2886 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME31 Japan Sea Thermohaline Structure and Circulation. Part II: A Variational P-Vector Method PETER C. CHU, JIAN LAN, AND CHENWU FAN DepartmentofOceanography,NavalPostgraduateSchool,Monterey,California (Manuscriptreceived11August2000,infinalform30January2001) ABSTRACT The second part of this work investigates the seasonal variabilities of the Japan/East Sea (JES) circulation usingtheU.S.NavyGeneralizedDigitalEnvironmentalModel(GDEM)climatologicaltemperatureandsalinity dataset(publicdomain)ona0.5(cid:56)(cid:51)0.5(cid:56)grid.AvariationalP-vectormethodwasdevelopedtoinvertthevelocity field. The GDEM for the JES was built up on historical (1930–97) 136 509 temperature and 52 572 salinity profiles. The climatologicalmean and seasonalvariability ofthe current systems are wellinverted, especially theTsushimaWarmCurrentanditsbifurcation,theEastKoreanWarmCurrent(EKWC),theJapannearshore branch, the confluence of the EKWC, and the North Korean Cold Current near the Korean coast and flows northeastwardalongthesubpolarfront,andamesoscaleanticycloniceddyintheUlleng/TsushimaBasin.Fur- thermore, this method has the capability to invert flow reasonably well across the shallow straits such as the Tsushima/Korea,Tsugaru,andSoyaStraits.TheGDEMtemperatureandsalinityandtheinvertedvelocityfields providebalancedinitialfieldsforJESnumericalmodelingandsimulation. 1. Introduction A typical summer monsoon pattern lasts nearly four months (mid-May to mid-Sep). The Japan Sea, known as the East Sea in Korea, has TheJESgeneralcirculationhasbeeninvestigatedfor asteepbottomtopography(Fig.1)thatmakesitaunique several decades. The Tsushima Warm Current (TWC), semi-enclosed ocean basin overlaid by a pronounced dominatingthesurfacelayer,flowsinfromtheTsushima monsoonsurfacewind.TheJapan/EastSea(JES)covers Strait,andcarrieswarmwaterfromthesouthupto40(cid:56)N an area of 106 km2, has a maximum depth in excessof whereapolarfrontforms(SeungandYoon1995).Most 3700 m, and is isolated from open oceans except for of the nearly homogeneous water in the deep part of small (narrow and shallow) straits that connecttheJES thebasiniscalledtheJapanSeaProperWater(Moriyasu to the Pacific Ocean. The JES contains three majorba- 1972)andisoflowtemperatureandlowsalinity.Above sinscalledtheJapanBasin(JB),Ulleng/TsushimaBasin the proper water, warm and saline water that enters (UTB),andYamatoBasin(YB),andahighcentralsea- through the Tsushima Strait flows northeastward and mountcalledtheYamatoRise(YR).TheJEShasagreat flows out through the Tsugaru and Soya Straits. scientific interest as a miniature prototype ocean. Its basinwide circulation pattern, boundary currents, Sub- The TWC separates north of 35(cid:56)N into western and polar Front (SPF), mesoscale eddy activities and deep eastern channels (Uda 1934; Kawabe 1982a,b; Chu et water formation are similar to those in a large ocean. al.2001a;Chuetal.2001b).Theflowthroughthewest- TheJESexperiencestwomonsoons,winterandsum- ernchannelcloselyfollowstheKoreancoast[calledthe mer, every year. During the winter monsoon season, a EastKorean WarmCurrent(EKWC)]untilitbifurcates cold northwest wind blows over the JES as a result of intotwobranchesnear37(cid:56)N.Theeasternbranchfollows theSiberianHighPressureSystemlocatedovertheEast the SPF to the western coast of Hokkaido Island, and Asian continent. Radiative cooling and persistent cold the western branch moves northward and forms a cy- airadvectionmaintaincoldairovertheJES.Thenorth- cloniceddyattheEasternKoreanBay(EKB).Theflow west–southeast oriented jet stream is positioned at the through the easternchannelfollowstheJapanesecoast, JES. A typical winter monsoon pattern lasts nearly six called the ‘‘Nearshore Branch’’ by Yoon (1982). More months (Nov to Apr). During the summer monsoon, a accurately, we may call it the Japan nearshore branch warm and weaker southeast wind blows over the JES. (JNB).TheJNBisusuallyweakerthantheEKWC.The TWC at both channels reduces with depth. The North KoreaColdCurrent(NKCC)meetstheEKWCatabout Correspondingauthoraddress:Dr.PeterC.Chu,Dept.ofOcean- 38(cid:56)N with some seasonal meridional migration. After ography,NavalPostgraduateSchool,Monterey,CA93943. E-mail:[email protected] separation from the coast, the NKCC and the EKWC Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED JAN 2001 2. REPORT TYPE 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Japan Sea Thermohanline Structure and Circulation. Part II: A 5b. GRANT NUMBER Variational P-Vector Method 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School ,Department of REPORT NUMBER Oceanography,Monterey,CA,93943 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 17 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 OCTOBER2001 CHU ET AL. 2887 FIG.1.GeographyandisobathsshowingthebottomtopographyoftheJapan/EastSea (JES). convergeandformastrongfront(i.e.,SPF)thatstretch- annual average of 1.3 Sv, a maximum of 2.2 Sv in esinawest–eastdirectionacrossthebasin.TheNKCC October, and a minimum of 0.3 Sv in February (Sv (cid:91) makes a cyclonic recirculation gyre in the north, but 106m3s(cid:50)1).Lateron,MittaandOgawa(1984)analyzed most of the EKWC flows out through the outlets (Uda thehistoricalvelocitydataobtainedbythecurrentmea- 1934). The formation of NKCC and the separation of surements lasting one day in the summers of 1942 and EKWCareduetoalocalforcingbywindandbuoyancy 1943 to investigate the current structure across the flux (Seung 1992). Large meanders develop along the Tsushima/Korea Strait. The data show intense north- front and are associated with warm and cold eddies. ward currents near the bottom in the Tsushima/Korea TheseasonalvariabilityoftheTWCattheTsushima/ Strait. This leads to doubt about the validity of the dy- Korea Strait largely impacts the JES physical condi- namical calculation with the level of no motion at the tions. An accurate estimate of the volume transport at bottomofthestrait(MittaandOgawa1984).Toremove this strait is important for the JES circulation and ther- the‘‘levelofnomotion’’assumption,weuseaninverse mohaline structure. Two methods have been used to method to obtain absolute geostrophic velocity from estimate the volume transport through the Tsushima/ hydrographic data. Korea Strait: 1) dynamical calculation of the hydro- Usingthesealeveldifferenceacrossthestraitwithout graphic data with alevelof ‘‘nomotion’’atthebottom considering the contribution from baroclinic motion, and 2) calculation of the sea leveldifferenceacrossthe Kawabe (1982a) and Toba et al. (1982) found the vol- strait. ume transport through the Tsushima/Korea Strait to be Using the dynamical calculation approach, the vol- the same as the dynamical calculation (HidakaandSu- ume transport through the Tsushima/Korea Strait is zuki1950;Yi1966).Consideringtheeffectofbaroclinic characterized by the minimum in winter–spring, and motion and subtracting the sea level difference due to maximum in summer–fall (e.g., Hidaka and Suzuki the baroclinic motion from the observed current data 1950; Yi 1966). For example, Yi (1966) estimated the (1988–90),Isobe(1994)foundthatthevolumetransport 2888 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME31 TABLE1.Glossaryofacronyms. 2. The Navy’s GDEM Dataset Acronym Explanation Data for building the current version of GDEM cli- matology for the JES were obtained from the MOODS EKB EasternKoreanBay EKWC EastKoreanWarmCurrent data. MOODS is a compilation of ocean dataobserved GDEM U.S.NavyGeneralizedDigitalEnvironmentalModel worldwideconsistingof1)temperature-onlyprofiles,2) JB JapanBasin both temperature and salinity profiles, 3) sound-speed JES Japan/EastSea profiles,and4)surfacetemperature(driftingbuoy).The JNB Japannearshorebranch main limitation of theMOODS datais itsirregulardis- MOODS U.S. Navy Master Oceanographic Observational DataSet tribution in time and space. Certain periods and areas NKCC NorthKoreanColdCurrent areoversampled,whileotherslackenoughobservations SPF SubpolarFront to gain any meaningful insights (Chu et al. 1997a,b). TWC TsushimaWarmCurrent Vertical resolution and data quality arealsohighlyvar- UTB Ulleng/TsushimaBasin YB YamatoBasin iable depending on instrument type and sampling ex- YR YamatoRise pertise. The monthly distributions of the JES tempera- ture (Fig. 2a) and salinity (Fig. 2b) stations show that the number of temperature stations is 2–3 times more than the number of salinity stations, and January has was at a maximum in early winter and a minimum in the least profiles and August the most. Yearly temper- early spring with the annual range (maximum minus ature (Fig. 3a) and salinity (Fig. 3b) profile numbers minimum) of the seasonal variation as 0.7 Sv. showtemporallyunevendistributionwithalmostnoob- Most of these analyses of seasonal variability of the servationsinthewholeJESincertainyears(e.g.,1944, JES circulation and the volume transport at the Tsush- 1989 for temperature, and 1944, 1987–93 for salinity) ima/KoreaStraitwerebasedontemporallyandspatially andmanyobservationsinotheryears(e.g.,nearly6500 limited data. Using a more complete dataset, we may temperature profiles in 1969, and 3700 salinityprofiles improve these analyses and get statistically significant in 1967). Spatial and temporal irregularitiesalongwith results. The U.S. Navy Master Oceanographic Obser- lackofdataincertainregionsmustbecarefullyweight- vational Data Set (MOODS) contains 136 509 temper- ed in order to avoid statistically induced variability. atureand52572salinityprofilesduring1930–97.Based Based on the MOODS data, the Navy’s global clima- ontheMOODSdata,anunclassifiedGeneralizedDigital tologicalmonthlymeantemperatureandsalinitydataset Environmental Model (GDEM) was established with was built (i.e., GDEM) with a four-dimensional (lati- climatological annual and monthly mean temperature tude, longitude, depth, and month) display. and salinity fields on a 0.5(cid:56) (cid:51) 0.5(cid:56) grid. The basic design concept of GDEM is the determi- Chu et al. (2001a) used the P-vector inverse method nation of a set of analytical curves that represent the (Chu 1995, 2000; Chu et al. 1998a,b) to calculate the mean vertical distributions of temperature and salinity JESabsolutegeostrophicvelocityfromtheGDEMdata. forgridcells(0.5(cid:56)(cid:51)0.5(cid:56))throughtheaveragingofthe The P-vector method contains two steps: 1) determi- coefficients for the curves found for individualprofiles nation of the velocity direction and2) determinationof (Teagueetal.1990).Differentfamiliesofrepresentative the velocity magnitude. Two necessary conditions for curves have been chosen for shallow, middepth, and the inversion are easily implemented into this method: deep-depthranges,witheachchosensothatthenumber 1)theisopycnalsurfacedoesnotparalleltheisosurface of parameters required to yield a smooth, mean profile of potential vorticity and 2) the velocity has a vertical overtherangewasminimized.AspointedoutbyTeague spiral(Chuetal.1998a,b).TheP-vectormethodinverts etal.(1990),large-scaleoceanographicfeaturesaregen- the circulation in the JES basin reasonably well (Chu erally found to be similarly representedinbothGDEM et al. 2001a), but it fails to invert the velocity field at andtheNOAAClimatologicalAtlasoftheWorldOcean shallow straits such as the Tsushima/Korea, Tsugaru, temperatureandsalinity.GDEMappearstorenderbetter and Soya Straits. representations of seasonal variability and regions of Inthisstudy,wedevelopavariationalP-vectormeth- high current shear because of a different smoothing od to improve the inversion and to obtain realistic cir- method and a finer grid spacing. GDEM data contains culationintheJESbasinaswellasintheshallowstraits. the monthly mean temperature and salinity (T, S) and Theoutlineofthispaperisasfollows.Adescriptionof annual mean temperature and salinity (T, S) fields. In- the GDEM data is given in section 2. The P-vector terested readers are referred to Teague et al. (1990) for methodanditsdeficienciesarepresentedinsection3.The more information. variationalPvectorispresentedinsection4.Theinverted absolute geostrophic velocity field is discussedinsection 3. P-vector inverse method and its deficiency 5.ThevolumetransportsintheTsushima/Korea,Tsugaru, a. Reduced physics and Soya Straits are presented in section 6. In section 7 we present our conclusions. There are quite a few acro- As pointed out by Wunsch and Grant (1982), in de- nyms used in this paper, listed in Table 1. termining large-scale circulation from hydrographic OCTOBER2001 CHU ET AL. 2889 data,wecanbereasonablyconfidentoftheassumptions V (cid:53) r(x, y, z)P, (4) of geostrophic balance, mass conservation, adiabatic, where r is the proportionality. Applying the thermal and no major cross-isopycnal mixing (except for water wind relation at two different depths z and z , a setof masses in contact with the atmosphere). Under these k m algebraic equations for determining the parameter r is conditions, the density of each fluid element would be obtained: conserved, which mathematically is given by V·(cid:61)(cid:114)(cid:53) 0, (1) r(k)P(k) (cid:50) r(m)P(m) (cid:53) (cid:68)u x x km where (cid:114)is the potential density and V (cid:53) (u, (cid:121), w) is r(k)P(k) (cid:50) r(m)P(m) (cid:53) (cid:68)(cid:121) , (5) the geostrophic velocity. The conservation of potential y y km vorticityequationcanbeobtainedbydifferentiating(1) whicharetwolinearalgebraicequationsforr(k)andr(m) withrespecttoz,usinggeostrophicandhydrostaticbal- [r(i) (cid:53) r(x, y, z)]. Here i ances,andincludingthelatitudinalvariationoftheCor- (cid:69) iolis parameter to give g zk (cid:49)(cid:93)(cid:114)ˆ (cid:93)(cid:114)ˆ(cid:50) ((cid:68)u , (cid:68)(cid:121) ) (cid:53) , (cid:50) dz, (6) V·(cid:61)q (cid:53) 0, (2) km km f(cid:114) (cid:93)y (cid:93)x 0 zm where q (cid:53) f(cid:93)(cid:114)/(cid:93)z. Equations (1)and (2)implythatthe where (cid:114)ˆ is the in situ water density, and (cid:114) is the char- velocity V is parallel to (cid:61)q (cid:51) (cid:61)(cid:114). acteristic value of the density. 0 The existence of a solution of (5) implies a nonzero determinant of the coefficient matrix of (5), which is b. Necessary conditions necessary condition 2. This determinant is the sine of StommelandSchott(1977)pointedoutthatthethree- the vertical turning angle between P(k) and P(m) (Chu dimensional velocity field cannot be determined from h h 2000; Chu et al. 1998a,b; 2001a). the density field alone when the q and (cid:114)surfaces co- For water columns satisfying thetwonecessarycon- incide. The first necessary condition for the validity of ditions,wesolve(6)toobtainr(k)forthelevelz .There this inverse method is as follows. are N (cid:50) 1 sets (m (cid:53) 1, 2, k (cid:50) 1, k (cid:49) 1, · · ·k, N) of Condition 1: The (cid:114)surface is not parallel to the q sur- equations (5) for calculating r(k). Here N is the total face, which mathematically requires number of vertical levels of the water column. The N (cid:50) 1 sets of equations are compatibleunderthethermal (cid:61)(cid:114)(cid:51) (cid:61)q (cid:177) 0. wind constraint and should provide the same solution. Stommel and Schott (1977) further pointed out that However, because of errors in measurements (instru- the three-dimensional velocity field cannot be deter- mentation errors) and computations (truncationerrors), mined from the (cid:114)field alone if the horizontal velocity the parameters r(k) may vary with m. A least squares does not rotate with depth ((cid:98)spiral). The existence of error algorithm is used to minimize the error. the (cid:98)spiral is the second necessary condition. Condition 2: The velocity (u, (cid:121)) should execute a (cid:98) d. Deficiency of the current P-vector method spiral, which mathematically requires that, for at least twodepths,z(cid:53)z andz(cid:53)z ,withhorizontalvelocities Let(u(P),(cid:121)(P))betheabsolutevelocitydeterminedby k m [u(k), (cid:121)(k)] and [u(m), (cid:121)(m)], the P-vector method, and (U(P), V(P)) be their vertical (cid:41)u(k) (cid:121)(k)(cid:41) integrations, (cid:177) 0. (cid:69) u(m) (cid:121)(m) 0 (U(P), V(P)) (cid:53) (u(P), (cid:121)(P)) dz. (7) Ifwecannotfindlevelszkandzmsuchthatthenecessary (cid:50)H condition 2 is satisfied, the inverse method will fail to Duetothelocaldeterminationoftheabsolutegeostrophic get velocity in that water column. velocity, the present P-vector method does not always guarantee mass conservation over a domain (cid:115), that is, c. P-vector method (cid:69)(cid:69) [ ] (cid:93)U(P) (cid:93)V(P) Consider the unit vector P (Chu 1995), defined by (cid:49) dx dy (cid:177) 0 (8) (cid:93)x (cid:93)y (cid:61)(cid:114)(cid:51) (cid:61)q (cid:115) P (cid:53) . (3) ispossible.Suchadeficiencylargelyaffectsthequality |(cid:61)(cid:114)(cid:51) (cid:61)q| of the inversion. For example, the TWC in the shallow The existence of this unit vector implies nonzero de- Tsushima/KoreaStraitwasnotwellinverted(Chuetal. nominator of (3), which is the necessary condition 1. 2001a). Therefore, we develop a variational algorithm Thevelocity,V(cid:53)(u,(cid:121),w),parallelstheunitvectorP, taking into account the mass conservation. 2890 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME31 FIG.2.SpatialdistributionsofMOODSstationsduring1930–97:(a)temperatureand(b)salinity. OCTOBER2001 CHU ET AL. 2891 FIG.2.(Continued) 2892 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME31 FIG.3.TemporaldistributionsofMOODSstationsduring1930–97:(a)temperatureand (b)salinity. 4. A variational algorithm b. Horizontal discretization a. Formulation Let the dependent variable f(x, y) be defined on the interval 0 (cid:35) x (cid:35) L , 0 (cid:35) y (cid:35) L . Use a uniform grid, Let (U, V) be the vertically integrated velocity op- 0 (cid:53) x (cid:44) x (cid:44) · ·x· (cid:44) x (cid:53) Ly, and 0 (cid:53) y (cid:44) y (cid:44) timally determined by minimizing the following func- · · · 1(cid:44) y 2 (cid:53) L with gNrixd spaxcing of ((cid:68)x1, (cid:68)y),2 as tional (called the cost function), Ny y (cid:69)(cid:69) shown in Fig. 4a. Here, 1 (cid:68)x(cid:53)x (cid:50)x (cid:53)L /N , (cid:68)y(cid:53)y (cid:50)y (cid:53)L /N . J(U,V)(cid:53) [(U(cid:50)U(P))2(cid:49)(V(cid:50)V(P))2]dxdy (9) i(cid:49)1 i x x j(cid:49)1 j y y 2 (cid:115) Let (cid:114), (cid:108)be evaluated at the grid point (i, j), and the with the constraint (mass conservation) integratedvelocitycomponentsU,V,U(P),V(P)beeval- uatedatthestaggeredpoints,respectively(Fig.4b).The (cid:93)U(P) (cid:93)V(P) (cid:49) (cid:53) 0. (10) functional (11) is discretized as (cid:93)x (cid:93)y 1 N(cid:79)x(cid:50)1 N(cid:79)y(cid:50)1 Lˆ (cid:53) [(U (cid:50) U(P))2 (cid:49) (V (cid:50) V(P))2](cid:68)x(cid:68)y This problem becomes an unconstrained optimization 2 ij ij ij ij i(cid:53)1 j(cid:53)1 using (cid:79) (cid:79) 1Nx(cid:50)1Ny(cid:50)1 L(U, V, (cid:108)) (cid:53) J(U(cid:69),(cid:69)V) [ ] (cid:49)2 (cid:79)i(cid:53)1 (cid:79)j(cid:53)1 (cid:108)ij(Uij(cid:49)Ui,j(cid:50)1(cid:50)Ui(cid:50)1,j(cid:50)Ui(cid:50)1,j(cid:50)1)(cid:68)y (cid:49) (cid:108)(cid:93)U(P) (cid:49) (cid:93)V(P) dx dy, (11) (cid:49)1Nx(cid:50)1Ny(cid:50)1(cid:108)(V (cid:49)V (cid:50)V (cid:50)V )(cid:68)x. (cid:93)x (cid:93)y 2 ij ij i(cid:50)1,j i,j(cid:50)1 i(cid:50)1,j(cid:50)1 (cid:115) i(cid:53)1 j(cid:53)1 where (cid:108)is the Lagrangian parameter. (12) OCTOBER2001 CHU ET AL. 2893 FIG.4.Staggeredgridusedforthecomputation:(a)griddistributionand(b)staggeredgridsfor(u,(cid:121))and standardgridsfor((cid:108),(cid:114)). c. Combined local–global determination 1 (U (cid:49) U (cid:50) U (cid:50) U ) (cid:68)x ij i,j(cid:50)1 i(cid:50)1,j i(cid:50)1,j(cid:50)1 Minimization of Lˆ becomes a combination of local 1 determinationatthestaggeredgrid(i,j)forvelocity((cid:98)- (cid:49) (cid:68)y(Vij (cid:49) Vi(cid:50)1,j (cid:50) Vi,j(cid:50)1 (cid:50) Vi(cid:50)1,j(cid:50)1) fi 0, (14) spiral approach) whichkeepsthemassconservationatanyboxcentered U fi U(P), V fi V(P) (13) at the nonstaggered grid for (cid:114)and (cid:108)(Fig. 4b). Thus, ij ij ij ij this variational P-vector method can be treated as a (cid:98)- and global determination (box model) spiral box model. 2894 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME31 TABLE2.Invertedmonthlyvariationofvolumetransport(Sv)atthreemajorstraits.Thepositive/negativevaluesmeaninflow/outflow. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Soya (cid:50)0.6 (cid:50)0.7 (cid:50)0.9 (cid:50)1.1 (cid:50)1.0 (cid:50)1.1 (cid:50)1.4 (cid:50)1.2 (cid:50)0.8 (cid:50)0.7 (cid:50)0.5 (cid:50)0.5 Tsugaru (cid:50)1.5 (cid:50)1.4 (cid:50)1.5 (cid:50)1.5 (cid:50)1.3 (cid:50)1.3 (cid:50)1.5 (cid:50)1.5 (cid:50)1.2 (cid:50)1.5 (cid:50)1.4 (cid:50)1.6 Tsushima 2.1 2.1 2.4 2.6 2.3 2.4 2.9 2.7 2.0 2.2 1.9 2.1 d. Optimal determination of vertically integrated the given value of (cid:108) into (16) and (17), we obtain the ij velocity optimal estimation of U and V . ij ij The variational problem is the determination of (U , V , (cid:108) ) through minimizing thecostfunctionL, e. Determination of the bottom velocity ij ij ij (cid:93)Lˆ (cid:93)Lˆ (cid:93)Lˆ Let h (cid:53) h(x, y) be the bottom topography and (u , (cid:93)Uij (cid:53) 0, (cid:93)Vij (cid:53) 0, (cid:93)(cid:108)ij (cid:53) 0. (15) (cid:121)re(cid:50)lha)tiboent(h6e)btootttohme tvweololceivtye.lsAzppalnydin(cid:50)ghth,ewtehehramvaelwi(cid:50)nhd Substitution of (12) into (15) leads to (cid:69) g z (cid:49)(cid:93)(cid:114)ˆ (cid:93)(cid:114)ˆ(cid:50) Uij (cid:53) Ui(jP)(cid:50)2(cid:68)1x((cid:108)ij(cid:49)(cid:108)i,j(cid:49)1(cid:50)(cid:108)i(cid:49)1,j(cid:50)(cid:108)i(cid:49)1,j(cid:49)1) (16) (u, (cid:121))z (cid:50) (u, (cid:121))(cid:50)h (cid:53) f(cid:114)0 (cid:50)h (cid:93)y, (cid:50)(cid:93)x dz(cid:57). (22) Vertical integration of (22) from the bottom (z (cid:53) (cid:50)h) 1 V (cid:53) V(P)(cid:50) ((cid:108) (cid:49)(cid:108) (cid:50)(cid:108) (cid:50)(cid:108) ) (17) to the surface (z (cid:53) 0) leads to ij ij 2(cid:68)y ij i(cid:49)1,j i,j(cid:49)1 i(cid:49)1,j(cid:49)1 1 1 (u, (cid:121)) (cid:53) (U, V) (U (cid:49) U (cid:50) U (cid:50) U ) (cid:50)h h (cid:68)x ij i,j(cid:50)1 i(cid:50)1,j i(cid:50)1,j(cid:50)1 (cid:69) (cid:69) (cid:49) (cid:68)1y(Vij (cid:49) Vi(cid:50)1,j (cid:50) Vi,j(cid:50)1 (cid:50) Vi(cid:50)1,j(cid:50)1) (cid:53) 0. (18) (cid:50) fhg(cid:114)0 (cid:50)0h dz (cid:50)zh (cid:49)(cid:93)(cid:93)(cid:114)yˆ, (cid:50)(cid:93)(cid:93)(cid:114)xˆ(cid:50) dz(cid:57). (23) Substitution of (16) and (17) into (18) leads to a linear With theestimatedbottomvelocity(u,(cid:121))(cid:50)h,weusethe algebraic equation for the Lagrange parameter, thermal wind relation (22) to obtain the absolute ve- locity from the density field. a (cid:108) (cid:49) a (cid:108) (cid:49) a (cid:108) (cid:49) a (cid:108) (cid:49) a (cid:108) 11 i(cid:50)1,j(cid:50)1 21 i,j(cid:50)1 31 i(cid:49)1,j(cid:50)1 12 i(cid:50)1,j 22 i,j (cid:49) a (cid:108) (cid:49) a (cid:108) (cid:49) a (cid:108) (cid:49) a (cid:108) f. Volume transport streamfunction 32 i(cid:49)1,j 13 i(cid:50)1,j(cid:49)1 23 i,j(cid:49)1 33 i(cid:49)1,j(cid:49)1 (cid:53) S , (19) Due to the continuity (10), the volume transport ij streamfunction ((cid:67)) can be defined by where i (cid:53) 2, 3, · · ·, N (cid:50) 1; j (cid:53) 2, 3, · · ·, N (cid:50) 1; and x y (cid:93)(cid:67) (cid:93)(cid:67) U (cid:53) (cid:50) , V (cid:53) (24) (cid:93)y (cid:93)x (cid:49) (cid:50) 1 1 1 a11 (cid:53) a13 (cid:53) a31 (cid:53) a33 (cid:53) (cid:50)4 (cid:68)x2 (cid:49) (cid:68)y2 , and satisfies the Poisson equation (cid:49) (cid:50) (cid:49)(cid:93)2 (cid:93)2(cid:50) (cid:93)V (cid:93)U a22 (cid:53) (cid:68)1x2 (cid:49) (cid:68)1y2 , (cid:93)x2 (cid:49) (cid:93)y2 (cid:67) (cid:53) (cid:93)x (cid:50) (cid:93)y. (25) (cid:49) (cid:50) 1 1 1 a (cid:53) a (cid:53) (cid:50)a (cid:53) (cid:50)a (cid:53) (cid:50) (20) 5. Absolute geostrophic velocity 21 23 12 32 2 (cid:68)x2 (cid:68)y2 a. Annual mean and Figure 5 shows the inverted horizontal velocity vec- 1 S (cid:53) (U(P) (cid:49) U(P) (cid:50) U(P) (cid:50) U(P) ) tors at depths 0, 50, 100, 150, 200, and 300 m respec- ij 2(cid:68)x ij i,j(cid:50)1 i(cid:50)1,j i(cid:50)1,j(cid:50)1 tively. The variational P-vector method inverts the ve- 1 locity well at the three major straits: Tsushima/Korea, (cid:49) 2(cid:68)y(Vi(jP) (cid:49) Vi((cid:50)P)1,j (cid:50) Vi(,Pj(cid:50))1 (cid:50) Vi((cid:50)P)1,j(cid:50)1). (21) Tsugaru, and Soya Straits. However, the flow in Tatar Strait is not well resolved due to the poor data quality. Thealternativedirectionimplicitmethod(Pressetal. We take the velocity field at depths 0, 50, and 100 1986) is used to obtain the value of the Lagrange pa- m (150, 200, and 300 m) to represent the upper (inter- rameter at the grid point, (cid:108), solving (19). Substituting mediate)-layer circulation features. The inverted flow ij