ebook img

DTIC ADA474020: An Adaptive Planning Framework for Situation Assessment and Decision-Making on an Autonomous Ground Vehicle PDF

2.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA474020: An Adaptive Planning Framework for Situation Assessment and Decision-Making on an Autonomous Ground Vehicle

AN ADAPTIVE PLANNING FRAMEWORK FOR SITUATION ASSESSMENT AND DECISION-MAKING ON AN AUTONOMOUS GROUND VEHICLE By ROBERT ALLEN TOUCHTON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 1 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2006 2. REPORT TYPE 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Adaptive Planning Framework for Situation Assessment and 5b. GRANT NUMBER Decision-Making on an Autonomous Ground Vehicle 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of Florida,Center for Intelligent Machines and Robotics,P.O. REPORT NUMBER Box 116300,Gainesville,FL,32611 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The primary contribution of this research is the design, implementation, and field testing of an Adaptive Planning Framework (APF) that can address the problem of autonomous operation in a complex, unstructured environment. It encapsulates a new and unique approach to dynamic situation assessment, behavior management, and decision-making. This research also included a literature review and development of a Reference Implementation. The thesis behind this research is that a well-organized, three-stage process of 1) understanding the current situation, 2) understanding the suitability and viability of the available behaviors in light of that situation, and 3) providing the capability to autonomously make and execute behavior-related decisions, all in real-time, provides new levels of intelligence to autonomous ground vehicles (AGV). This research was performed using the resources of the UF Center for Intelligent Machines and Robotics. This environment provided the ability to collaboratively explore engineering alternatives, create experimental software, and test it in a real-world setting, ultimately leading to the creation of the Reference Implementation. All this was aimed at validating the thesis of the research and producing a more robust APF, operationally proven in a representative physical environment. The Adaptive Planning Framework has been shown to be both a viable method for representing and managing complex, situation-dependent behavior on an AGV and a valuable contribution to researchers tasked with developing and fielding such a vehicle. The viability of the architecture and design was demonstrated by the development and testing of the Reference Implementation. The value of the APF can be measured by the major role it is playing in the architecture and design of the AGV being fielded by Team Gator Nation for competing in the 2007 DARPA Urban Challenge. The Adaptive Planning Framework makes a significant contribution to advancing the state of the practice of intelligent systems in general and AGVs in particular. Its adoption by Team Gator Nation means that it will be improved and extended by future researchers. Presuming that occurs, this work will have been the catalyst of a new way of achieving more intelligent and more autonomous ground vehicles. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 164 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Copyright 2006 by Robert Allen Touchton 2 To Cheryle My biggest fan since High School My wife for 35 years (and counting) My soul mate for eternity 3 ACKNOWLEDGMENTS First and foremost, I thank my family not only for their support and tolerance, but also for their enthusiasm and interest in this endeavor. I also appreciate the prayers and tender loving care that my church family provided, both in Jacksonville and Gainesville. They helped me maintain and balance my priorities. Many, many years ago, when I first conceived the ideas that evolved into the Adaptive Planning Framework, I was working with an amazing team of engineers and software developers. I especially want to thank Dale Gunter, Steve Rausch, and Ken Wilson for their help in getting these ideas out of my head and into a sound, working system. I would also like to acknowledge the sponsorship and support provided by CIMAR, the Air Force Research Lab, Team CIMAR, and Team Gator Nation that made this research possible. I must add specific recognition of the significant help and support I received from my fellow Graduate Research Assistants Tom Galluzzo, Greg Garcia, Danny Kent, Sanjay Solanki, Eric Thorn, and Steve Velat. I also appreciate the excellent editorial review provided by Michelle LaMontagne. Finally, I want to extend a special word of thanks to key reviewers of my work, David Armstrong, Dr. Douglas Dankel, Shannon Ridgeway, and Dr. Eric Schwartz, and, of course, to my committee, Dr. Carl Crane, Dr. Tony Arroyo, Dr. Warren Dixon, Dr. Gloria Wiens, and Dr. Charles Winton. Their critiques and ideas were helpful and made a real difference in my work. I add an additional expression of appreciation to Dr. Crane, who welcomed me into the CIMAR autonomous vehicle program and then mentored me through it. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES...........................................................................................................................8 LIST OF FIGURES.........................................................................................................................9 OBJECT.........................................................................................................................................10 ABSTRACT...................................................................................................................................11 CHAPTER 1 INTRODUCTION..................................................................................................................13 Motivation and Statement of Problem....................................................................................13 Research Solution...................................................................................................................14 Research Setting.....................................................................................................................16 2 BACKGROUND AND LITERATURE REVIEW................................................................21 Architectural Compatibility with Emerging Standards..........................................................21 JAUS RA.........................................................................................................................21 NIST 4D/RCS..................................................................................................................23 Service Oriented Architecture/Component Oriented Architecture.................................24 DAMN.............................................................................................................................26 Situation Assessment..............................................................................................................27 Planning and Decision-making...............................................................................................29 Viewed as a Sense-Plan-Act Problem.............................................................................30 Viewed as a Subsumption Problem.................................................................................32 Viewed as a Decision Theory Problem...........................................................................33 Viewed as a Behavior Arbitration Problem.....................................................................35 Viewed as an Action Selection Problem.........................................................................36 Viewed as an Adaptive Planning Problem......................................................................37 Knowledge Representation.....................................................................................................39 Lexicons, Taxonomies and Ontologies...........................................................................40 World Model Knowledge Store (WMKS)......................................................................41 Knowledge Representation at NIST................................................................................42 3 THE ADAPTIVE PLANNING FRAMEWORK...................................................................50 Knowledge Representation Scheme.......................................................................................50 Situation Assessment Specialists.....................................................................................53 Behavior Specialists........................................................................................................53 Decision Specialist..........................................................................................................55 5 Reasoning Mechanism............................................................................................................56 Concept of Operation......................................................................................................57 Transmission of Findings................................................................................................58 Knowledge Representation Tools...........................................................................................59 Behavior Use Cases.........................................................................................................59 Findings Worksheet.........................................................................................................61 Decision Broker Protocol Worksheet..............................................................................63 Foundational Research............................................................................................................64 4 REFERENCE IMPLEMENTATION AND FIELD TESTING.............................................72 Reference Implementation Architecture and Design..............................................................72 Behaviors Identified........................................................................................................72 Specialists and Findings Identified..................................................................................73 Decision Protocols Identified..........................................................................................75 Reference Implementation Messaging Design.......................................................................76 JAUS-based Meta Data Message Set..............................................................................77 Extensions to CIMAR Messaging Infrastructure............................................................79 Reference Implementation Development...............................................................................81 Modifications to Existing NAVIGATOR Components....................................................82 Creation of New Components.........................................................................................83 Field Testing...........................................................................................................................84 Test Plans.........................................................................................................................84 Test Results.....................................................................................................................87 5 DISCUSSION AND FUTURE WORK.................................................................................94 Assessment of the Adaptive Planning Framework.................................................................94 Future Work............................................................................................................................95 Theoretical Opportunities................................................................................................95 Implementation Opportunities.........................................................................................98 Conclusion............................................................................................................................100 APPENDIX A PROOF OF CONCEPT PROTOTYPE................................................................................102 Scope of Prototype................................................................................................................102 Approach...............................................................................................................................103 Concept of Operations..........................................................................................................103 Issues Identified....................................................................................................................105 Algorithm and Program Logic Flow.....................................................................................106 Inferencing Control Strategy and User Interface...........................................................106 Truth Maintenance.........................................................................................................106 Retraction of Conditions................................................................................................107 Predicate Testing in Rule Antecedents..........................................................................108 Testing Results......................................................................................................................109 6 Test Case Scenario Set-up.............................................................................................109 Rule Base................................................................................................................109 Blackboard initialization........................................................................................111 Condition defaults..................................................................................................111 Test Cases and Results..................................................................................................111 Test Case 1 – initial resolution of Blackboard at time = 0.....................................111 Test Case 2a – Rugged Terrain is encountered......................................................112 Test Case 2b – Rugged Terrain no longer present.................................................114 Test Case 3a – long range obstacle detection.........................................................115 Test Case 3b – close range obstacle detection.......................................................116 Test Case 3c – obstacle avoided.............................................................................117 B EARLY IMPLEMENTATION AND DESERT TESTING ON THE 2005 DARPA GRAND CHALLENGE NAVIGATOR..............................................................................120 Test Case Scenario Set-up....................................................................................................121 Desert Testing and Results...................................................................................................122 C KNOWLEDGE REPRESENTATION WORK PRODUCTS FOR THE ADAPTIVE PLANNING FRAMEWORK REFERENCE IMPLEMENTATION..................................126 D JAUS META DATA TRANSFER INTERFACE CONTROL DOCUMENT....................143 E REPRESENTATIVE TEST LOGS......................................................................................151 LIST OF REFERENCES.............................................................................................................159 BIOGRAPHICAL SKETCH.......................................................................................................163 7 LIST OF TABLES Table page 3-1 Example Assignment of Situation Assessment Specialists...............................................65 4-1 JAUS Type Codes Supported by JausVariant Data Type..................................................89 A-1 Environmental Sensors....................................................................................................119 A-2 Vehicle Sensors................................................................................................................119 A-3 Mission Information.........................................................................................................119 A-4 Vehicle Specialist.............................................................................................................119 A-5 Sensor Specialist (States).................................................................................................119 A-6 Sensor Specialist (Conditions).........................................................................................119 A-7 Mission Specialist............................................................................................................119 B-1 Environmental Sensor......................................................................................................124 B-2 Vehicle Sensor.................................................................................................................124 B-3 Obstacle Specialist...........................................................................................................124 B-4 Terrain Specialist.............................................................................................................124 B-5 Decision Broker...............................................................................................................125 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.