuspendedmaterial. The1-4μ mwidewaveguideribsarefabricatedinboththe[011]and[01¯1]directionsusing electron-beam lithography and plasma etching [6]. As shown in Fig. 1, the rib is etched to a depth of approximately 70 nm, enabling operation at the fundamental waveguide mode for both TM and TE polarized light. A second lithography step is used to etch holes alongside the waveguides to a depth that penetrates into the InAlAs sacrificial layer. These holes are spaced either 5 μ m or 10 μ m from the waveguide edge, a distance chosen to enable release of the waveguides from the sacrificial layer upon exposure to the selective HCl etch without degrading the waveguide transmission. Finally, metal contacts are deposited on both the top n-InGaAsPlayerandonthep-InGaASetchstoplayersothatareversebiasresultsinavertical (out-of-plane)electricfieldacrosstheMQW.Thewaveguides arecleaved tolengthsbetween 2.4mmand7.2mmandthefacetsareleftuncoated. 3. OpticalLoss Optical loss and electro-optical phase shift measurements are made for the waveguides both priortoandaftertheselectiveetchstep.Fig.1showsoneparticularwaveguideaftertheselec- tiveetchstep,clearlyshowingthatthewaveguidesaresuspendedinair.Tunablepolarizedlaser lightiscoupledintoandoutofthewaveguidesusingahighnumerical-aperturenanoposition- ingsystem.TheFabry-Perotfringesformedbyreflectionsfromthewaveguide end-facetsare analyzed to provide a measurement of the fringe contrast (K), phase shift (Δ φ(FP)), and free- spectral-range (FSR) as a function of reverse bias, polarization, and wavelength for a given waveguide.ThecontrastoftheFabry-Perotfringesisusedtoestimatethelossesincurreddur- ing propagation between the end facets [7]. The change of the fringe phase as a function of reverse bias is a measurement of the strength of the electro-optic effect. Last, The FSR is a measurementofthegroupindex,whichprovidesacheckthatonlythefundamentalmodefora givenpolarizationisexcited.Infact,widerwaveguides(4μ mandabove)doshowevidenceof propagationofhigher-ordermodes,consistentwithourmodalcalculations[8].Thesewaveg- uidesarenotusedinourlossanalysisorelect√ro-opticanalysis. Fig. 2 shows a plot of the quantity ln(1− 1−K2)−ln(K) vs. the waveguide length, for wavelengths of 1600 nm and 1620 nm. The data points represent an average found across a rangeofwaveguidesofequallengthatthesetwowavelengths,andtheerrorbarsrepresentthe standarderrorassociatedwiththisaverage.Plottedinthisway,they-interceptisln(R)where Risthefacetreflectivity,andtheslopeisthepropagationloss,α,incm−1.Aleast-squaresfit #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 887 tothedatagivesaTEpropagationlossof2.3±0.7dB/cm,aTEfacetreflectivityof0.36±0.02, aTMpropagationlossof1.8±1.7dB/cm,andaTMfacetreflectivityof0.18±0.02.Thepolar- izationdependenceofthefacetreflectivityisduetotheasymmetryofthesubwavelengthmode [9,10],andcanbeestimatedfrom RTE(TM) = R(cid:2)0(1+(−)(ky2−kx2)+(ky4+kx4)) (1) ln2/n λ k = eff i πa i whereR istheFresnelreflectivity(here0.28),λisthewavelength,n istheeffectivemodal 0 eff index,anda isthefull-width-at-half-maximumofthemodeinthatdimension.Forthefunda- i mentalTEmode,thecalculatedfacetreflectivityis0.39,whereasforthefundamentalTMmode thecalculatedreflectivityis0.23,inqualitativeagreementwithourmeasurements.Inaddition, comparisonoflossamong waveguides ofvariouswidthswiththesamelengthshowsthatthe lossisindependentofwaveguidewidthforwidthsassmallas1.5 μ m,implyingthatsidewall roughness is not a dominant source of loss within this waveguide width range. In addition, above 1580 nm, the loss is independent of wavelength, which indicates that near-bandedge absorption is also not a limiting loss factor in this wavelength range. We do observe a much largerlossinthesewaveguidesbeforethesacrificiallayerisremoved:approximately15dB/cm for both polarizations. Since the sacrificial layer is p-doped at ∼ 1×1018 cm−3, we believe thatfree-carrierabsorptionateventhismoderatep-dopinglevelcontributessignificantlytothis propagationloss. Fig.2.Fabry-Perotmethodformeasuringpropagationlossinthesuspendedwaveguides. Thelinesareleast-squarefitstothedata. 4. Electro-opticalproperties Theelectro-opticeffectinawaveguidegeometryinducesachangeintheopticalphase,Δ φ: Δ φ=2πLΔ n/λ (2) #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 888 where L is the waveguide length, Δ n is the change in the refractive index, and λis the free- spacewavelength.Inazinc-blendesemiconductor,Δ niscomprisedofcontributionsfromboth thelinear(Pockels)effectandthequadratic(Kerr)effectfortheTEmode,whereasfortheTM modeitarisesexclusivelyfromthequadraticeffect: Δ n = −n3s E2Γ /2 (3) TM 11 TM Δ n[011] = −n3(s E2+r E)Γ /2 (4) TE 12 41 TE Δ n[01¯1] = −n3(s E2−r E)Γ /2 (5) TE 12 41 TE Δ n[001] = −n3s E2Γ /2 (6) TE 12 TE where n is the refractive index, r is the linear electro-optic tensor component, s is the di- 41 11 agonal component of the quadratic electro-optic tensor (which here arises primarily from the light-hole quantum-confined Stark effect), s is the off-diagonal component of the quadratic 12 electro-optictensor(whichherearisesprimarilyfromtheheavy-holequantum-confinedStark effect),E istheelectricfield(negativeforourdefinitionofcoordinateaxes),andΓistheover- lapfactorbetweentheelectricfieldorthesquareoftheelectricfieldandtheopticalmode.In this work we use the abrupt-junction approximation to estimate the depletion width and thus theelectricfieldstrength.Notethattheelectricfieldisthesumofthebuilt-injunctionvoltage andtheexternalreversebias.Separatemeasurements(notshown)confirmthattheTMelectro- optic effect is independent of the waveguide direction, whereas the TE effect is strongest in the [011] direction and weakest in the [01¯1] direction. The quadratic effect is significant for ourmeasurementssinceweoperateclosetotheMQWbandgap,wherethequantum-confined Starkeffectisstrongest.NotethatitistheΓtermsthataccountforthebulkoftheenhancement of the phase shift when the waveguides are suspended; a suspended waveguide has a smaller out-of-plane optical mode than an attached waveguide, which improves the overlap with the thinMQWlayer. Theelectro-opticphaseshiftismeasuredbymonitoringtheFabry-Perotfringesformedby reflectionsfromtheendfacetswhileareversevoltageisappliedtothewaveguide.Thephase shiftmeasuredinthiswayisequivalenttoapush-pullphaseshiftinaMach-Zehnderelectro- opticmodulatorwitharmsoflengthequaltoourwaveguidelength.Thus,themeasuredFabry- Perotphaseshiftforagivenwaveguidelength,Δ φ(FP),istwicethephaseshiftofEq.2,Δ φ. ThephaseoftheseFabry-Perotfringes(withrespecttothephaseat0Vbias)for1600nm and1620nmina4.8mmlong[011]-orientedwaveguidepriortoandafterreleaseisplottedin Fig.3aforTEpolarizedlightandinFig.3bforTMpolarizedlight.Similarresultsareobserved forotherwaveguidesonthesample.Asexpected,theTEphaseshiftislargerthantheTMphase shift.Bothpolarizationsshowaclearenhancementinthephaseshiftofsuspendedwaveguides comparedtoattachedwaveguidesforvoltagesupto1V.Forvoltagesabove1V,thep-doped InGaAsPcontactlayerbeginstofullydeplete,andthefieldacrosstheMQWinthewaveguide saturates. The inset in Fig. 3 shows the Fabry-Perot fringes from transmission spectra at 0 V and 0.85 V that are used to measure the phase shift at 1620 nm. The phase shift is measured forwavelengthsbetween1580nmand1640nm.Withinthiswavelengthrange,theadditional propagationlossincurredduetotheappliedvoltageissmall(<1.5dBat1Vreversebiasat 1580nm).However,thisadditionallossduringreversebiasfortheTEmodeforwavelengths below1580nmbecomessignificantduetothered-shiftofthebandedge. For wavelengths between 1580 nm and 1640 nm, the overall measured TE phase-shift en- hancementfactoraverages1.19withamaximumvalueof1.28at1640nm.ThemeasuredTM enhancement is between 1.41 and 1.52, with an average of 1.44. This enhancement factor is almost entirely due to the increase of the overlap factors before and after waveguide release, Γsuspended/Γattached,withonlyasmallcontribution fromchanges tothemodalindex. Theen- #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 889 Fig.3.MeasuredFabry-Perotphaseshiftvs.reversebiasforTE(a)andTM(b)lightinthe opticalL-band.Inset:TheTEFabry-Perotfringesforreversebiasesof0Vand0.85V. hancement islargerfortheTMmodethanfortheTEmodebecause theboundary conditions fortheTMmodeallowtheopticalfieldtobediscontinuousacrosstheupperandlowerwave- guide boundary. This permits more of the TM field to be confined within the waveguide in high-index-contraststructuresthatare∼λthick. Tocalculatethisenhancement,weuseawavelength-dependentrefractiveindexfunction[11] for an InGaAs-based MQW that has only two free-parameters: the light-hole and heavy-hole band edges. This refractive index is combined with a finite-element mode solver to estimate the integrated TE and TM mode power confined between the waveguide contact layers, for waveguides on a material with n=n (attached) or n=1 (suspended). This technique InAlAs has previously been used to accurately compare our measured group velocity with the calcu- latedgroupvelocityintightlyconfinedsuspendedMQWwaveguides[5].Ourmodelpredicts an average TE enhancement of 19% between 1580 nm and 1640 nm, which agrees with our measuredenhancement,andisprimarilyduetoimprovedmodaloverlapwiththeMQW(e.g. Γsuspended/Γattached =0.74/0.63at1620nm).Thepredictedaverage TMenhancement is37% TE TE (e.g.Γsuspended/Γattached =0.79/0.60at1620nm),onlyslightlylowerthanouraveragemeas- TM TM uredvalue. Fig4showstheTEFabry-Perotphaseshiftinthesuspended[011]-orientedwaveguidesfor wavelengthsfrom1580nmto1640nm.Thephaseshiftisrelativelyconstantandlinearwithin this wavelength range, even though the wavelength is only 100 nm to 160 nm from the band edge.Thisismostlikelyduetothefactthatatexternalvoltageslessthan1V,thecontributionto thephaseshiftfromthelinearelectro-opticeffect(whichislargelywavelength-independent)is largerthanthatofthequadraticeffect.Infact,anexpansionofEq.4showsthatthelargestcon- tributionfromthes termatthesevoltagesisactuallylinearintheexternalfieldandsmaller 12 than the r term: s E2 <2s E E <r E [12]. In addition, for the wavelength range 41 12 ext 12 bi ext 41 ext 1580nmto1640nm,theVπvariesbetween0.85Vand0.91V,whichcorrespondstoamini- mumvoltagelengthproductof0.41V-cminasuspendedwaveguide.Thisvaluerepresentsan orderofmagnitudeimprovementovertypicalLiNbO3devices,andisonly2timeslargerthan theequivalentvaluereportedinRef.[4],despitethefactthatourwaveguidesareabout3times thicker. BycomparingthephaseshiftvaluesfortheTEmodeforwaveguidesorientedinthe[011] #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 890 Fig.4.MeasuredFabry-Perotphaseshiftvs.reversebiasinasuspended[011]waveguide fortheTEmode. direction to those oriented in the [01¯1] direction, Eq. 4 and Eq. 5 can be used to estimate the valuesofr ands asafunctionofwavelength.Eq.3canalsobeusedtoestimates fromthe 41 12 11 measuredTMphasechange.Thevoltage-dependenceofthedepletedregion,whichisnecessary toestimatetheexactelectricfieldatthequantumwells,isestimatedfromC-Vmeasurements. Thesevaluesoftheelectro-opticcoefficientsareshowninFig.5.Notethattheerrorbarsshown inthisplotaredominatedbytheuncertaintyintheexactdepletionlayerthickness,whichwe approximate using the abrupt-junction approximation. Our measured r is in the range of - 41 1.0 pm/V to -1.8 pm/V, which is similar to previously reported values [12, 13, 14], which alsorangefrom-1.0pm/Vto-1.8pm/VforInGaAs/InGaAsP-basedstructures.Theapparent wavelength dependence of our measured r is likely an artifact that arises from our analysis 41 technique: r is found from subtracting the phase shift data from two different samples, so 41 thatsmallabsoluteerrorsinthemeasuredphasebecomelargerelativeerrorsforr .Thiserror 41 would be the largest for wavelengths that show the largest overall phase shift (closest to the bandedge),implyingthatourmostaccurater valueisobtainedfurthestfromthebandedge. 41 Ourvaluesfors ands ,-2.8×10−19 m2/V2 and-5.1×10−19 m2/V2 at1580nm,respec- 11 12 tively,arelowerthanthosepreviouslyreportedforanInGaAsMQW[12]:-6.2×10−19m2/V2, and-15×10−19 m2/V2,respectively.However,ouranalysisofthedatapresentedinRef.[12] using their reported values of Vπ and their Eq. 1 (equivalent to our Eqs. 3 and 4) shows an errorintheircalculations.Thecorrectedvaluesofs ands at1580nmfromthatworkare 11 12 -2.1×10−19 m2/V2 and-5.8×10−19 m2/V2,whicharenearlyidenticaltoourvalues.Itshould be noted that in p-i-n semiconductor waveguide modulators, effects other than the linear and quadraticelectro-opticeffects,suchasthoserelatedtoachangeinfree-carrierdistributionwith voltage [15], can play an important role. Since these free-carrier based effects are direction- independent and approximately linear, they would be expected to appear in our analysis as linearcontributionstoEqs.3through6.However,ourfittingtoEq.3(fors )andtothesum 11 ofEqs.4and5(fors )showsexcellentagreementwithamodelbasedonapurelyquadratic 12 effect, and the agreement of our values of s and s with that of previous reports together 11 12 indicatethatfree-carriereffectsdonotplayanimportantroleinourmeasuredphase-shifts. #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 891 Fig.5.Measuredelectro-optictensorcoefficientsasafunctionofwavelength. 5. Conclusions In this work, we have demonstrated that suspending electro-optic semiconductor waveguides reducesthevoltageneededtoachieveaπphaseshift,resultinginavoltage-lengthproductas lowas0.41V-cm.Thinnerwaveguideswillresultinanevenlargerelectro-opticphaseshiftby furtherincreasingtheelectricfieldstrengthforagivenvoltage,withonlyasmalldecreasein themodaloverlapfactor.Suchwaveguidesneedtobecarefullydesigned,however,tomaintain low resistivity in the thin doped layers. Since p-doped layers have a significantly lower mo- bility and higher optical loss than n-doped layers (for the same doping level), future designs are focused on the use of an n-p-i-n [16] junction instead of a p-i-n. Such layers also offer thepossibilitytoincorporatehigh-electron-mobilitylayers,tofurtherdecreasethecarriermo- bility and improve the RF performance. In such a device, the net waveguide thickness could bedecreasedtoafewhundrednanometers,resultinginasignificantlylowermodulationvolt- age.Whencombinedwithcoupledorasymmetricmultiplequantumwells,suspendedquantum wellwaveguidesshouldenablewidebandelectro-opticmodulatorsintheopticalC-bandwith Vπ(cid:2)1V. #119157 - $15.00 USD Received 27 Oct 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 6 Jan 2010 (C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 892