ebook img

DTIC ADA482476: Alkanethiols on Platinum: Multicomponent Self-Assembled Monolayers PDF

0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA482476: Alkanethiols on Platinum: Multicomponent Self-Assembled Monolayers

2578 Langmuir2006,22,2578-2587 Alkanethiols on Platinum: Multicomponent Self-Assembled Monolayers Dmitri Y. Petrovykh,*,†,‡ Hiromi Kimura-Suda,§,| Aric Opdahl,§,^ Lee J. Richter,§ Michael J. Tarlov,§ and Lloyd J. Whitman‡ Physics Department, UniVersity of Maryland, College Park, Maryland 20742, NaVal Research Laboratory, Washington, D.C. 20375, and National Institute of Standards and Technology, Gaithersburg, Maryland 20899 ReceiVedApril 7, 2005. In Final Form:NoVember 23, 2005 Wehavestudiedtheformationofself-assembledmonolayers(SAMs)ofn-alkanethiolsonplatinumthinfilmsusing X-ray photoelectron spectroscopy (XPS), reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry(SE),andcontactangle(CA)measurements.Specifically,SAMsof1-hexanethiol,1-dodecanethiol,and 1-octadecanethiolweregrownonpolycrystallinePtfilms,andtheeffectsofPtsurfacepreparation,depositionconditions, andsolventtreatmentsontheinitialqualityandstabilityofthemonolayerinairwereinvestigated.TheSAMsprepared underambientconditionsonpiranha-cleanedandUV/ozone-cleanedsubstrateswerecomparedtomonolayersformed ontemplate-strippedPtinaninertatmosphere.Wefoundthatalkanethiolsdepositedfrom1mMethanolicsolutions onpiranha-cleanedPtformeddenselypackedmonolayersinwhichalkylchainswereorientedclosetothesurface normal. Stored in the laboratory ambient, these monolayers were unchanged over about 1 week but were largely oxidizedinabout1month.Noevidencewasfoundofmoleculesbeingweaklyboundwithinthemonolayerorhaving undergoneC-Sbondscission;however,threedistinctsulfurstateswereobservedforallsamplesintheXPSofthe S2pregion.Thelowest-andhighest-binding-energycomponentsareassignedtoalkylthiolateandpartiallyoxidized alkylthiolate species, respectively. The remaining S 2p component (approximately one-third of the sulfur layer), intermediateinbindingenergybetweentheothertwocomponents,isattributedtoachemisorbedspecieswithaS bindingconfigurationdistinctfromthemajorityalkylthiolate: forexample,SboundtoPtboundtoO,Swithadifferent Ptcoordinationnumber,orSinanadsorbeddisulfide. 1. Introduction byminimizingexposureofsamplestooxygen: deoxygenating solvents, handling samples in inert atmosphere, etc.4-6 In the Recent developments in molecular electronic devices have second approach, no explicit attempt is made to control the stimulatedinterestintheformationofself-assembledmonolayers oxidation,andthedepositioniscarriedoutundermoretypical (SAMs) of organic thiols on various metal surfaces. Because laboratoryconditionssPtcleaningbymechanicalpolishing7or SAMsofalkanethiolsongoldhavebeenextensivelycharacter- inapiranhasolution,8followedbyalkanethioldepositionfrom ized, most researchers have studied the electrical activity of anethanolicsolution.Inthisreport,weusestandardtechniques molecules on gold substrates. However, both theoretical and tocharacterizetheformationandlongevityofalkanethiolSAMs practical considerations suggest that other metals should be consideredformolecularelectronicsapplications.1Forexample, on Pt under ambient conditions, in part to provide a direct comparison between SAMs on Au and those on Pt. Several areductionofcontactresistancebynearly2ordersofmagnitude samplespreparedonPtusingoxygen-freedepositionconditions hasbeenachievedbyinterfacingSAMswithplatinumvsgold electrodes.2Fromafabricationpointofview,goldisincompatible arecharacterizedascontrols.Afactorthatinfluencesthequality andstabilityofathiol-basedSAMisthebondingatthesulfur- with silicon processing because of its high surface and bulk diffusivity, reactivity, and ability to form electronic defects.3 substrateinterface;9therefore,wespecificallyfocusonthenature of the three distinct sulfur states observed in SAMs on Pt by Several groups have begun to investigate the structure and X-rayphotoelectronspectroscopy(XPS).Althoughanumberof stabilityofmonolayersonmetalsotherthanAu,notablyonPd systematicstructureandstabilitystudieshavebeencarriedout andPt,whichareconsideredtobegoodthiolatecontactmaterials for SAMs on Au,8-11 to our knowledge, this is the first such andtobecompatiblewiththefabricationofsiliconmicroelec- study for SAMs on Pt. tronics.TwoapproacheshaveemergedforformingSAMsonPt surfaces.Thefirstapproachattemptstoavoidsurfaceoxidation 2. Materials and Methods *Towhomcorrespondenceshouldbeaddressed.DmitriY.Petrovykh, 2.1.Materials.Commerciallyavailable1-hexanethiol,1-dode- Code 6177, Naval Research Laboratory, Washington, D.C. 20375-5342. canethiol,and1-octadecanethiolwereusedwithoutfurtherpurifica- E-mail: [email protected]. †UniversityofMaryland. (4)Vilar,M.R.;Bouali,Y.;Kitakatsu,N.;Lang,P.;Michalitsch,R.;Garnier, ‡NavalResearchLaboratory. F.;Dubot,P.ThinSolidFilms1998,329,236-240. (5)Li,Z.Y.;Chang,S.C.;Williams,R.S.Langmuir2003,19,6744-6749. §NationalInstituteofStandardsandTechnology. (6)Brito,R.;Tremont,R.;Feliciano,O.;Cabrera,C.R.J.Electroanal.Chem. |Currentaddress: PerkinElmerJapanCo.,Ltd.,Yokohama,Japan. 2003,540,53-59. ^ Currentaddress: DepartmentofChemistry,UniversityofWisconsin, (7)Laiho,T.;Leiro,J.A.;Lukkari,J.Appl.Surf.Sci.2003,212,525-529. LaCrosse,WI54601. (8)Schlenoff,J.B.;Li,M.;Ly,H.J.Am.Chem.Soc.1995,117,12528- (1)Chen,Y.;Ohlberg,D.A.A.;Li,X.M.;Stewart,D.R.;Williams,R.S.; 12536. Jeppesen,J.O.;Nielsen,K.A.;Stoddart,J.F.;Olynick,D.L.;Anderson,E.Appl. (9)Laibinis,P.E.;Whitesides,G.M.;Allara,D.L.;Tao,Y.T.;Parikh,A. Phys.Lett.2003,82,1610-1612. N.;Nuzzo,R.G.J.Am.Chem.Soc.1991,113,7152-7167. (2)Beebe,J.M.;Engelkes,V.B.;Miller,L.L.;Frisbie,C.D.J.Am.Chem. (10)Rieley,H.;Kendall,G.K.;Zemicael,F.W.;Smith,T.L.;Yang,S.H. Soc.2002,124,11268-11269. Langmuir1998,14,5147-5153. (3)Graff, K. Metal Impurities in Silicon DeVice Fabrication; Springer- (11)Schoenfisch,M.H.;Pemberton,J.E.J.Am.Chem.Soc.1998,120,4502- Verlag: Berlin,1995;Vol.24. 4513. 10.1021/la050928aCCC:$33.50 ©2006AmericanChemicalSociety PublishedonWeb02/17/2006 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2005 2. REPORT TYPE 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Alkanethiols on Platinum: Multicomponent Self-Assembled Monolayers 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Code 6177,4555 Overlook Avenue REPORT NUMBER SW,Washington,DC,20375 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 10 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 AlkanethiolsonPlatinum: MulticomponentSAMs Langmuir,Vol.22,No.6,2006 2579 tion.Hereafter,anabbreviatednotationforthesealkanethiols,C6SH, resolution).SpectraoftheS2pregionswereaccumulatedfor30- C12SH,andC18SH,respectively,isusedinthetext,andC6,C12, 45min,toobtainasignal-to-noiseratioadequateforresolvingthe andC18labelsareusedtoindicatethenumberofalkylchaincarbons multiplecomponents.Typically,spectrawereacquiredfromthree inthefigures.Ethanol(95%,hereafterEtOH)anddichloromethane separate spots on each sample, primarily to test the monolayer (HPLCgrade,hereafterCHCl)wereusedasreceived(exceptwhere uniformity. The corresponding calculated coverage values varied 2 2 notedotherwise)forthepreparationof1mMsolutionsofalkanethiols bynomorethan10%foreachofthesamples.ThereferencePtand andforrinsingorsoakingsamplesaftermonolayerdeposition. AuspectrausedtocalibratetheattenuationoftheXPSsignalswere 2.2. Platinum Film Cleaning and SAM Deposition. Diced measuredfromsubstratescleanedinsitubyArionsputteringuntil fragmentsfromplatinum-coatedsiliconwaferswereusedassubstrates C1sandO1ssignalswerenolongerdetectable. (200nmofPtsputter-depositedovera30nmTiadhesionlayer). 2.5. XPS Peak Fitting. The peaks in the elemental core-level ThePtfilmsexhibitedanrmsroughnessof1.7nmoveranareaof spectra were fit using commercial XPS analysis software.15 A 1 (cid:237)m2 as measured by atomic force microscopy (AFM). Prior to convolutionofLorentzianandGaussianlineshapeswasusedtofit SAM deposition, the diced substrates (e2 cm2) were cleaned by theindividualpeaks.16AlinearcombinationofShirleyandlinear immersion in a “piranha” solution consisting of 70% HSO and functionswasusedtomodelthebackground,withthecorresponding 2 4 30%HO (30%HO inwater).(Caution: Thissolutionmustbe coefficientsfitsimultaneouslywiththepeaks.Theonlyexception 2 2 2 2 handledwithcare;itisextremelyoxidizing,reactsViolentlywith wasforfitsintheO1sregion,whereadditionalpolynomialterms organics,andshouldonlybestoredinlooselytightenedcontainers were added to model the nonlinear background caused by the to aVoid pressure buildup.) Piranha-cleaned Pt will hereafter be proximity of the Pt 4d peak. Multiple-component fitting in the 3/2 denoted p-Pt. After being cleaned, each p-Pt substrate was im- C1sandS2pregions,alwaysstartedfromthelowestBEcomponent mediately and thoroughly rinsed with high-resistivity water anditsfull-widthathalf-maximum(fwhm),wasusedtoconstrain ((cid:24)18.2 M¿(cid:226)cm) that had been treated to remove organic and the fwhm’s for the higher-BE components.16 In each case, the biologicalimpurities.Todepositmonolayers,thecleanedsubstrates minimum number of components that produced unstructured fit were submerged in 1 mM solutions of alkanethiols in EtOH for residualswaschosen. 20hatroomtemperature.Forcomparisonpurposes,SAMswere 2.6. RAIRS Measurements. Reflection-absorption infrared preparedfromidenticalsolutionsonpiranha-cleanedAusubstrates spectroscopy(RAIRS)wasperformedusingacommercialFourier (200nmofAuevaporatedovera20nmCradhesionlayeronsilicon), transform spectrometer equipped with a wire-grid polarizer hereafterp-Au.Afterdeposition,eachsamplewasrinsedthoroughly (p-polarized)andavariable-anglereflectanceaccessory(reflectance withEtOHandthendriedinastreamofdrynitrogen.Tomeasure angle75(cid:176) ).RAIRSspectrawerecollectedfrom4000to900cm-1 thestabilityofthedepositedmonolayers,thesampleswereexposed usingacryogenicmercurycadmiumtelluride(MCT)detector(1024 toambientlaboratoryairforperiodsrangingfrom1hto55days. scansat2cm-1resolution).Thespectrawerereferencedtoabare To examine solvent effects, control samples were soaked in Pt substrate, cleaned by the respective procedure. The RAIRS CHCl overnight after the above standard EtOH deposition or measurementswereperformedonfreshlypreparedsamplespriorto 2 2 depositedfrom1mMsolutionsofalkanethiolsinCH Cl.Inanother XPScharacterization. 2 2 seriesofcontrols,substrateswerecleanedusingacommercialUV/ 2.7. SE Measurements. Spectroscopic ellipsometry (SE) was ozonecleaner(hereafterUVO-Pt),ratherthaninpiranhasolution. performed using a commercial multichannel instrument with a UVOcleaningwasperformedforabout20mininozonegenerated rotatingcompensatorand190-1000nmwavelengthworkingrange. insitufromatmosphericoxygenbyalow-pressuremercuryquartz ThePtsubstratesforSEmeasurementswere(cid:24)1cm2chipsdiced lamp(185and254nmUVrange,(cid:24)25mW/cm2power). from a single Pt-covered wafer and cleaned by piranha or UVO 2.3. Template-Stripped Platinum Films and Oxygen-Free treatment.Theanalysiswasperformedwithvendor-suppliedsoftware. SAMDeposition.Template-strippedPt(TS-Pt)filmswereprepared 2.8.CAMeasurements.Contactangle(CA)measurementswere followingtheprotocolofBlackstocketal.12Briefly,a220nmPt performedatroomtemperatureandambientrelativehumidityusing film was sputter-deposited on a piranha-cleaned ultraflat Si(100) high-resistivitywaterastheprobingliquid.Sessilecontactangles wafer.ThePtfilmwasthenremoved(stripped)fromthistemplate weremeasuredwith(cid:24)5(cid:237)Lofwaterdroppedontothesurfacesfrom byusinganadhesive-coveredSisubstrate.TheTS-Ptfilmsexhibited asyringeneedleandrecordedimmediatelyafterthedrop.Measure- anrmsroughnessof0.7nmoveranareaof1(cid:237)m2asmeasuredby ments from three different spots were averaged for each sample. AFM. The stripping was performed inside an inert-atmosphere gloveboxtolimitoxidationoftheTS-Ptsubstrate.Monolayerswere 3. Experimental Results thendepositedintheglovebox,from1mMsolutionsinsolventsthat 3.1.EffectsofSolventsandSubstrateCleaningonMono- weredistilledundernitrogenandcalciumhydride.Hereafter,these conditionswillbereferredtoas“oxygen-free”deposition. layer Deposition. We used XPS as the primary method for 2.4. XPS Measurements. XPS measurements were performed quantitativeanalysisofthestructureandstabilityofalkanethiol usingacommercialsystemequippedwithamonochromaticAlKR monolayers.XPShasbeenwidelyusedtocharacterizeSAMs, source,ahemisphericalelectronenergyanalyzer(58(cid:176) anglebetween e.g.,onAu,9-11,17-26Ag,8,9,11,23,25,27,28Cu,8,9,25,29-31Ni,32Pd,33 monochromator and analyzer), and a magnetic electron lens. The andPt.5-8,34,35TheXPSspectrumoftheS2pregionisparticularly nominalXPSspotsizeandanalyzerfieldofviewweree1mm2. usefulforcharacterizingalkanethiolSAMs,becausetheposition Thebindingenergies(BEs)arereportedwith0.1eVprecisionbased and intensity of the S 2p peaks can be used to identify and onatwo-pointBEscalecalibrationtotheBEsofAu4f (84.0eV) 7/2 andAu4f (335.2eV)measuredineachrunforAufilmscleaned 5/2 (15)Hesse,R.;Chasse,T.;Szargan,R.FreseniusJ.Anal.Chem.1999,365, by Ar ion sputtering.13,14 In each run, we also measured BEs of 48-54. 71.1eVforPt4f7/2and314.6eVforPt4d5/2fromfreshlysputter- (16)ThetotalfwhmisthesumofGaussianandLorentziancontributions.The cleanedPtfilms,inagreementwiththeacceptedvaluesof71.12and Lorentzianfwhmwas0.1eVforC1sandO1sand0.25eVforS2p.ForC1s 314.61eV,respectively.14Forthethinorganicmonolayersinthis componentsC2andC3,thetotalfwhmwasfixedtothatofC1(1.2-1.3eV). ForS2pcomponents,weusedaspin-orbitintensityratioof0.5andanenergy study,chargecompensationwasnotnecessaryandwasnotapplied. splittingof1.2eV.;thetotalfwhmwas0.98eVforS1andS2,1.48eVforS3. We present data acquired in normal-emission angle-integrated (17)Castner,D.G.;Hinds,K.;Grainger,D.W.Langmuir1996,12,5083- scansofthePt4f,Pt4d,S2p,C1s,andO1sregions(15-20eV 5086. windowswith0.1eVspacing,20eVpassenergy,0.36eVanalyzer (18)Ishida,T.;Hara,M.;Kojima,I.;Tsuneda,S.;Nishida,N.;Sasabe,H.; Knoll,W.Langmuir1998,14,2092-2096. (19)Heister,K.;Frey,S.;Golzhauser,A.;Ulman,A.;Zharnikov,M.J.Phys. (12)Blackstock,J.J.;Li,Z.Y.;Freeman,M.R.;Stewart,D.R.Surf.Sci.2003, Chem.B1999,103,11098-11104. 546,87-96. (20)Heister,K.;Allara,D.L.;Bahnck,K.;Frey,S.;Zharnikov,M.;Grunze, (13)Seah,M.P.;Gilmore,L.S.;Beamson,G.Surf.InterfaceAnal.1998,26, M.Langmuir1999,15,5440-5443. 642-649. (21)Yan,C.;Golzhauser,A.;Grunze,M.;Woll,C.Langmuir1999,15,2414- (14)Powell,C.J.Appl.Surf.Sci.1995,89,141-149. 2419. 2580 Langmuir,Vol.22,No.6,2006 PetroVykhetal. Figure2. XPSS2pcomponentsforalkanethiolSAMsdeposited onPtunderdifferentconditions.IntensityisnormalizedtotheS2p peakfortheC6SH/p-AuSAMinFigure1. C6SH/p-AuspectrumisalsoscaledbytheratioofScofieldfactors for Au 4f and Pt 4f .36,37 7/2 7/2 The C6SH/p-Au reference spectrum in Figure 1a is clearly consistentwithasingleS2pdoublet;theBEof162.0andfwhm of0.84eV16areinexcellentagreementwithpreviousstudiesof alkylthiolatesonAu.10,17,18,20-24,38,39Incontrast,alloftheS2p spectraforSAMsonPtinFigure1aaredistinctlymulticomponent, Figure 1. XPS of the S 2p region for as-deposited alkanethiol withatleastthreecomponentsrequiredtoobtainunstructured SAMsonPt.(a)Depositionfrom1mMsolutioninEtOH,rinsein residuals.40Hereafter,thesethreecomponentswillbereferred EtOH: C6SHonp-Au(O);C6SH,C12SH,andC18SHonp-Pt(b). toasS1,S2,andS3inorderofincreasingBE.TheBEofthe (b) C18SH on p-Pt: deposition from 1 mM solution in EtOH, S1componentis162.3eVforC6SHandC12SHand162.4eV overnightsoakinCH2Cl2(top);depositionfrom1mMsolutionin for C18SH.16 The S2-to-S1 relative BE shift is 0.85-0.95 eV CHCl (middle);depositionfrom1mMsolutioninEtOHonUVO- 2 2 inunrestrictedfitsandhereafterisfixedat0.9eVforconsistency. Pt substrate, overnight soak in CHCl (bottom). (c) C18SH and 2 2 The S3-to-S1 relative BE shifts are between 2.4 and 3.1 eV. C6SHdepositiononTS-Ptinaninert-atmospheregloveboxfrom 1mMsolutionsindeoxygenatedEtOH.Openandsolidsymbols) Controlexperiments,resultsofwhicharepresentedinFigure data, thick lines ) total fits, thin lines ) peak components and 1b and c, were performed to explore the effect of deposition backgrounds.TheresidualfortheC18SH/p-Ptfitisshownatthe conditions on initial SAM quality and corresponding S 2p bottomofpanela. components.InSAMsonAu,themostcommonassignmentof S2pcomponentswithBEsofaround163.5eV(i.e.,S2inour quantify various monolayer components (chemisorbed, phys- case)istounboundthiolsphysisorbedortrappedinthemonolayer. isorbed,oxidized).Figure1ashowsS2pspectraformonolayers Existenceofasimilarunboundcomponenthasalsobeenproposed deposited on p-Pt from 1 mM ethanolic solutions of C6SH, for SAMs on Pd33 and Pt.5 To investigate this possibility, we C12SH, and C18SH (solid symbols) as well as a reference carriedouttwotypesofcontrolexperiments: depositionfrom spectrum for C6SH deposited on p-Au (open symbols, top of 1 mM ethanolic solutions followed by an overnight soak in Figure 1a). The spectra are shown normalized to the intensity CH Cl and deposition from 1 mM solutions in CH Cl . An 2 2 2 2 of the respective substrate signals (Pt 4f or Au 4f ); the 7/2 7/2 overnight soak in CH Cl , a good solvent for alkanethiols, is 2 2 expectedtoremoveanyweaklyboundalkanethiolsleftaftera (22)Kawasaki,M.;Sato,T.;Tanaka,T.;Takao,K.Langmuir2000,16,1719- standard deposition from EtOH. Similarly, deposition from 1728. (23)Heister,K.;Zharnikov,M.;Grunze,M.;Johansson,L.S.O.J.Phys. CH Cl ,althoughpotentiallyslower,shouldsignificantlysuppress Chem.B2001,105,4058-4061. any2we2aklyboundcomponents.Figure1aandbshowslittle,if (24)Yang,Y.W.;Fan,L.J.Langmuir2002,18,1157-1164. (25)Laibinis,P.E.;Bain,C.D.;Whitesides,G.M.J.Phys.Chem.1991,95, any,changeintheS2andS3componentsfollowingtheCH2Cl2 7017-7021. treatments.Onlythemonolayersgrowninaninertatmosphere (26)Hansen,H.S.;Tougaard,S.;Biebuyck,H.J.ElectronSpectrosc.Relat. Phenom.1992,58,141-158. onTS-Ptsubstrateswerenoticeablydifferent: theS3component (27)Himmelhaus,M.;Gauss,I.;Buck,M.;Eisert,F.;Woll,C.;Grunze,M. waseliminatedandS2significantlyreduced(Figure1c).These J.ElectronSpectrosc.Relat.Phenom.1998,92,139-149. trendscanbemoreclearlyseeninFigure2,whichshowsrelative (28)Ohgi,T.;Fujita,D.;Deng,W.;Dong,Z.C.;Nejoh,H.Surf.Sci.2001, 493,453-459. (29)Laibinis,P.E.;Whitesides,G.M.J.Am.Chem.Soc.1992,114,9022- (36)Scofield,J.H.J.ElectronSpectrosc.Relat.Phenom.1976,8,129-137. 9028. (37)NormalizingelementalXPSsignalsbythecorrespondingScofieldfactors (30)Ron,H.;Cohen,H.;Matlis,S.;Rappaport,M.;Rubinstein,I.J.Phys. (ref36)isastandardwaytocorrectforelement-dependentphotoelectriccross Chem.B1998,102,9861-9869. sections,themajorfactorthatdetermineselement-specificXPSintensities.This (31)Sung,M.M.;Sung,K.;Kim,C.G.;Lee,S.S.;Kim,Y.J.Phys.Chem. normalizationignoresanyspatialdistributionoftheelements,butprovidesa B2000,104,2273-2277. practicalwaytocompareelementalintensities,assuchScofield-adjustedintensity (32)Mekhalif,Z.;Laffineur,F.;Couturier,N.;Delhalle,J.Langmuir2003, ratiosoftenappearinquantitativeXPSanalysismodels(seeAppendix). 19,637-645. (38)Vericat,C.;Vela,M.E.;Andreasen,G.;Salvarezza,R.C.;Vazquez,L.; (33)Love,J.C.;Wolfe,D.B.;Haasch,R.;Chabinyc,M.L.;Paul,K.E.; Martin-Gago,J.A.Langmuir2001,17,4919-4924. Whitesides,G.M.;Nuzzo,R.G.J.Am.Chem.Soc.2003,125,2597-2609. (39)Zerulla,D.;Chasse,T.Langmuir1999,15,5285-5294. (34)Brito,R.;Rodriguez,V.A.;Figueroa,J.;Cabrera,C.R.J.Electroanal. (40)TheTougaardmodelwithparametersestablishedforSAMs/Au(ref26) Chem.2002,520,47-52. predictsintensitiesofinelasticbackgroundstobemuchlowerthantheobserved (35)Long,Y.T.;Herrwerth,S.;Eck,W.;Grunze,M.Phys.Chem.Chem. high-BEshouldersofS2ppeaks.TheasymmetricS2ppeakshapesthuscorrespond Phys.2002,4,522-526. tomultipleS2pcomponents. AlkanethiolsonPlatinum: MulticomponentSAMs Langmuir,Vol.22,No.6,2006 2581 Figure 4. Comparison of ellipsometric thickness of alkanethiol monolayersonvariouslycleanedPtsubstrates.Linearfittothedata forp-Pt: t )(0.12(0.01)(cid:226)n -(0.14(0.2)(Pearson’srfactor SE C )0.978). monolayers.Infact,theyareverysimilartothosereportedfor SAMs on platinum oxide.5 By contrast, monolayers deposited fromEtOHonp-Pthavepeakfrequenciesandwidthssimilarto thoseofSAMsonp-Au(Table1)andSAMsonplasma-cleaned Pt.5TheintensitiesoftheCH features,relativetotheCH features, 2 3 arelowerforourp-Ptsamplesthanforp-Auandplasma-cleaned Pt,5indicatingorientationofthealkylchainsclosertothesurface Figure 3. RAIRS spectra of C-H region for alkanethiol SAMs normal (see section 4.1). prepared on Pt substrates cleaned by two different methods. We characterized the optical thickness of freshly deposited Depositionisfrom1mMethanolicsolutionsfollowedbyrinsein SAMsbySEforallthreesubstrates(p-Pt,UVO-Pt,andTS-Pt). EtOH. The optical constants of Pt films are expected to vary with Pt Table1. VibrationalLinePositionsforC18SHMonolayerson deposition and cleaning conditions; therefore, it is crucial to AuandPt develop a proper dielectric model for the metal substrate. The C18SH/p-Au C18SH/p-Pt C18SH/UVO-Pt SEdataforaseriesofsamples,namely,asubstratefreshlycleaned by the respective procedure and C6SH, C12SH, and C18SH peak (cid:238) fwhm (cid:238) fwhm (cid:238) fwhm assignmenta (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) SAMs,weresimultaneouslyfittoathree-phaseopticalmodel consistingofacommonPtsubstrate,anorganiclayerofvariable (cid:238)(cid:238)ss((CCHH23))ssyymmssttrr 22885739 1130 22885708 118 22885718 1151 thickness,andair.Theindexofrefraction(nˆ )n+ik)ofthe (cid:238)a(CH2)asystr 2918 12 2917 17 2923 24 organiclayerwasheldat1.50,consistentwithearliertreatments (cid:238)s(CH3)FRsymstr 2936 20 2937 12 2936 10 ofalkanethiolSAMsonAu.43Opticalthickness,tSE,asafunction (cid:238)a(CH3)opasystr 2958 8 nab nab ofthenumberofalkylchaincarbons,n ,isshowninFigure4. (cid:238)a(CH3)ipasystr 2964 8 2965 10 2965 13 TheerrorbarsreflectmultiplemeasuremCents(2or3)formultiple aThefollowingabbreviationsareused: str,stretch;sym,symmetric; sampleseries(2or3).Theopticalthicknessesofthemonolayers asym,antisymmetric;ip,inplane;op,outofplane;FR,Fermiresonance are similar for all surface treatments. component.bNotobserved. WeusedwaterCAmeasurementsasastandardcharacterization method for hydrophobic methyl-terminated SAMs. For as- intensitiesofthetotalS2psignalandtheindividualcomponents depositedmonolayersthesessilecontactangleswere91(cid:176) (C6SH), for C6SH and C18SH monolayers prepared using all of the 101(cid:176) (C12SH),and104(cid:176) (C18SH)onp-Ptand88(cid:176) (C6SH),99(cid:176) methodsshowninFigure1.Therelativeintensitiescorrespond (C12SH),and101(cid:176) (C18SH)onUVO-Pt.Overall,theCAvalues topeakareasinFigure1normalizedtotheareaoftheS2ppeak areabout10(cid:176) lowerthanthosereportedforSAMsonAu,Ag, for the reference C6SH/p-Au SAM. Notably, both the S1 and andCu.9Ourvaluesarealsoabout5(cid:176) lowerthanpreviousresults S2componentsareessentiallyindependentofdepositioncondi- reportedforSAMs/Pt.5ThetrendofincreasingCAwithalkyl tions in both absolute and relative terms. The corresponding chainlengthagreeswithresultsforSAMsonAu,Ag,Cu,9and monolayercoveragesarequantifiedinsection4.2,andthenature Pt.5SmallerCAvaluesforoxidizedUVO-Ptarealsoinagreement of the S 2p components is further discussed in section 4.4. with previous results.5 Figure3showsRAIRSspectraforfreshlydepositedC6SH, 3.2.SAMStabilityinAir.Thephotoemissionspectraofthe C12SH,andC18SHmonolayersusingPtsubstratescleanedby S 2p region in Figure 5 show the changes in oxidation and twodifferentmethods: p-PtandUVO-Pt.Table1liststhepeak coverage of SAMs/p-Pt exposed to air. We show the data for parameters for the C18SH films.41 The RAIRS data for C6SHforthefirstfewdays(topthreecurvesinFigure5)because monolayersonTS-PtsubstratesarepresentedintheSupporting thesethinnermonolayersresultinlowerXPSsignalattenuation Information(FigureSI1,TableSI1).TheRAIRSpeakassign- and,thus,highersignal-to-noiseratiosforS2andS3components. mentsfollowref42.ThespectraforSAMsonUVO-Ptexhibit Over the long term, the thickest SAMs are typically the most wide and unresolved peaks, indicating relatively disordered stable;thus,weshowdataforC18SHforthebottomtwocurves in Figure 5. (41)Thespectrawereanalyzedbynonlinearleast-squaresfittingtomultiple Lorentzianlines,exceptinthecaseoftheUVO-Ptsubstrate,inwhichaGaussian lineshapewasrequired. (43)Shi,J.;Hong,B.;Parikh,A.N.;Collins,R.W.;Allara,D.L.Chem.Phys. (42)Parikh,A.N.;Allara,D.L.J.Chem.Phys.1992,96,927-945. Lett.1995,246,90-94. 2582 Langmuir,Vol.22,No.6,2006 PetroVykhetal. Figure6. XPSofO1sandC1sregionsforSAMs/p-Ptexposed toair.DepositionandrinseinEtOH(toptobottom): C18SHSAMs Figure5. XPSoftheS2pregionforSAMs/p-Ptexposedtoambient exposedtoairfor1.5hand29days(C1sspectraareshownscaled air.Exposuretimeandalkylchainlengthasshown.Depositionand by1/2);C6SHSAMsexposedtoairfor1.5h,47h,and5days.Solid rinseinEtOH.Bottomspectrum(O)isforaC18SHSAMsoaked circles ) raw data, thick lines ) total fits, thin lines ) peak overnightinCHCl beforeexposuretoair.Openandsolidcircles componentsandbackgrounds. 2 2 )data,thicklines)totalfits,thinlines)peakcomponentsand backgrounds. tothehydrocarbonchains.Atleasttwoadditionalcomponents (C2andC3)hadtobeaddedtothefitstoproduceunstructured Forthefirst5days,themainchangeintheS2pspectraisa residuals.16,45 gradualshiftoftheS3componenttohigherBE: theaverageBE ToquantitativelycomparetheoxidationdatafromS2pand oftheS3componentchangesfrom165.0to165.5to165.8eV O1sregions(Figures5and6),weusedScofield-adjustedS2p (Figure5).ThisBEshiftisconsistentwithpartialoxidationof and O 1s intensity ratios to the Pt 4f substrate peak,36,37 as 10-15%ofthesulfurheadgroups.Atthesametime,theintensities 7/2 shownforC18SHmonolayersonp-PtinFigure7(TableSI2). ofallthreecomponentsremainnearlyconstant,indicatingthat ThereislittlechangeintheS2pcomponentsoverthefirst5days desorptionorredistributionofmoleculesinthemonolayerdoes ofexposuretoair(Figures5and7).Between5and29daysin notoccurforthefirst5days.Incontrast,after29days,about air, the intensity of the S3 component increases, whereas the one-halfoftheoriginalintensityofS1-S3componentshasbeen totalS2pandtheS1intensitiesdecrease(Figure7).Thesetrends lost for the C18SH monolayer, and additional high-BE com- areconsistentwithincreasedoxidationofalkylthiolateSgroups ponents have appeared. andassociateddesorptionofalkylthiols.Anothernotabletrend The bottom spectrum in Figure 5 corresponds to a C18SH isthattheintensityoftheS2componentdoesnotincreasewith monolayerdepositedusingtheEtOH/CH2Cl2procedure.After airexposure;thus,unliketheS3component,theS2component 55daysinair,itshowsthegreatestoxidationofthesampleswe isnotassociatedwithafinalproductofoxidation.Thestability examined.Bycomparison,inarecentstudyofSAMsonPd,a andoxidationtrendsaresimilarforallofthealkylchainlengths similarly severe degree of oxidation was observed for a that we have examined (Table SI2, Supporting Information). hexadecanethiolmonolayerafteronly5daysinair(cf.Figure TheCA,RAIRS,andSEtechniquesaresensitivetotheorder- 6cinref33);thus,itappearsthatmonolayersonPtaresignificantly ingofalkylchains,butonlyminorchangeswereobservedafter more stable against exposure to air than those on Pd. afewdaysinair.TheCAvalueschangedby<5%fortheC6SH Complementary information about the oxidation of SAMs underambientconditionsisprovidedbyphotoemissionspectra (44)Theoxygen-freedepositiononTS-Ptsubstratesresultedinthelowest of the O 1s and C 1s regions (Figure 6). For all samples, the overallO1ssignalsinourstudy.ForC6SH/TS-Pt,theScofield-adjustedintensity intensityintheO1sregionisspreadoverabout4eV.Giventhe ratios(sameunitsasinTableSI2)are227fortheC2andC3components,220 forO1s,and101forS2.ThetotalintensityoftheoxidizedCcomponentsisequal typicalfwhmofabout1.5eVforO1sinorganicmaterials,this tothetotalOsignal;thus,thedataareconsistentwithessentiallynoPtOxonthe indicatesatleastthreedifferentchemicalstatesforoxygen.The surfacewhileS2isstillpresent. broadO1senvelopeandnonstoichiometriccompositionofsurface (45)Eachofthealkanethiolmoleculescontainstwochemicallydistinctcarbon atoms: oneboundtothesulfurheadgroupandoneinthemethylgroup.The oxides do not allow us to make corresponding assignments of formerislikelytohaveaBEhigherthanthealkylcarbonsofthemainC1peak. the observed O 1s components with any certainty. The total TheC2/C1intensityratiosinfitstoourdata(Figure6),however,areabout O1sintensityincreasesmonotonicallywithexposuretoair,as one-halfofwhatwouldbeexpectedforidealSAMsofrespectivethicknesses. AnadditionalcomponentoftheappropriateintensityandBEshiftof<1eVcan expected.ThelowestO1ssignalinthep-Ptserieswasobserved beaddedwithoutsacrificingthequalityofthefitstoaccountfortheheadgroup- foranas-depositedC18SHmonolayer(topspectruminFigure boundcarbons.TheC2andC3componentsthenmustbeinterpretedasdueto 6).44 The C 1s spectra in all cases are dominated by the main acdovmepnotintieonutsswaintdh/BorEssohlivfetsnotfm1.o2l-ec1u.l6ese.VIn(Ct2h)eanlidte2r.a7tu-r3e,.6aesVsig(Cnm3)evnatroiefs,Ce.g1.s, peak(C1)withBEbetween284.5and284.9eVthatcorresponds refs6and27. AlkanethiolsonPlatinum: MulticomponentSAMs Langmuir,Vol.22,No.6,2006 2583 Table2. EvolutionofMonolayerThicknessandStoichiometry withExposuretoAir calculatedelemental thicknessa attenuationandratio experimental sample (nm) C*b S*c C*/S* C/Sratiod 1.5h C6SH 0.80 5.47 0.81 6.8 7.5 C12SH 1.60 9.84 0.66 14.9 16.1 C18SH 2.40 13.3 0.53 25.1 24.8 47h C6SH 1.01 5.35 0.77 6.9 7.7 C18SH 2.23 13.6 0.56 24.3 26 5days C6SH 0.78 5.48 0.82 6.7 7.5 C12SH 1.50 9.96 0.68 14.6 12.5 C18SH 2.28 13.5 0.55 24.6 25.8 Figure 7. Evolution of O 1s and S 2p intensities for C18SH 29days SAMs/p-Ptexposedtoair.Componentlabelsandintensitiesarethe C12SH 1.30 10.2 0.71 14.4 12.5 sameasinFigures5and6.NotethattheinitialtotalOsignalisless C18SH 1.97 14.0 0.60 23.4 21.7 thanthetotalSsignal. aThicknesst calculatedfromtheattenuationofthePt4fand4d XPS andC18SHmonolayers(EtOH/CH2Cl2deposition)after7days photoelectrons, EAL(Pt 4f7/2) ) 4.01 nm and EAL(Pt 4d5/2) ) 3.48nm.25ValuescalculatedfromPt4fand4dattenuationdifferedby inair.InRAIRSspectratakenafter7daysinair,thepeakshapes <3%;theiraverageisreported.bPredictedcarbonsignalC*iscalculated andintensitiesremainedessentiallyunchanged,exceptforasmall asasumofcontributionsfromn )6,12,or18layers(asapplicable) shift of (cid:238)(CH ) from 2917 cm-1 to higher wavenumbers. SE C a 2 attenuatedbythethicknessoftheoverlayinglayers(assumingathickness showedaslight0.1(0.1nmincreaseinfilmthicknessoverthe oft /n foreachcarbonlayer),EAL(C1s))3.54nm.25 cPredicted XPS C first 8 days, possibly due to adsorption of adventitious hydro- sulfursignalS*calculatedassumingattenuationbythetotalmonolayer carbons.Theseresultsareconsistentwiththeretentionofnearly thickness,EAL(S2p))3.82nm.25 dExperimentalScofield-adjusted thefullmonolayer,indicatingthatthestructurechangesinduced C1s/S2pintensityratio.36,37 byairexposureoverthefirstfewdaysarelimitedtotheS-metal interface. QuantitativeanalysisoftheXPSintensitiesprovidesinsight intoboththefilmthicknessandthestoichiometry.Reportedin 4. Discussion Table2isthemonolayerphotoelectronthickness,t ,calculated XPS 4.1.MonolayerThickness,Stoichiometry,andMolecular fromtheattenuationofPt4f7/2andPt4d5/2substratepeaks(see Orientation.TheIR-activeCH stretchfrequenciesaresensitive AppendixA1).25Thesephotoelectronthicknessesforas-deposited 2 to the local intermolecular interactions and thus serve as the monolayers are linear as a function of the number of carbon primary indicator of chain order.46,47 For C18SH on p-Pt, the atomsnC[tXPS)(0.13(cid:226)nC)nm]andareveryclosetotheextended observed(cid:238)a(CH2)frequency(2917cm-1)ischaracteristicofan lengthsoftherespectivemolecules[t)(0.127(cid:226)nC)nmexpected ordered, all-trans chain and is essentially the same as those for upright chains]. The absolute values of photoelectron reported in a previous study of SAMs on plasma-cleaned Pt,5 thicknesses support the nearly upright alkyl chain orientation indicating a similarly high degree of crystalline order. For all established from the quantitative analysis of the RAIRS data. monolayersonp-Ptthe(cid:238)(CH )and(cid:238)(CH )featuresarestrongly This is further corroborated by the linear regression to the SE s 2 a 2 suppressedcomparedtotheCH features(Figure3).Thetransition data(Figure4).Notably,ourXPSandSEthicknessmeasurements 3 dipolemomentsoftheCH modesareperpendiculartotheall- are consistent with absence of an oxide layer on p-Pt, as both 2 transchain,whereasboththe(cid:238)(CH )and(cid:238)(CH )modeshave yieldoffsetsclosetozero,incontrastwithpreviouslyreported s 3 a 3 transitiondipolemomentprojectionsalongthechainaxis.The ellipsometric results for SAMs on Pt5 and Pd.33 suppressedintensityoftheCH stretchesindicatesanorientation Thestoichiometry(C/Sratio)canbeestimatedfromtheCand 2 almost perpendicular to the surface normal. S signals, properly accounting for their respective attenuation To quantitatively determine the monolayer orientation, we duetotheirpositioninthefilm(seeAppendixA1).TheSsignal performedadetailedanalysisoftheRAIRSdataforC18SHon is attenuated by the full monolayer thickness (S* in Table 2). p-Pt films.42 Determination of the tilt angle for the presumed TheCcontributionsfromeachatomiclayerareaddedfromtop all-transmethylenechainisverysensitivetothepreparationof to bottom with increasing attenuation (C* in Table 2). These thebulkreferencespectrum.48WethereforeusedtheC18SH/Au predictedC*/S*ratiosarecomparedinTable2tomeasuredC/S spectrum and the known orientation of the monolayers on Au ratios; the good agreement between the two columns leads us asareference.AssumingthattheC18SH/Autiltangleliesbetween totwoconclusions.First,then-alkanethiolmoleculesareoriented 20(cid:176) and30(cid:176) ,thetiltangleforC18SH/p-Ptliesbetween6(cid:176) and withsulfurgroupsboundtothePtsurfaceandhydrocarbontails 16(cid:176) .Thisisconsistentwiththequalitativeobservationthatthe extendedawayfromtheS/Ptinterface.Second,littleornoC-S C18SH/p-PtspectrumisverysimilartothatreportedforC18SH bond scission occurs when alkanethiols self-assemble on Pt onAg,wherethetiltanglewasdeterminedtobe12(cid:176) .9Thereis surfaces. In fact, the measured C/S ratio remains above the very little difference between the intensities of the CH peaks stoichiometric value even for monolayers either deposited or intheRAIRSspectraofC12SHandC18SH,implyingt2hatthe soakedinCH2Cl2sthetreatmentsthatshouldatleastpartially tilt angle must decrease with chain length. removealkylchainsproducedbysuchhypotheticalC-Sbond scission. (46)MacPhail,R.A.;Strauss,H.L.;Snyder,R.G.;Elliger,C.A.J.Phys. 4.2. Coverage. In Table 3, the intensities of the S 2p Chem.1984,88,334-341. componentsandthetotalScoveragearequantifiedforSAMs/Pt (47)Snyder,R.G.;Strauss,H.L.;Elliger,C.A.J.Phys.Chem.1982,86, 5145-5150. depositedunderthedifferentconditionspresentedinFigure1. (48)Arnold,R.;Terfort,A.;Woll,C.Langmuir2001,17,4980-4989. TherelativeintensitiesinTable3correspondtopeakareasin 2584 Langmuir,Vol.22,No.6,2006 PetroVykhetal. Table3. S2pComponentsandSulfurCoverageforSAMs/Pt 4.3.PlatinumOxide.Asapracticalmatter,itisimportantto totalsulfurcoverage notethatsubmonolayeramountsofplatinumoxidesreadilyform sample S2pcomponentsa Aureferenceb oncleanPtsurfaces: experimentsinultrahighvacuum(UHV) description S3 S2 S1 total 1014atoms/cm2 show that molecular oxygen dissociates and chemisorbs on Pt p-Pt,EtOHc evenatcryogenictemperatures.50-53Therefore,thepresenceof C6SH 0.24 0.42 1.19 1.85 5.9 such surface platinum oxides can be assumed in most cases C12SH 0.22 0.32 1.17 1.71 5.5 (especially when exposure to ambient is involved), and the C18SH 0.19 0.45 1.24 1.88 6.0 interactionofthiolswiththeseoxideswilllikelyplayarolein p-Pt,EtOH/CH2Cl2d SAM formation and stability. C6SH 0.13 0.43 1.14 1.70 5.5 XPSpotentiallyhasthesensitivitytodetectasubmonolayer C18SH 0.12 0.43 1.36 1.91 6.1 of platinum oxide through examination of the Pt 4f or O 1s p-Pt,CH2Cl2e peaks.Unfortunately,thePt4fpeaksproduceahighlyasymmetric C6SH 0.13 0.43 1.14 1.70 5.5 inelasticbackground,whichmakesitdifficulttoreliablydetect C18SH 0.13 0.41 1.40 1.94 6.2 a small platinum oxide component shifted by only about UVO-Pt,EtOH/CHClf 2 2 0.9 eV.54 For example, we observe no consistent difference C6SH 0.15 0.45 1.13 1.73 5.5 betweentheshapeofthePt4fspectraforfreshlysputteredPt C12SH 0.21 0.42 1.19 1.82 5.8 C18SH 0.31 0.42 1.09 1.82 5.8 substratesandthoseoxidizedbyUVOtreatment.Therefore,the absenceofplatinumoxidecomponentsinthePt4fregion,that TS-Pt,EtOH,Arg C6SH 0 0.23 1.16 1.39 4.5 theauthorsofrefs5and55interpretasevidenceofoxide-free C18SH 0 0.34 1.18 1.52 4.9 Pt surfaces, in fact, only rules out the presence of (several) monolayersbutnotofasubmonolayerofplatinumoxide.The aIntensitiesofS2pcomponentscorrespondtothoseinFigure1and totalO1ssignalgivesanupperlimittotheamountofplatinum arereportedrelativetotheS2ppeakforC6SH/p-Ausample,i.e.,as Scofield-adjusted36,37S2p/Pt4f intensityratiosdividedby0.0455. oxideasone-halfthatoftheSforas-depositedsamplesonp-Pt 7/2 Formostsamples,intensityvariationwithinasamplewas<5%;afew substrates (Figure 7). The association of some of the oxygen outliersshowedupto10%variability.bAbsolutecoveragesarecalculated withoxidizedcomponentsofCandSpreventsamoreaccurate usingacleanAuabsolutereferenceandanempiricalsensitivityfactor estimate for platinum oxide. toaccountforthedifferencebetweenPtandAusubstrates(seeAppendix WehaveevidencethatUVOcleaningoxidizesPt.ForUVO- A2andSupportingInformationfordetails).cDepositionfrom1mM solutioninEtOH,rinseinEtOH.dDepositionfrom1mMsolutionin Ptsamples,theO1ssignalwasconsistentlyabouttwiceashigh EtOH,overnightsoakinCHCl.eDepositionfrom1mMsolutionin asthatforsamplesonp-PtorTS-Pt.RAIRSandSEindirectly 2 2 CHCl, rinse in CHCl.fDeposition from 1 mM solution in EtOH, corroborate the oxidation of UVO-Pt substrates. The RAIRS 2 2 2 2 overnight soak in CH2Cl2, UVO-Pt substrate.gDeposition in inert- dataformonolayersonUVO-PtinFigure3showbroaderpeaks atmospheregloveboxfrom1mMsolutionindeoxygenatedEtOH,rinse similar to those reported for SAMs on platinum oxide.5 The inEtOH,TS-Ptsubstrate. substratedielectricconstants,determinedfromtheSEmultisample analysis, were significantly different for the UVO-Pt and p-Pt Figure1normalizedbytheS2ppeakfortheC6SH/p-AuSAM. surfaces (Figure SI2, Supporting Information). If we assume Quantitatively, these Scofield-adjusted S 2p/Pt 4f intensity thatthep-Ptis“clean”andtheUVO-Pthasathinoxide,then 7/2 ratios36,37areconvertedintoabsoluteScoveragesinthefollowing thebareUVO-Ptsubstratedatacanbewellfittoathree-phase opticalmodel(substrate,oxide,air)withanoxidethicknessof way: ForthereferenceC6SH/p-AuSAM,wehaveanabsolute calibrationthatgivesacoverageof4.5(cid:2)1014cm-2(Appendix 0.53 ( 0.03 nm and a constant nˆ ) 1.76 ( 0.02 + (0.34 ( 0.11)i.56,57Theoxidefilmindexofrefractionisverysimilarto A2).Wethenuseanempiricalsensitivityfactorestablishedfrom thatobtainedbySE(350-700nm)forthehydrousformofPtO measurementsofcleanAuandPtsubstratestoobtainabsolute 2 formed by anodic oxidation in H SO (nˆ (cid:25) 1.70 + 0.15i).58 coveragesfromS2p/Pt4f intensityratiosandtheabsoluteAu 2 4 7/2 Can alkanethiols reduce these oxides on p-Pt and UVO-Pt? reference.TheresultingcoveragevaluesarereportedinTable A positive claim of a complete reduction of thermal platinum 3; for details and extensive discussion of this quantification oxide by alkanethiols has been reported on the basis of approachseeAppendixA2andtheSupportingInformation.The electrochemicalmeasurements.59However,alkanethioldeposition estimated experimental uncertainty of the coverage values in Table3isabout10%;potentialsourcesofsystematicuncertainties (49)Yang,Y.-C.;Yen,Y.-P.;Yang,L.-Y.O.;Yau,S.-L.;Itaya,K.Langmuir aredifficulttoquantify,butsomearediscussedintheSupporting 2004,20,10030-10037. Information. With the exception of the TS-Pt substrates, the (50)Puglia,C.;Nilsson,A.;Hernnas,B.;Karis,O.;Bennich,P.;Martensson, coverage of freshly deposited films is about 5.8 (cid:2) 1014 cm-2. N.Surf.Sci.1995,342,119-133. (51)Stipe,B.C.;Rezaei,M.A.;Ho,W.J.Chem.Phys.1997,107,6443- The high areal density (relative to thiols on Au) is consistent 6447. withthenear-normalchainorientation.SEmeasurementsdonot (52)Saliba,N.;Tsai,Y.L.;Panja,C.;Koel,B.E.Surf.Sci.1999,419,79-88. (53)Gambardella,P.;Sljivancanin,Z.;Hammer,B.;Blanc,M.;Kuhnke,K.; estimatemonolayerthicknessandcoverageindependently,but Kern,K.Phys.ReV.Lett.2001,8705. ifthedensityandindexofrefractionofhigh-densitypolyethylene (54)Bancroft,G.M.;Adams,I.;Coatsworth,L.L.;Bennewitz,C.D.;Brown, (HDPE)areusedtoestimatethecoverageofC18SH/p-Pt,the J.D.;Westwood,W.D.Anal.Chem.1975,47,586-588. result is (4-5) (cid:2) 1014 cm-2. For comparison, previous radio- Sur(f5.5S)cLi.i2,0Z0.3Y,.5;2B9e,c4k1,0P-.;4O18h.lberg,D.A.A.;Stewart,D.R.;Williams,R.S. labelingmeasurementsshowed15%highercoverageforSAMs (56)Uncertaintiesareonestandarddeviationaveragedoverfivemeasurement series. on Pt vs Au, which, assuming negligible roughness, is (57)Theuniqueextractionofdielectricconstantsfromultrathin(e10nm) 5.3(cid:2)1014cm-2forSAMsonPt.8Arecentscanningtunneling films is problematic as the film thickness and index become correlated. The microscopy (STM) study reported a high-coverage phase for correlationcoefficientbetweenthicknessandtherealpartoftheindex(n)was alkanethiols on Pt(111) with a (x3 (cid:2) x3)R30(cid:176) structure that (cid:24)0.93.However,theestimatedparametersareconsideredunique,asthestatistical estimateofthefituncertaintiesonthicknessandn,accountingfortheoff-diagonal corresponds to a 5.1 (cid:2) 1014 cm-2 coverage.49 These literature elementsoftheerrormatrix,arecomparableto((cid:24)50%smallerthan)thereported uncertaintiesbasedonmultipledatasets. coveragevaluesarethussomewherebetweentheXPS-determined (58)Gottesfeld,S.;Maia,G.;Floriano,J.B.;Tremiliosi,G.;Ticianelli,E.A.; coverages for SAMs on p-Pt and TS-Pt. Gonzalez,E.R.J.Electrochem.Soc.1991,138,3219-3224. AlkanethiolsonPlatinum: MulticomponentSAMs Langmuir,Vol.22,No.6,2006 2585 Table4. M-SandM-OBondStrengthsforfccMetals are the most oxidized (section 4.3), and the S3 component is correspondinglythehighestforSAMsonUVO-Pt(Figure1and metal Au Ag Cu Ni Pt Table 3). This observation is in agreement with the data for M-Sa 418 217 276 344 234b M-Oa 222 220 269 382 392 SAMs on plasma-oxidized Pt, which showed considerable intensityabove164eVBE.5Conversely,forSAMspreparedon aValuesinkJ/molfromBondStrengthsinDiatomicMolecules.In TS-Pt under oxygen-free conditions, the S3 component is Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, undetectable (Figure 1c). The correlation between the S3 and 2003;pp9-52-9-64.Thesebondstrengths,oftenknownasthebond surfaceoxidationleadsustoconcludethattheinitialoxidation dissociationenergies,aredefinedasthestandardenthalpychangeofthe dissociationreactionasdeterminedat298K.bValueconvertedfrom of thiols is mediated or facilitated by Pt surface oxide. 56kcal/molgiveinTable3ofref60,whichdefinesbondstrengthas S1 Component. This is the predominant S 2p component in “thecohesiveenergypermetal-sulfurbond”. spectraforallsamplesinourstudy(Figures1,5,and7;Table 3)withtheBEbetween162.3and162.4eV.Onthebasisofthis cansuppressplatinumoxidereductionfeaturesinvoltammograms BE,weassigntheS1componentasalkylthiolatesboundtothe byeitherremovingtheoxideorbyadsorbingontopoftheoxide; Ptsubstrate,inagreementwiththereportedS2pBEvaluesfor thus, a submonolayer amount of residual oxide could remain alkylthiolates on other fcc metals: 161.9-162.1 eV on undetectedelectrochemically.Ingeneral,thestabilityofthiolates Au,9,10,17,18,20-24,28,38,39,62161.8-162.3eVonAg,9,23,28,62162.1- againstoxidationandtheabilityofthiolstoreducemetaloxides 162.5 eV on Cu,9,29,31 and 161.8 eV on Ni.32 depend in part on the respective metal-oxygen (M-O) and An alternative assignment for S 2p components in this BE metal-sulfur(M-S)bondenergies(Table4).Ofthemetalsin range was suggested in a recent study of SAMs on Pd: A Table4,onlyforAuistheM-SbondstrongerthanM-O,and 162.3 eV BE component was assigned as “sulfur present in a the bond strength hierarchy is reversed for Pt. It is practically metal sulfide interphase”, and a 163.2 eV BE component was impossibletoprepareoxide-freesurfacesofAg,Cu,orNiinan assignedasalkylthiolates.33SuchanassignmentrequiredC-S ambientenvironment,andthus,SAMformationforallthreeof bondscission,33aprocessbelievedpossibleoncatalyticmetals. these metals is affected by the presence of such residual GiventhestrikingsimilarityoftheSAMs/PdS2pdatatoours oxides.27,30-32Overall,thecomparisonwithotherfccmetalsand andthecatalyticnatureofPt,wecarefullyexaminedthepossibility thebondstrengthargumentssuggestthatacompletereduction ofthisalternativeassignmentforSAMs/Pt.Wefoundthreepieces of surface platinum oxides by alkanethiols is unlikely. ofevidencethatruleoutsuchapossibility.First,theS1component 4.4. Assignment of S 2p Components in XPS Data. The fallswithintherangeobservedforalkylthiolatesonfccmetals, interpretation of the three S 2p components in the XPS data whereastheS2component(163.2eV)clearlydoesnot.63Second, (Figures1and5)iskeytounderstandingthestructureofSAMs in all as-deposited monolayers on Pt, the S 2p doublet spin- onPt.SuchassignmentsforSAMsonmetalsotherthanAuare orbitsplittingoftheS1componentiswell-resolved,anditsfwhm atbesttentativeintheliterature,andoftenareinconflictwith of0.98eVisonly17%largerthanthe0.84eVfwhmmeasured each other. Here, we attempt to combine our high-resolution forthereferenceC6SH/Aumonolayer.16Thenarrowwidthand spectraoftheS2pregionwithresultspreviouslyobtainedfor absence of systematic trends in residuals indicate that it is a alkanethiolSAMsonabroadrangeofmetalsubstrates(Au,Ag, singlespectralcomponent,incontrasttoacombinationofapeak Cu, Ni, Pd, and Pt) in order to provide the most consistent andalow-BEshouldertypicallyobservedafterC-Sbondscission interpretation. We first briefly discuss the S3 component, and onfccmetals.Finally,theXPSstoichiometrydatainsection4.1 thenwefocusontheS1(162.3eVBE)andS2(163.2eVBE) indicatethatthereisnolossofCfromas-depositedorsolvent- components. treatedmonolayersand,hence,thatnoC-Sbondscissionoccurs. S3Component.TheassignmentoftheS3(BEabout165eV) This stoichiometry analysis rules out the putative mechanism andhigher-BEcomponents(e.g.,seethebottomtwospectrain required for the alternative assignment of S1. Figure5)isratherstraightforward,astheyaregenerallybelieved S2Component.Thereareseveralpossibleassignmentsforthe toresultfromincreasinglyhigheroxidationstatesofsulfur,with S2componentat163.2eVBE.7Twointerpretationsthatwerule S 2p doublets at 165 eV assigned as S4+ and those above out are radiation (or electron) damage19,39,64 and unbound 167 eV as sulfates.61 Two trends in our data support this thiols.10,17,18OnPt,theradiation-damageinterpretationappears assignment. First, with exposure to air, the intensity of the S3 unlikely,giventhatarecentstudyshowedthattheS2component componentincreases(bothinabsolutevalueandrelativetothe didnotchangeafter10hofirradiationbyaMgKRsource.7In S1), whereas the S1 intensity decreases (Figures 5 and 7), our experiments designed to test the unbound thiol interpreta- indicating that the primary mechanism of forming the S3 tion,5,7theintensityoftheS2componentremainedessentially component in the ambient is oxidation of the S1 component. unchanged (Figure 1 and Table 3) after extensive rinsing or Second, the S3 component gradually shifts to higher BE with overnight soaking in CH Cl , a good solvent that should 2 2 exposure to air, e.g., the average BE of the S3 component for significantlyreduceanunboundcomponent.17Concurringwith C6SHmonolayersincreasesfrom165.0to165.8eV(Figure5). these XPS results, our RAIRS data also did not show S-H This shift indicates slow conversion of S from thiolates into vibrational modes expected for unbound thiols. higheroxidationstates.Arelatedobservationconcerningallof For S2, the consistent 0.9 eV BE shift, narrow fwhm, and thehigh-BES2pcomponentsisthattheoxidationofthiolgroups insensitivitytodepositionconditionssuggestthatitcorresponds in SAMs on Pt appears to proceed in a multistep fashion, i.e., throughavarietyofstateswithincreasingoxidation,ratherthan (61)Polcik,M.;Wilde,L.;Haase,J.;Brena,B.;Comelli,G.;Paolucci,G.Surf. Sci.1997,381,L568-L572. directly into well-defined sulfates as reported for Cu.29 (62)Zharnikov,M.;Frey,S.;Heister,K.;Grunze,M.Langmuir2000,16, The initial amount of the S3 component in the monolayers 2697-2705. correlateswithPtoxidation.Inourstudy,theUVO-Ptsubstrates (63)TheBEreportedinref65forS2pinbulkPtSis162.9eViscloserto S2ratherthanS1.OnlyforbulkPtS2istheBEcomparableat162.4eV(ref66), butcreatingastoichiometrysimilartoPtS2atthesurfacewouldrequireC-S (59)Lang,P.;Mekhalif,Z.;Rat,B.;Garnier,F.J.Electroanal.Chem.1998, bondscissionforthemajorityofalkylthiolates,i.e.,suchanassignmentforS1 441,83-93. isincompatiblewiththerestofthedata. (60)Toulhoat,H.;Raybaud,P.;Kasztelan,S.;Kresse,G.;Hafner,J.Catal. (64)Heister,K.;Zharnikov,M.;Grunze,M.;Johansson,L.S.O.;Ulman,A. Today1999,50,629-636. Langmuir2001,17,8-11. 2586 Langmuir,Vol.22,No.6,2006 PetroVykhetal. to a specific binding geometry rather than simply a collection thesitesbeparticularlyhigh,indisagreementwithexistingdata of random surface sites. Three possible interpretations are for methanethiol on Pt(111).74 The strongest support for the suggested by the literature and chemical intuition: sulfur alternativebindingsiteinterpretationinourdatacomesfromthe headgroupsboundtoplatinumoxide,alternativesurfacebinding results for monolayers on TS-Pt, the only case where S2 was sites, or the presence of disulfides. significantly reduced. TS-Pt is considerably smoother than SupportfortheargumentthattheS2componentarisesfrom polycrystalline Pt and thus potentially has fewer alternative sulfur functional groups bound to platinum oxide comes from binding sites. asystematicstudyofSAMsonanoxidizedAusurface,21which The third potential interpretation for S2 is the formation of showedtwoS2pcomponentswithBEsof162.1and163.3eV. disulfide moieties when alkanethiols self-assemble on Pt. If The intensity of the 163.3 eV component was correlated with disulfidesexistonthePtsurface,itispossiblethatS-Ptbonding oxygen exposure for monolayers prepared in UHV, and it did occursthroughonlyoneoftheSatoms(S1),whilethesecond notchangeafter4hofirradiationbyaMgKRsource.Alkanethiols S atom (S2) remains unattached to the surface. The major adsorb on gold oxide with higher density and lower tilt angle advantage of this interpretation is that the relative fraction of than on clean Au21sproperties that closely parallel the results molecules adsorbed in disulfide form might depend on both forSAMsonPt.AdditionalevidencethattheS2componentis surfaceoxidationandroughness.Disulfidesmight,infact,form relatedtoplatinumoxideispresentedinref5.TheS2pspectrum asaresultofreducingsurfaceoxides.Onediscrepancyinthis isnoticeablyshiftedforaC18SHmonolayeronplatinumoxide model is the clearly missing S1 component in the data for compared to that on clean Pt. Although individual S 2p monolayersonplatinumoxide,5whereanenhancementofthe componentsarenotresolvedinthespectrumshowninref5,the disulfideformation(andattachment)canbeexpected.Considering overall shift of the S 2p envelope appears to be at least the disulfide interpretation of S2 underscores the inherent 0.7-0.8eVtohigherBE,i.e.,veryclosetothe0.9eVshiftof difficultyofdefinitivelyassigningsuchfeaturessthedebateabout S2. The data in ref 5 confirm that alkanethiols can adsorb on theadsorptionofdisulfidesongoldsurfaceshasbeengoingon platinum oxide and that the BE for a large fraction of such fordecades.Experimentally,itisextremelydifficulttounam- monolayersisconsistentwithS2.Apossiblebindinggeometry biguouslydeterminethestructureofsurfacespeciespresentat istoaPtatomthathasanOnearestneighborandthusshares submonolayer coverages. asmallerfractionofitselectrondensitywiththeScomparedto Onemightexpectthatstudiesonsingle-crystalsurfacescould aregularPtsurfaceatom.59BEshiftsreportedforplatinumoxide providemoredefinitivestructuralinformation.However,recent and bulk platinum sulfides are consistent with this binding limitedstudiesofalkanethioladsorptiononcleansingle-crystal geometry.54,65,66 The only significant inconsistency of this Pt(111) surfaces in UHV suggest the absence of long-range interpretationisthat,whereastheoxygen-freedepositiononTS- orderingandamuchmorecomplicatedadsorptionprocessthan Ptreduced44S2anddepositiononheavilyoxidizedPtproduced forprototypicalSAMsonAuorAg.75,76Similarly,arecentSTM primarilyS2,5depositiononslightlyoxidizedUVO-Ptdidnot studyprovidedevidenceoflocal(x3(cid:2)x3)R30(cid:176) orderingfor affect S2. In other words, the positive correlation between S2 alkanethiolsonsingle-crystalPt(111),butalsoreporteddifficulties andtheamountofsurfaceoxide(suchasobservedformonolayers with imaging any long-range ordering.49 The presence of a onoxidizedAu21)isnotstrictlyfollowedformonolayersonPt. disordered component such as S2 could naturally account for ThereisalsonopositivecorrelationbetweenS2andpostdepo- these observations. sition oxidation in air (Figures 5 and 7). Thealternativebindingsiteinterpretation,i.e.,thebindingof 5. Conclusions sulfurtoaPtsurfacesitedifferentfromthatgivingrisetothe WestudiedtheformationofalkanethiolSAMsonPtsurfaces S1component,haslimitedsupportfromtheavailabledatafor asafunctionofsubstratecleaning,solventsusedfordeposition otherfccmetals.OnAu,nosignificantBEdifferenceshavebeen and post-treatment, and alkyl chain length. We also examined observed between Au(111) single crystals and various poly- thelong-termstabilityofsuchSAMsinairandthecorresponding crystalline Au surfaces (including oxidized ones); however, evolutionofthemonolayerstructurewithexposuretoair.We oxidationdependenceonthestructureofpolycrystallineAufilms findthatastandarddepositionusingp-Ptsubstratesand1mM has been reported.21,22,67 Whereas multiple binding sites and ethanolicsolutionsofalkanethiolsfor20hproducedmonolayers incommensurate monolayers have been reported on other fcc of equal or better initial quality compared with other reported metals,68-71thetypicalS2pBEdifferencesarerathersmallsthe methods.As-depositedSAMsonPtaredenseandhaveanearly largest reported value we found was (cid:24)1 eV difference for S uprightchainorientation.Thereisnoevidenceforeitherweakly chemisorbedatdifferentbindingsitesonNi(111)vsNi(001).72,73 adheringspeciesorC-Sbondscission.TheseSAMsarestable Therefore, S2 assignment to alternative binding sites would against short-term (about a week) exposure to ambient air but requirethat,onpolycrystallinePt,theenergydifferencebetween oxidize and degrade significantly after about a month. XPSspectraoftheS2pregionindicatethatthesemonolayers (65)Dembowski,J.;Marosi,L.;Essig,M.Surf.Sci.Spectra1993,2,104- 108. consistofatleastthreecomponents.Themajorcomponent,S1, (66)Dembowski,J.;Marosi,L.;Essig,M.Surf.Sci.Spectra1993,2,133- isassignedtoalkylthiolatestypicalforSAMsonothermetals. 137. Aminorcomponent,S3,isassociatedwiththiolsinintermediate (67)Lee,M.T.;Hsueh,C.C.;Freund,M.S.;Ferguson,G.S.Langmuir1998, 14,6419-6423. oxidationstates.Theremainingcomponent,S2,correspondsto (68)Fisher,C.J.;Woodruff,D.P.;Jones,R.G.;Cowie,B.C.C.;Formoso, approximatelyone-thirdoftheSlayer.Onlycontrolexperiments V.Surf.Sci.2002,496,73-86. onTS-Ptsubstratesunderoxygen-freeconditionseliminatedS3 (69)Kariapper,M.S.;Fisher,C.;Woodruff,D.P.;Cowie,B.C.C.;Jones, R.G.J.Phys.: Condens.Matter2000,12,2153-2161. and reduced S2; these two minor components were largely (70)Jackson,G.J.;Woodruff,D.P.;Jones,R.G.;Singh,N.K.;Chan,A.S. unaffectedbyotherchangesindepositionconditions.Wecannot Y.;Cowie,B.C.C.;Formoso,V.Phys.ReV.Lett.2000,84,119-122. (71)Kariapper,M.S.;Grom,G.F.;Jackson,G.J.;McConville,C.F.;Woodruff, D.P.J.Phys.: Condens.Matter1998,10,8661-8670. (74)Lee,J.J.;Fisher,C.J.;Bittencourt,C.;Woodruff,D.P.;Chan,A.S.Y.; (72)Mullins,D.R.;Huntley,D.R.;Overbury,S.H.Surf.Sci.1995,323, Jones,R.G.Surf.Sci.2002,516,1-15. L287-L292. (75)Sweeney,T.M.M.S.Thesis,UniversityofNewOrleans,NewOrleans, (73)Mullins,D.R.;Tang,T.;Chen,X.;Shneerson,V.;Saldin,D.K.;Tysoe, LA,2004 W.T.Surf.Sci.1997,372,193-201. (76)Yang,M.;Laracuente,A.R.;Whitman,L.J.Unpublishedresults,2005.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.