ebook img

DTIC ADA462968: Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA462968: Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations

Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations MajorM.Veth,AirForceInstituteofTechnology J.Raquet,AirForceInstitute ofTechnology BIOGRAPHY INTRODUCTION Major Mike Veth is a Ph.D. student in the Department of Motivation Electrical and Computer Engineering at the Air Force In- stituteofTechnology. Hiscurrentresearchfocusisonthe The development of low-cost inertial and optical sensors fusionofopticalandinertialsystems. HereceivedhisM.S. hasledtoremarkableadvancesinthefieldofoptical-aided in Electrical Engineering from the Air Force Institute of navigation (e.g., [14], [15]). In these systems, digital im- Technology,andaB.S.inElectricalEngineeringfromPur- ages arecombined withinertialmeasurements toestimate dueUniversity. Inaddition,MajorVethisagraduateofthe position,velocity,andattitude. Therelativeorientationbe- AirForceTestPilotSchool. tween the inertial and optical sensors is a critical quantity whichmustbedeterminedpriortooperationofthesystem. JohnRaquetisanassociateprofessorintheDepartmentof Theaccuracywithwhichtherelativeorientationisknown Electrical and Computer Engineering at the Air Force In- effectivelysetsthelowerboundforthenavigationaccuracy stitute of Technology, where he is responsible for teach- ofthesystem. ing and research relating to GPS and inertial navigation systems. HereceivedhisPh.D.inGeomaticsEngineering Inthispaper,currentalignmentmethodsarediscussed,and fromTheUniversityofCalgary,anM.S.inAero/AstroEn- a novel method is presented which addresses the short- gineeringfromTheMassachusettsInstituteofTechnology, comings of the current techniques. The algorithm is then andaB.S.inAstronauticalEngineeringfromTheU.S.Air testedusingbothsimulatedandflightdata.Finally,conclu- ForceAcademy. sions are drawn regarding the fundamental limitsof accu- racyachievablegivenvarioussystemparametersandalign- ABSTRACT ment procedures. This work is part of ongoing research intofusionofopticalandinertialsensorsforlong-termau- Aircraftnavigationinformation(position,velocity,andat- tonomousnavigation[12]. titude)canbedeterminedusingopticalmeasurementsfrom an imaging sensor pointed toward the ground combined CurrentMethods with an inertial navigation system. A critical factor gov- erning the level of accuracy achievable in such a system Theultimategoalofthealignmentprocessistodetermine is the alignment and calibration of the sensors. Currently, therelativeorientationbetweenanopticalandinertialsen- alignmentaccuracyislimitedbymachiningandmounting sor,ormorespecifically,thesensitiveaxesofbothsensors. tolerancesforlow-costapplications. Themethodsusedtoestimatethisorientationfallintotwo categories: mechanicalandestimation-basedtechniques. In this paper, a novel alignment and calibration method is proposedwhichcombines inertialandstellarobservations Mechanical techniques use mechanical measurements usinganextendedKalmanfilteralgorithm.Theapproachis (suchaslasertheodolites)todeterminetherelativeorienta- verified using simulation and experimental data, and con- tionbetweenknownfiducialsoneachsensor. Thismethod clusionsregardingalignmentaccuracyversussensorqual- requires knowledge of the relationship between the sensi- ityaredrawn. tiveaxesofthesensorsandtheexternalreferencefiducials, whichissubjecttounknown manufacturing errors. Inad- dition,dependingontherequiredaccuracy,thismethodre- quires external equipment which is not suitable for use in thefield. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2007 2. REPORT TYPE 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Alignment and Calibration of Optical and Inertial Sensors Using Stellar 5b. GRANT NUMBER Observations 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Air Force Institute of Technology,2950 Hobson Way,Wright Patterson REPORT NUMBER AFB,OH,45433-7765 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 10 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Estimation-basedtechniquesutilizeactualsensormeasure- foramovingtrajectory(e.g.,GlobalPositioningSys- ments while subjecting the system to known conditions. tem). In [8], the sensors are mounted on a calibrated pendulum Astartrackingalgorithmisavailablewhichcaniden- while imaging a reference pattern. The orientation of the • tifyandtrackcelestialobjects. scene detected by the optical sensor, combined with the currentlocalgravityvector,isusedtoestimatetherelative orientationandinertialsensorbiases. AlgorithmDescription These current approaches require dedicated equipment Inordertoprovidethemaximumflexibilitywithrespectto which would increase the difficulty of field calibrations. eitherfixedormovingtrajectories,theestimatorcombines In addition, these “captive” techniques separate the cali- inertial measurements, optical measurements of known bration and navigation functions of the system and can- stars, and external position/velocity measurements. The notcompensatefortime-varyingerrorsduetotemperature system parameters (see Table 1) consist of the navigation changes,flightprofile,flexuremodes,etc. Inthenextsec- parameters (position, velocity, and attitude), inertial mea- tion,thebasisforareal-timeestimatorwhichincorporates surementbiases,andcameraalignmentandscalefactorpa- measurementsofvisualobjectsatknownlocations,inertial rameters. The navigation parameters are calculated using measurements, and position updates is developed. More velocity increment (∆vb) and angular increment (∆θb ) specifically,thefieldofvisiblestarsisusedtoprovidethe ib measurements from the inertial navigation sensor which referencefortheopticalsystem. have been corrected for bias errors using the current bias Themethodproposedinthispaperhasseveraladvantages estimates. Thesemeasurementsareintegratedfromanini- overthecurrentapproaches. First,thesystemisautomatic tialstateinthenavigation(local-level)frameusingmecha- and requires no operator involvement or external equip- nizationalgorithmsdescribedin[16]. ment. Secondly, this method is not limited to stationary operation and can be accomplished during a mission. In Table1: SystemParameterDefinition fact, maneuvers can actually improve the observability of inertialsensorerrors[13]. Finally,therecursiveestimation Parameter Description approachallowsthesystemtoaccountfortime-varyinger- pn Vehiclepositioninnavigationframe rors(e.g.,accelerometerandgyroscopebias)inamorerig- (latitude,longitude,altitude) orousfashionthanbatchapproaches. vn Vehiclevelocityinnavigationframe (north,east,down) Therearesomeobviousdisadvantagestousingstellarob- Cn VehiclebodytonavigationframeDCM servationswhichmustbeconsidered. Stellarobservations b ab Acclerometerbiasvector requirevisibilityoftheskyorportionsofthesky. Inaddi- bb Gyroscopebiasvector tion,theimagingsystemmustbeofappropriatesensitivity Cb CameratovehiclebodyframeDCM andmeasurementfidelitytoresolvethelocationofcelestial c s Cameraimageplaneverticalscalefactor objects. x s Cameraimageplanehorizontalscalefactor y DEVELOPMENT AnExtendedKalmanFilterwasconstructedtoestimatethe The method proposed in this paper employs an extended errorsinthecalculatedsystemparameters. Inordertomin- Kalman filter (EKF) algorithm (see [10], [11]) to recur- imizetheeffectsoflinearizationerrors,thesystemparam- sively estimate camera alignment and calibration param- eters were periodically corrected by removing the current eters by measuring the pixel locations of celestial objects errorestimate(see[10]). Ablockdiagramofthesystemis inanimage-aidedinertialsystem. showninFigure1. Assumptions TheKalmanfilterstatevector,xˆ,isdefinedas Thismethodisbasedonthefollowingassumptions. δpˆn  δvˆn  ψˆ A strapdown intertial measurement unit (IMU) is   •  δaˆb  rigidlyattachedtoacamera. Synchronizedrawmea- xˆ =  (1)  δbˆb  surementsareavailablefrombothsensors.    αˆ    Thesensorsarelocatedateitherafixed,knownloca-  δsˆ  •  x  tion or external position measurements are available  δsˆ   y  INITIAL cosinematrix. Usingthepinholecameramodeldescribed CONDITIONS in[9],thepixellocation,z(t ),isafunctionofthecamera i projectionmatrix,Π, INERTIAL ESTIMATED TRAJECTORY z(t )=Πsc(t )+v(t ) (3) MEASUREMENTS SYSTEM i n i i (∆V, ∆θ) DYNAMICS wheresc(t)isthehomogeneous1 formoftheobjectdirec- n tionvectorinthecameraframe. Inthispaper,anunderbar ERROR ESTIMATES indicatesthehomogeneousformofthevector(e.g.,sisthe homogeneous form of s). The measurement is corrupted IMAGE byv,azero-mean,white,Gaussiannoiseprocesswithco- UPDATES KALMAN variance POSITION or GPS FILTER UPDATES R t =t E v(t )vt(t ) = i j (4) i j ½ 0 ti =tj Figure1:CameracalibrationextendedKalmanfilterblock £ ¤ 6 diagram. In this filter, surveyed position or GPS pseudo- range measurements and optical measurements of known Theprojectionmatrixisgivenby stars are used to estimate trajectory errors from a refer- s 0 b ence trajectory provided by an inertial navigation system Π= x x (5) (INS).Theerrorsarethen“fed-back”andsubtractedfrom · 0 sy by ¸ theINStrajectoryinordertokeepthereferencetrajectory where s and s are camera scaling parameters in the x x y ascloseaspossibletothetruetrajectory. andy directions,respectivelyandb andb aretheknown x y x and y location of the image plane origin. Note that the where δpˆn is the estimated position error vector, δvˆn is imageplaneorigineffectivelydefinesthecamerazaxis,so theestimatedvelocityerrorvector, andψˆ istheestimated thevaluesofbxandby arenotmodeledasstates. body-to-navigation frame attitude error (defined as small- Thus the pixel measurement of a star’s location is a non- anglerotationsaboutthenorth,east,anddownaxes). The linearfunctionofthetruestatecorruptedbyadditivewhite accelerometerandgyroscopebiaserrorsarerepresentedby δaˆbandδbˆb,respectively. Thecameraalignmenterrorsare Gaussiannoise,andisrepresentedby representedbyαˆ (definedassmallanglerotationsaboutthe z=h pn,Cn,Cb,s ,s +v (6) camerax,y,andzaxes)andscalefactorbyδsˆ ,δsˆ (defined b c x y x y £ ¤ laterinEqn.(5)). or,equivalently, z=h[x]+v (7) The position, velocity, and attitude errors were modeled as a stochastic process based on the well-known Pinson Thelinearizedobservationmatrix,H,istheJacobianofthe navigationerrormodel[16]. Theaccelerometerandgyro- nonlinearmeasurementfunction,h[],linearizedaboutthe · scopicbiaserrorswereeachmodeledasafirst-orderGauss- referencetrajectory,x¯: Markovprocess[10],basedonthespecificationforthein- ∂h ertialmeasurement unit(IMU).Thecamera misalignment H= (8) ∂x¯ and scalefactor errors are modeled as unknown biases. A ¯x=x¯ ¯ smallamountofprocessnoiseisaddedtothestatedynam- ¯ icstopromotefilterstability[11]. The partial derivatives are calculated about the reference trajectory,startingwiththecamerascalefactorstates. Us- CelestialMeasurementModel ingEquation(3)asareference,thepartialderivativesare ∂h ∂h 0 Ttiohnecoefleasntiiadlemnteiafiseudrecmeleensttiiaslsoimbjpelcyt.thCeecluesrrtieanltopbixjeecltloncais- ·∂sx∂sy¸=·I2×2 0 ¸scn (9) locatedataknowndirectionrelativetotheEarth(basedon astronomical almanac data) [7], and is represented by the Thepartialderivativewithrespecttopositionisexpressed unitvector,ˆse(t ),attimet [4]. Theobjectdirectionvec- n i i by torinthecameraframe,ˆscn(ti),isafunctionofthevehicle ∂h =Π∂scn (10) position, vehicle orientation, and camera-to-body orienta- ∂pn ∂pn tion: ˆsc(t )=CcCbCnˆse(t ) (2) 1The homogeneous form of a vector is that vector augmented n i b n e n i with a “1”. The homogeneous form of the vector [ x y ]T is whereCne istheEarthframetonavigationframedirection [ x y 1 ]T. where, Updates ∂scn = ∂∂pscnn −scn∂∂pscnn (11) As mentioned previously, position measurements are also ∂pn sc nz used to update the Kalman filter. For this research, sur- veyed position and zero velocity values are used to up- and, ∂sc datethefilterduringstationaryprofiles. Duringflightpro- ∂pnn =CcbCbn x1 x2 03×1 3×3 (12) files, single-channel pseudorange measurements from the £ ¤ GlobalPositioningSystem(GPS)areutilized. Anexample where ofatightlycoupledGPSmeasurementmodelispresented in[1]. 0 x1 =  1 ×(Cnesen) (13) RESULTS 0   0 The estimation algorithm was tested using both simulated x2 = Cne  0 ×sen (14) profiles and a real profile flown on a T-38 aircraft. Sim- 1 ulations were constructed to determine the estimation ac-  −   curacy, robustness, and sensitivity of the algorithm. The flight data were used to demonstrate observability of the The partial derivative with respect to body-to-navigation camera calibration states during operational scenarios. In framemisalignmentanglevector,ψ,is addition,theflightdatahelpedtoverifytheaccuracyofthe astronomicalalmanaccalculations. ∂h ∂sc =Π n (15) ∂ψ ∂ψ Simulation where ∂scn = ∂∂sψcn −scn∂∂sψcn (16) TtohpersoivmiduelasttiroonnsgwoebrseebrvasaebdiliotnyaofsttahteioInMarUypbriaosfielseadnedsicganmed- ∂ψ sc nz era calibration parameters. This was achieved by periodi- and cally changing the orientation of the sensor in increments ∂sc of 60 degrees while maintaining a view of the sky. The n =CcCb [(Cnse) ] (17) ∂ψ b n e n × stationaryprofileisshowninTable2. Theskewsymmetricoperator,() ,isdefinedas · × Table2: Stationarycameracalibrationprofile. Theprofile sc 0 sc sc wasdesignedtoprovidestrongobservabilityofIMUbiases nx − nz ny scn×= scny ×= scnz 0 −scnx  (18) whilemaintainingaviewofthesky. sc sc sc 0  nz   − ny nx  Segment Roll(deg) Pitch(deg) Hdg(deg) Finally,thepartialderivativewithrespecttothecamera-to- 1 +60 0 0 bodyframemisalignmentangle,α,is 2 -60 0 0 3 -60 0 60 ∂h =Π∂scn (19) 4 +60 0 60 ∂α ∂α 5 +60 0 120 6 -60 0 120 where ∂sc ∂scn sc ∂scn n = ∂α − n∂α (20) The simulations were conducted using three IMU models ∂α sc nz representingsamplesfromconsumergrade,tacticalgrade, andnavigationgradesensors.Thecameramodelwasbased and ∂sc onthegated-intensifiedCCDcamerausedduringthePeep- ∂αn =Ccb CbnCnesen × (21) ing Talon flight tests [12]. The camera produced 480 by £¡ ¢ ¤ 720pixelinterlacedimageswithafieldofviewofapproxi- Allotherpartialderivativesarezero. mately10by15degrees. Imageupdateswereprocessedat five-secondintervals. Theresultingobservationmatrixis The IMU models represent typical performance of H=h ∂∂phn 03×3 ∂∂ψh 03×6 ∂∂αh ∂∂shx ∂∂shy i consumer-grade, tactical grade, and navigation grade sen- (22) sors. The measurement parameters for each sensor are Table3:InertialmeasurementsensorspecificationsfortheCloudCapTechnologyCristaconsumer-gradeIMU[2],Honeywell HG1700tactical-gradeIMU[5],andHoneywellHG9900navigation-gradeIMU[6]. Theparametersnotedwithanasterisk werenotincludedinthespecificationsandareestimates. Parameter(Units) CristaIMU HG1700 HG9900 Samplinginterval(ms) 5.0 10.0 3.906 Gyrobiassigma(deg/hr) 1800 1.0 0.0015 Gyrobiastimeconstant(hr) 2∗ 2∗ 2∗ Angularrandomwalk(deg/√hr) 2.23 0.3 0.002 Gyroscalefactorsigma(PPM) 10000 150 5 Accelbiassigma(m/s2) 0.196 0.0098 2.45 10−4 Accelbiastimeconstant(hr) 2∗ 2∗ ×2∗ Velocityrandomwalk(m/s/√hr) 0.261 0.57∗ 0.0143∗ Accelscalefactorsigma(PPM) 10000 300 100 listedinTable3. 0.04 0.02 Monte-carlosimulationresultsshowthatthealgorithmac- %) curately and robustly estimates both the camera to body (Sxerror 0 alignmentandcamerascalefactorparameters. Sampleer- −0.02 rorfunctionsareshownfortheHG1700IMUsensor,which are representative of the ensemble, in Figures 2, 3, 4, and −0.04 0 50 100 150 200 250 300 350 400 450 500 5. The rotations in the alignment profile clearly improve theobservabilityofthecameraalignmentparametersasthe 0.04 filter errors (and uncertainty) decrease after each rotation 0.02 maneuver. Notethealignmentanglesareessentiallyunob- %) servableuntilthefirstrotationmaneuver. Thescalefactor (Syerror 0 parameters’observabilityislargelyindependentofmaneu- −0.02 vers,especiallywithawell-populatedstarfield.Thiswould notbethecasewithasmallnumberofavailablestarmea- −0.040 50 100 150 200 250 300 350 400 450 500 GPS Time (s) surements. Figure3: Typicalcamerascalefactorestimationaccuracy 20 fortheCristaIMUduringthesimulatedalignmentprofile. α (mrad)xerror−11000 Trdoehrvesiasatonioldindtohlifentehdeorteetperdrroelsriesn.netsretphreesfielntetrs tahnegueslatirmeastteidmasttaionndaerrd- −20 0 50 100 150 200 250 300 350 400 450 500 20 α (mrad)yerror−11000 AmtioeqnnutoaaflcitgcayutirrvoaecscyeosfptoiemrvraaatneridoooufmsaicwnheiareltvkiaailbslseesnhcsoaowmrnemriaondtoFeilbgsouadrseya6af.luignAncs-- −200 50 100 150 200 250 300 350 400 450 500 expected,improvingthequalityoftheinertialsensoryields 20 improved alignment, up to the accuracy of the image sen- α (mrad)zerror−11000 saaolgiregntmomereaensstuorleevsmetimethnaettse.stfTaorhrilsothcceaotuHiolGdns9b.9e0Iin0mtiphsrioslivmceadisteebd,ytbhinyectrcheaeamsiiemnrga- −200 50 100 150 200 250 300 350 400 450 500 theangularsamplingfrequencyoftheimagingsensor[3]. GPS Time (s) A sensitivity analysis was performed by creating theoreti- Figure2:Typicalcameratobodyalignmentestimationac- calcombinationsofaccelerometerandgyroscopicsensors curacyfortheCristaIMUduringthesimulatedalignment andestimatingtheboresightalignmentaccuracyusingthe profile. The solid line represents the filter angular esti- standardalignmentprofile.Theresults,showninTable(4), mationerrorsandthedottedlinerepresentstheestimated indicate the performance of the gyroscope has a stronger standarddeviationoftheerrors. contributiontotheachievableboresightaccuracy,although bothsensorsinfluencetheultimateperformanceduetocou- 2 0.04 α (mrad)xerror−011 (%)Sxerror 0.00 2 −2 0 50 100 150 200 250 300 350 400 450 500 −0.02 2 −0.04 α (mrad)yerror−011 0.040 50 100 150 200 250 300 350 400 450 500 −2 0 50 100 150 200 250 300 350 400 450 500 0.02 20 %) α (mrad)zerror−11000 (Syerror−0.00 2 −0.04 −20 0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400 450 500 GPS Time (s) GPS Time (s) Figure 5: Typical camera scale factor estimation accu- Figure 4: Typical camera to body alignment estimation racyfortheHoneywellHG1700IMUduringthesimulated accuracy for the Honeywell H-1700 IMU during the sim- alignment profile. The solid line represents the filter an- ulatedalignmentprofile. Thesolidlinerepresentsthefilter gular estimation errors and the dotted line represents the angularestimationerrorsandthedottedlinerepresentsthe estimatedstandarddeviationoftheerrors. estimatedstandarddeviationoftheerrors. surveyorwasusedasadifferentialreferencestation,anda plingbetweenaccelerometerandgyroerrorstates. carrier-smoothedcodedifferentialGPStrajectorywasgen- eratedtoserveasaprecisetruthtrajectory. These results illustrate the relationship between the accu- racy of the optical and inertial sensors and the ability to Thecameracalibrationestimationwasconductedduringa determinetherelativeorientationofthesensors. Morefun- left turning profile, which provided an unobstructed view damentally,evenifamechanicalorothermethodexistedto of the sky. A total of 92 images were used to update the providea“better”alignment(e.g.,relativetothe“case”),it Kalman filter during a 45 second period. The first image wouldbeimpossibletoproveasthesensormeasurements used as a measurement is shown in Figure 8. The filter’s limittheobservabilityoftherelativealignment. estimate of the stars locations along with covariance el- lipses are overlayed on the image. This first image shows T-38FlightDataCollection relativelylargeuncertaintyellipses,indicatingahighlevel of uncertainty in the camera calibration. Figure 9 shows Inordertotestthealgorithm,aflighttestwasperformedat the second image measurement. After incorporating the EdwardsAirForceBaseaspartofthejointAFIT/TestPi- firstimagemeasurement,theuncertaintyellipseshavecol- lotSchool(TPS)program. Thetestplatformconsistedofa lapsed, which indicates the filter has increased confidence T-38aircraft,withthetestconfigurationshowninFigure7. inthecameracalibration. Inaddition,thetrackedstarsap- Thegated-intensifiedCCDcamerawasmountedinsidethe pearwithintheirrespectiveellipses,whichindicatesthefil- canopy, pointing out of the right side of the aircraft. The terhasestimatedthecameracalibrationproperly. imageswererecordedusingaSonydigitalvideorecorder, and a GPS time tag (accurate to 1 ms) was generated by The estimated uncertainty of the camera alignment and a time-code generator and time inserter, and recorded di- scalefactorstatesareshowninFigures10and11,respec- rectlyontothevideoimage.Aliquidcrystaldisplay(LCD) tively. Note the filter achieves a nearly steady-state level monitorwasprovidedforthepilottoseethecameraimages ofconfidenceafterapproximately15secondsofimageup- duringtheflight. dates. The inertial measurements were obtained from a Honey- well H-764G (HG9900 core) Embedded GPS/INS (EGI) navigationsystemmodifiedtoproducehighrate(256Hz) raw∆vb and∆θb measurements. Finally,anAshtechZ- ib surveyor semi-codeless receiver was used to collect dual- frequencyGPSmeasurements. TheL1-C/Acodepseudor- angemeasurementswereusedtoprovideapositionupdate sourcetotheKalmanfilterduringtheprofile. AsecondZ- Table 4: Camera to inertial alignment accuracy accelerometer / gyroscope performance sensitivity. Theoretical alignment performance(in1 σ RMSarcseconds)isshownasafunctionofvariouscombinationsofsensorsfromtheCrista,HG1700, − andHG9900IMUsaftercompletingthestandardalignmentprofile. HG9900Gyro HG1700Gyro CristaGyro HG9900Accel 11.1” 22.7” 41.3” HG1700Accel 11.6” 45.4” 71.8” CristaAccel 12.2” 68.1” 291.2” 101 104 mrad) 100 CONSUMER σ (x10−1 S (arcseconds)103 GRADE 1100−−2210 0 10 20 30 40 50 M σCamera Alignment Error Filter 1− R102 NAGVRIGAADTEIO N TGARCATIDCEA LHG1700 CRISTA σσ (mrad) (mrad)yz1111100000−−0−012110 0 10 20 30 40 50 10−2 HG9900 CAMERA MEASUREMENT PRECISION LIMIT −10 0 10 20 30 40 50 101 Time from first image update (s) 10−4 10−3 10−2 10−1 100 101 102 Gyro Rangom Walk (deg/hr1/2) Figure10: Estimateduncertaintyofcameratobodyalign- ment during T-38 flight profile. Celestial image updates Figure 6: Typical camera to inertial alignment accuracy wereavailableforapproximately38seconds. for various grades of IMU. Specific results are shown for the Crista, HG1700, and HG9900 IMUs after completing thestandardalignmentprofile. 2 1.5 %) σ (sx 1 0.5 0 −10 0 10 20 30 40 50 2 1.5 %) σ (sy 1 0.5 0 −10 0 10 20 30 40 50 Time from first image update (s) Figure 7: Northrop T-38 instrumented with synchronized Figure 11: Estimated uncertainty of camera scale factor digitalvideocameraandinertialnavigationsystem. parameters during T-38 flight profile. Celestial image up- dateswereavailableforapproximately38seconds. GPS Time: 269484.635 0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 Figure8: InitialcelestialupdatefromPeepingTalondatacollection. Thepositionofthetrackedstarsisshownbyaplus(+) symbol. TheellipsesrepresenttheKalmanfilter’suncertaintyofthetruepixellocationofeachstar. GPS Time: 269485.135 0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 Figure9: SecondcelestialupdatefromPeepingTalondatacollection. Thepositionofthetrackedstarsisshownbyaplus(+) symbol. TheellipsesrepresenttheKalmanfilter’suncertaintyofthetruepixellocationofeachstar.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.