ebook img

DTIC ADA462845: Rapid, Room-Temperature Formation of Crystalline Calcium Molybdate Phosphor Microparticles via Peptide-Induced Precipitation PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA462845: Rapid, Room-Temperature Formation of Crystalline Calcium Molybdate Phosphor Microparticles via Peptide-Induced Precipitation

C O M M DOI:10.1002/adma.200600243 U N Rapid, Room-Temperature Formation of Crystalline Calcium IC A Molybdate Phosphor Microparticles via Peptide-Induced T I O Precipitation** N S ByGul Ahmad,Matthew B. Dickerson,Benjamin C. Church,Ye Cai,Sharon E. Jones,Rajesh R. Naik, Jeffrey S. King,Christopher J. Summers,Nils Kröger,andKenneth H. Sandhage* Nature provides numerous examples of organisms that emitting phosphors stimulated by light-emitting diodes for synthesizeintricate mineralstructures(biominerals)with mi- lightingapplications),[4]ascatalystsinpetrochemicalprocess- cro-tonanoscalefeaturesthroughtheuseofspecificbiomole- ing (e.g., as an ester-exchange copolymerization catalyst),[5] cules.[1] While such control over mineral formation under andasnontoxiccorrosion-inhibitingpigments(e.g.,forpaints ambientconditionsexceedscurrentman-madeassemblytech- on steels used in marine applications).[6] While the syntheses nologies, the known biominerals (only about 60 different of calcium molybdate-based powdershas been accomplished mineralshavebeenidentifiedtodate)donotpossesscompo- by methods based on solid-state reaction, coprecipitation, sitionsthatareparticularlyattractiveformanyman-madede- combustionsynthesis,orpyrolysisoforganicprecursors,such vices.[2] Nonetheless, nature’s exquisite control over biomin- powder processing has involved high-temperature firing for eral formation has inspired the search for biomolecules extendedtimes(e.g.,500–1000°Cfor2–8h).[7]Newchemical capable of directing the assembly of non-natural inorganic approachesthatallowfortherapidroom-temperaturesynthe- materials.Peptidesthatexhibitspecificaffinitiesforsynthetic sis of calcium molybdate, as well as other functional multi- materials (e.g., ZnO, Cr O , GeO , Ag, GaAs) have been component transition-metal oxide compounds, would enable 2 3 2 identified by several authors through bacteriophage or cell such compounds to be directly formed on low-temperature surface display (biopanning)methods.[3] However,the use of substrates (e.g., flexible plastics and cloths) or concurrently suchdisplaymethodstoidentifyspecificpeptidesthatinduce with low-temperature materials (e.g., coprecipitation with the formation of crystalline multicomponent metal oxide low-melting organic or inorganic salts). Furthermore, the compounds(i.e., materials widely used in functional devices) identificationofpeptidesthatlocallyinducetheprecipitation at room temperature and ambient pressure has not been ofsuchmulticomponentoxidecompoundscouldallowforor- reportedintheliterature.Inthiswork,aphagedisplaymeth- ganizedfunctionalstructuresatroomtemperature,thatis,the od has been used to identify peptides that bind to, and pro- patterning of such peptides onto surfaces, followed by pep- mote the direct and rapid room-temperature formation of tide-inducedmineralization,wouldyieldfunctionalmulticom- CaO·MoO (powellite) microparticles from aqueous precur- ponentoxideswithtailoredmorphologies. 3 sor solutions. Microscale calcium molybdate-based powders ThesearchforCaMoO -formingpeptidesinvolvedtheuse 4 areattractiveasphosphorparticlesforadvancedlightingand of a commercially available phage display peptide library to display applications (e.g., as stable and efficient red-light- identifypeptidesthatexhibitstrongbindingtoCaMoO pow- 4 der.Afterfiveroundsofselectivepanning,fouruniquephage clones with an affinity for calcium molybdate were isolated. – The amino-acid sequences of the four displayed peptides (labeledCM1toCM4),arelistedinTable1. [*] Prof.K.H.Sandhage,Dr.G.Ahmad,M.B.Dickerson, Precipitationassayswereconductedtoassesswhetherthese Dr.B.C.Church,Dr.Y.Cai,Dr.J.S.King,Prof.C.J.Summers SchoolofMaterialsScienceandEngineering peptides would promote the formation of CaMoO4 from GeorgiaInstituteofTechnology aqueousprecursorsolutions.A25 lLquantityofa2 mgmL–1 771FerstDrive,Atlanta,GA30332-0245(USA) solution of a given peptide in water was introduced into an E-mail:[email protected] S.E.Jones,Dr.R.R.Naik aqueoussolution of 0.5M calcium acetate and 0.2M ammoni- AirForceResearchLaboratory,AFRL/MLPJ um paramolybdate at pH7 and room temperature. For each 3005HobsonWay,Bldg651 ofthefourCMpeptides,precipitationoccurredwithin20min Wright-PattersonAFB,OH45433-7702(USA) ofexposuretotheotherwisestablecalciumacetate–ammoni- Dr.N.Kröger um paramolybdate precursor solution. To confirm that such SchoolofChemistryandBiochemistry GeorgiaInstituteofTechnology precipitation resulted specifically from the presence of the 770StateStreet,Atlanta,GA30332–0400(USA) biopanned peptides, the following control experiments were [**] ThisresearchwassupportedbytheAirForceOfficeofScientificRe- conducted.InsteadoftheCMpeptidesolutions,25 lLquanti- search (Dr.J. Fuller, Dr.H.C. DeLong, program managers) and tiesofeither:i)water,orii)a2 mgmL–1solutionofacontrol theOfficeofNavalResearch(Dr.M.Spector).Supportinginforma- tionisavailableonlinefromWileyInterScienceorfromtheauthors. peptide, CON1 or CON2 (see Table 1), were added to the Adv.Mater.2006,18,1759–1763 ©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 1759 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2006 2. REPORT TYPE 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Rapid, Room-Temperature Formation of Crystalline Calcium Molybdate 5b. GRANT NUMBER Phosphor Microparticles via Peptide-Induced Precipitation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Georgia Institute of Technology,School of Materials Science and REPORT NUMBER Engineering,Atlanta,GA,30332-0245 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 5 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 S N O I T A Table1. Amino-acid sequences and isoelectric point (pI) values of cal- C ciummolybdate-bindingpeptides. I N U Clonenumber Aminoacidsequence pI[a] M CM1 AAPNSPWYAYEY 4.00 M CM2 SWSPAFFMQNMP 5.24 O CM3 YESIRIGVAPSQ 6.00 C CM4 DSYSLKSQLPRQ 8.59 CM3m1 YEAIRIGVAPSQ 6.00 CM3m2 YEAIRIGVAPAQ 6.00 CM3m3 YIVEIASGRPQS 6.00 CM3m4 YESIRISQLPRQ 8.75 CM4m DSYSKSRLQLPQ 8.59 c) CON1 VLPPAIADAPLG 3.80 Mo CON2 VVPLGMELRPRP 9.57 [a]CalculatedusingpI/massprogramatwww.expasy.ch Relative Intensity Au Ca precursor solution. The control peptides did not exhibit spe- cific binding to calcium molybdate and possessed isoelectric point (pI) values that spanned the range of pI values of the CMpeptides.Precipitationwasnotobservedforanyofthese Ca controlexperimentsorfortheprecursorsolutionalone,even after6 hofincubation. 1.0 3.0 5.0 7.0 Scanningelectronmicroscopy(SEM)revealedthatthepre- Energy (keV) cipitates formedunderthe influence ofthe CaMoO binding 4 peptideswereaggregatesoffinerparticles.Asecondaryelec- tron image of the aggregates formed in the presence of the d) CM4peptideisshowninFigure1a.Theaggregateswerecom- CaMoOO prised of fine, roughly spherical particles that were a few 4 micrometersindiameter.Similaraggregatesofsphericalpar- ticlesformedinthepresenceoftheotherthreeCMpeptides. Relative The CM3 peptide also induced the formation of aggregates Intensity comprised of larger, faceted particles (Fig.1b). Energy-dis- persive X-ray (EDX) analyses of the spherical precipitates formed in the presence of the four CM peptides, and of the faceted precipitates formedin the presenceof the CM3 pep- tide,indicatedthepresenceofbothcalciumandmolybdenum, asshowninFigure1c(note:thegoldpeakintheEDXpattern 2θ (degrees) wasduetoathingoldcoatingappliedtotheparticlestoavoid charging in the electron microscope). X-ray diffraction Figure1.a,b)Secondaryelectronimagesoftheprecipitatesgeneratedat (XRD) analysis of the precipitate induced by the CM3 pep- roomtemperatureinthepresenceoftheCM4andCM3peptides,respec- tively. c,d)Energy dispersive X-ray analysis and X-ray diffraction (XRD) tide is shown in Figure1d. Diffraction peaks for only Ca- analyses,respectively,oftheprecipitategeneratedinthepresenceofthe MoO (powellite)weredetected,thatis,peaksfortheoxides 4 CM3peptideatroomtemperature. of calcium or molybdenum, or for other calcium molybdate compounds(Ca MoO , CaMo O , Ca Mo O [8]) were 3 6 3.2 5.3 1.24 1.01 3 not observed. Electron diffraction analyses of particle cross Asmentionedabove,precipitationdidnotoccurinthepre- sections also confirmed the presence of only CaMoO4 (data cursorsolution(0.5Mcalciumacetate,0.2Mammoniumpara- not shown). Similar XRD patterns were obtained from the molybdate)fortimesaslongas6 hintheabsenceoftheCM precipitates induced by the other CM peptides(see the Sup- peptides. In order to evaluate whether pure CaMoO would 4 porting Information).Hence, even though the molar ratio of precipitate from a more concentrated precursor solution, a CatoMo(1:2.8)inthestartingprecursorsolutionwasmolyb- 2M aqueous solution of calcium acetate was mixed with an denum-richrelativetothestoichiometryofCaMoO4,theCM equal amount of an aqueous 0.8M solution of ammonium peptides induced the formation of only the latter compound paramolybdate (i.e., the precursor concentrations were (i.e., the compound against which these peptides were se- doubled, while keeping the calcium acetate to ammonium lectedbybiopanning).Thisfurtherindicatesthespecificityof paramolybdateratiofixed).Precipitationwasobservedtooc- thesepeptidesforinducingpowelliteformation. curimmediatelyuponmixing.After2 h,thesupernatantwas 1760 www.advmat.de ©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Adv.Mater.2006,18,1759–1763 C O M M removedfromtheprecipitate,whichwasthendriedbyusing aa)) U vacuumcentrifugation.Uponwashingoftheprecipitatewith N deionized(DI)wateritwasobservedthatmostoftheprecipi- I C tatewaslostthroughdissolution.Inasubsequentexperiment A undersimilarprecipitationconditions,theprecipitatewasnot T I washedafterremovalofthesupernatantandvacuumcentrifu- RReellaattiivvee O N gation. XRD analysis revealed the presence of substantial WWeeiigghhtt %% S amounts of ammonium molybdenum oxide hydrate ([NH ] Mo O ·4H O)andlime(CaO)alongwithpowellite 46 8 27 2 in the precipitate (shown in Fig.2S of the Supporting Infor- mation). For comparison, the precipitate formed after only 10minofincubationoftheoriginal precursorsolution(0.5M calcium acetate, 0.2M ammonium paramolybdate) with the CM3 peptide was also examined by XRD analysis without TTeemmppeerraattuurree ((ººCC)) washingthe precipitatewith DIwater.The XRD patternfor thisprecipitate (shownin Fig.2S of the SupportingInforma- bb)) 3300 tion)yieldeddiffractionpeaksforonlyCaMoO (i.e.,thedif- 4 fractionpatternwassimilartothatshowninFig.1d).Hence, while a solid mixture containing some CaMoO could be 2255 4 formedfromasupersaturatedprecursorsolution,onlytheuse of the CM-binding peptides allowed for the rapid formation 2200 ofpureCaMoO fromasolubleprecursorsolution. 4 The photoluminescence emission of peptide-induced cal- CM//PPep ciummolybdateparticleswasevaluatedusing300nmUVex- Rattiioo 1155 citationatroomtemperature.Arepresentativephotolumines- (mgg//mg) cence spectrum obtained from the precipitate formed in the presence of the CM3 peptide is shownin Figure2. An emis- 1100 sion peak centered around 530nm (green) was observed, whichissimilartothatreportedpreviouslyforCaMoO .[4a,7c] 4 ToquantifytheamountofCaMoO formedinthepresence 55 4 ofagivenCMpeptide,theprecipitatedmaterialwasdriedfor 16h at 65°C, and then subjectedto thermogravimetric (TG) 00 analyseswhileheatingat5°Cmin–1upto600°Cinair.Arep- CCMM11 CCMM33 CCMM33mm22 CCMM33mm44 CCMM44mm CCOONN22 resentative TG analysis of the precipitate generated in the CCMM22 CCMM33mm11 CCMM33mm33 CCMM44 CCOONN11 presence of the CM3 peptide is shown in Figure3a. The Peptide weight loss due to evaporation and pyrolysis was completed uponheatingtoabout400°C.Thetotalweightlossafterheat- Figure3.a)TGanalysisrevealingtheweightlossofthedriedCaMoO 4 ingto600°Cwasonly13.5%,whichindicatedthattheprecip- precipitategeneratedfromtheCM3peptideuponheatingat5°Cmin–1 itatewascomprisedof86.5wt%CaMoO4.Quantitativeanal- to600°Cinair.b)TheratiooftheweightofCaMoO4precipitategener- ated per weight of peptide (CM/Pep ratio) for the peptides listed in Table1(forsimilarexposuretimesof2h). ysesoftheamountofCaMoO formeduponexposurefor2 h 4 to each of the CM peptides is indicated in Figure3b. These datawereobtainedby measuringtheweight ofeach precipi- Relative tateafterheatingat5°Cmin–1to600°Cinair(i.e.,aftercom- Intensity pleteevaporationofthevolatileconstituentsandpyrolysisof the organic material presentwith the precipitated CaMoO ). 4 While all the peptides, CM1–CM4, induced the formation of significant amounts of calcium molybdate (i.e., >6mg Ca- MoO per mg of peptide), the CM3 peptide generated the 4 largest amount of CaMoO (27mg CaMoO per mg of pep- 4 4 Wavelength (nm) tide). Although all four CM peptides exhibited selective binding Figure2.Photoluminescencespectrum,obtaineduponstimulationwith affinities for CaMoO , and induced the rapid formation of 300nmlight,oftheCaMoO4precipitategeneratedinthepresenceofthe 4 CM3peptide. only this compound from the precursor solution, the amino- Adv.Mater.2006,18,1759–1763 ©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.advmat.de 1761 S N O I T A acid sequences of these four peptides were surprisingly di- ThepowderwasplacedintheTBSTsolution(5mgCaMoO to1mL 4 C verse(seeTable 1).Noapparenthydrophobic,hydrophilic,or TBST)andthenexposedtothephagesolution(10lLofphagesolu- NI charged sequences were conserved among all four peptides. tionper5mgofCaMoO4)foratotaltimeof1hatroomtemperature U on a rotator operating at 25rpm. After such exposure, the powder However,allfourCMpeptidespossessedatleasttwohydrox- wasvigorouslywashedtentimeswith1mLofaTBSTsolution,con- M yl-bearingaminoacids(serine,threonine,tyrosine).Itisinter- taining 0.5% Tween-20at pH7.5 with tris-hydroximethyaminoethy- M estingtonotethatspecificserineresidueshavebeenfoundto lene,toremoveanyunboundorlooselyboundphageparticles.The O becritical forthecomplexationofmolybdenumintheactive powder was then exposed to a solution of 0.2M glycine with HCl C sites of certain bacterial enzymes.[9a,b] Furthermore, three of (pH2.20)for7mintoelutethephageparticlesadheringtotheCa- MoO.TheelutedphageparticlesweretransferredtoanewEppen- 4 theCMpeptides(CM1,CM3,CM4)containedaresiduewith dorftubeandneutralized(topH7.0)withtheadditionof150lLof a second negatively charged carboxylate group (aspartate, theTBSTsolution.Theelutedphageparticleswereamplifiedbyincu- bation for 4.5h with Escherichia coli K12 host cells that had been glutamate) in addition to the C-terminal carboxylate group. grownovernightonLuriaBroth(LB)medium.Thebiopanningpro- Li et al. have previously reported that calcite-binding pep- cess(exposuretoCaMoO powder,washing,acidelution,amplifica- 4 tides, identified from a phage display library, exhibited an tion)wasrepeatedfourtimestofurtherisolateandenrichthecalcium enrichment in hydroxyl-bearing, or hydroxyl- and carboxyl- molybdate-bindingphage.Afterthefinalroundofpanning,Escheri- ate-bearing,amino-acidresidues.[9c] chiacolihostcellswereinfectedwiththeelutedphageandspreadon LB(FisherScientific,USA)platescontaining5-Bromo-4-Chloro-3-in- MutationsoftheCM3andCM4peptideswereusedtoeval- dolyl-b-D-galactopyranoside(X-gal,Invitrogen,Carlsbad,CA,USA) uatetheinfluenceoftheserineresiduesonCaMoO4precipi- and isopropyl-b-D-thiogalactopyranoside (IPTG, Invitrogen). DNA tation (see Table 1). When one or both serine residues were obtainedfrom the phage clones was sequencedusingan automated replaced by alanine, the amount of CaMoO formed within sequencer(ABI310,PEAppliedBiosystems,FosterCity,CA).Pep- 4 tides weresynthesizedby a commercial vendor(New EnglandPep- 2 h was reduced by 32–38% (compare CM3m1 and CM3m2 tides,Gardner,MA,USA). toCM3inFig.3b).Whentherelativepositionsoftheamino For precipitation assays, precursor solutions of calcium acetate acidswerealtered,withoutchangingtheamino-acidcomposi- (Ca(CHO) ·HO,99%purity,AlfaAesar)andammoniumpara- 2 5 2 2 2 tions, the CaMoO4 yield was again significantly reduced molybdate ((NH4)6Mo7O24·4H2O, 99% purity, Alfa Aesar) were preparedinDIwater(Nano-PureDiamondUltrapureWaterSystem, (CM3m3generated32%lessCaMoO thanCM3,andCM4m 4 BarnsteadInternational,Dubuque,IAUSA).A100lLquantityofa generated69%lessCaMoO4thanCM4).Replacementofthe 1Mcalciumacetateaqueoussolutionwasmixedwith100lLofa0.4M last six residues at the C terminus of the CM3 peptide with solutionofammoniumparamolybdateatpH7.Agivenprecipitation thelastsixC-terminalresiduesoftheCM4peptideresultedin assaywasinitiatedbyintroducing25lLofaparticularpeptidesolu- tion(2mgmL–1)tothisprecursorsolutionatroomtemperature.The a62%reductionintheamountofcalciummolybdateformed concentrations of individual peptides in solution were evaluated by (compare CM3m4 to CM3 in Fig.3b). However,the amount spectrophotometricanalysisat280nm,usingtheknownmolarextinc- of CaMoO formed with the CM3m4 peptide was similar to tioncoefficientsoftryptophanandtyrosine.Theprecipitatesformed 4 thatfortheCM4peptide(note:thepIoftheCM3m4mutant after2hinthepresenceofthepeptideswerewashedthreetimeswith DIwaterandthenwithmethanol.Theprecipitates werethendried wasclosetothatoftheCM4peptide).Theseresultsindicate for16hat65°C. that the serine content, the positions of the amino-acid resi- SEM was conducted using a field emission gun microscope dues,andtheacidity/basicityofthescreenedCMpeptidesin- (Leo1530 FEG SEM, Carl Zeiss SMT Ltd., Cambridge, UK) fluencetheamountofCaMoO formedatroomtemperature. equipped with an EDX spectrometer (INCA EDS, Oxford Instru- 4 ments,Bucks,UK).Transmissionelectronmicroscopywasconducted To the authors’ knowledge, this work is the first report of withaJEOL4000EXinstrument.XRDanalyses(PhilipsPW1800, theuseofphage-display-screenedpeptidestoinducetherap- PANalytical Almelo, The Netherlands) were conducted with CuKa id, room-temperatureformationofa specific functionalcrys- radiation at a scan rate of 0.6°min–1. TG analyses were conducted talline multicomponent oxide compound (CaO·MoO ). The with a Netzsch449C Simultaneous Thermal Analyzer (Selb, Ger- 3 many).QuantitativeanalysesoftheamountofCaMoO formedupon directformationofsuchbinaryoxidecompoundswithoutthe 4 exposuretoeachoftheCMpeptideswereobtainedbymeasuringthe needforfiringatelevatedtemperaturesopensthedoortothe weightofeachprecipitateafterheatingat5°Cmin–1to600°Cinair. biosculpting (peptide patterning, then localized peptide-in- The photoluminescence emission spectrum of peptide-induced cal- duced mineralization) of functional compounds onto or with cium molybdate particleswasevaluatedat roomtemperature, using low-temperatureorchemicallydissimilarmaterials. chopped(100Hz,ChopperSyncII,Spiricon,Logan,UT)300nmUV excitationfroma300wattXenonarclamp(OrielInstruments,Strat- ford,CT)coupledtoa1/4metermonochromater(Cornerstone260, Oriel Instruments).Thepowderspecimens wereexcitedat 45° inci- Experimental dence, andtheresultingemissionwascollected at normalincidence usingacollimatinglens(74-UV,OceanOptics,Dunedin,FL)andafi- berprobe(LG-455-020-3,ActonResearchCorp.,Acton,MA).Thefi- Acommercialcombinatorialphagedisplaypeptidelibrary(PhD12 ber probe was coupled to an emission monochromator (Spectra kit, New England Biolabs, Beverly, MA, USA) was used to isolate Pro500i, Acton Research Corp.), affixed with a thermoelectrically peptidesthatbindtocalciummolybdate(CaMoO4)powder(99.9% cooled photosensor module (H7422-50, Hamamatsu Corp., Bridge- purity,AlfaAesar,WardHill,MAUSA).Priortothebiopanningex- water,NJ).Thedetectedsignalwasacquiredusingalock-inamplifier periments,thepowderwasvigorouslywashed(byvortexingandcen- (SignalRecovery5210,OakRidge,TN). trifugation) ten times with 1mL of a tris-buffered saline Tween (TBST)solutioncomprising0.2%Tween-20bufferedatpH7.5with Received:February7,2006 tris-hydroximethyaminoethylene (AMRESCO, Solon, OH, USA). Finalversion:April26,2006 1762 www.advmat.de ©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Adv.Mater.2006,18,1759–1763 C O M M – [4] a)M. Makoto, in Phosphor Handbook (Eds: S. Shionoya, W.M. U [1] a)J.R.Young,J.M.Didymus,P.R.Bown,B.Prins,S.Mann,Nature Yen),CRCPress,BocaRaton,FL1999,p.204.b)Y.Hu,W.Zhuang, N 1992,356,516.b)S.Mann,Nature1993,365,499.c)S.Mann,G.A. H.Ye,D.Wang,S.Zhang,X.Huang,J.AlloysCompd.2005,390, I Ozin,Nature1996,382,313.d)N.Kröger,R.Deutzmann,M.Sum- 226. c)J. Wang,X. Jing,C. Yan,J. Lin,J.Electrochem.Soc.2005, C A per,Science1999,286,1129.e)J.N.Cha,K.Shimizu,Y.Zhou,S.C. 152,G186.d)V.B.Mikhailik,H.Kraus,G.Miller,M.S.Mykhaylyk, T Christiansen,B.F.Chmelka,G.D.Stucky,D.E.Morse,Proc.Natl. D.Wahl,J.Appl.Phys.2005,97,083523/1. I Acad.Sci.USA1999,96,361.f)J.Aizenberg,A.Tkachenko,S.Wei- [5] a)E.Nagai, M.Sumoto,T.Akiyama,Jpn.Patent 43006077,1968. O ner,L.Addadi,G.Hendler,Nature2001,412,819.g)X.Su,A.M. b)Y.Tamura,I.Kobayashi,Jpn.Patent46027546,1971.c)B.I.Po- N Belcher,C.M.Zaremba,D.E.Morse,G.D.Stucky,A.H.Heuer, pov,L.N.Shkuratova,Y.V.Maksimov,V.V.Gustov,React.Kinet. S Chem.Mater.2002,14,3106.h)E.Bauerlein,Angew.Chem.Int.Ed. Catal.Lett.1982,20,293.d)M.Baerns,O.V.Buyevskaya,M.Kubik, 2003,42,614.i)V.C.Sundar,A.D.Yablon,J.L.Grazul,M.Ilan, G.Maiti,O.Ovsitser,O.Seel,Catal.Today1997,33,85.e)S.I.Woo, J. Aizenberg, Nature 2003, 424, 899. j)J. Aizenberg,J.C.Weaver, J.S.Kim,H.K.Jun,J.Phys.Chem.B2004,108,8941. M.S.Thanawala,V.C.Sundar,D.E.Morse,P.Fratzl,Science2005, [6] a)L.R.Horn,PaintVarn.Prod.1973,63,29.b)M.S.Vukasovich, 309,275.k)D.Schultheiss,R.Handrick,D.Jendrossek,M.Hanzlik, F.J.Sullivan,USPatent4017315,1977.c)M.S.Vukasovich,J.P.G. D.Schuler,J.Bacteriol.2005,187,2416.l)B.-A.Gotliv,N.Kessler, Farr, Polyhedron 1986, 5, 551. d)K. Hamano, M. Kawabata, Jpn. J.L.Sumerel,D.E.Morse,N.Tuross,L.Addadi,S.Weiner,Chem- Patent 08073776, 1996. e)E. Nabetani, Jpn. Patent 2000230137, BioChem2005,6,304. 2000. [2] a)H.A.Lowenstam,S.Weiner,inBiomineralizationandBiological [7] a)A.W.Sleight,ActaCrystallogr.1972,28,2899.b)G.Flor,V.Ber- Metal Accumulation (Eds: P. Westbroek, E.W. deJong), Reidel, benni,V.Massarotti,R.Riccardi,E.V.Tkachenko,Z.Naturforsch. Holland 1983, p.191. b)S. Weiner, L. Addadi, Science 2002, 298, A1979,34,394.c)J.A.Groenink,C.Hakfoort,G.Blasse,Phys.Sta- 375. tusSolidiA1979,54,329.d)E.F.Paski,M.W.Blades,Anal.Chem. [3] a)S.Brown,Proc.Natl.Acad.Sci.USA1992,89,8651.b)S.Brown, 1988,60,1224.e)P.Yang,G.-Q.Yao,J.-H.Lin,Inorg.Chem.Com- Nat. Biotechnol.1997,15, 269.c)D.J.H.Gaskin,K. Starck,E.N. mun.2004,7,389–391.f)A.Sen,P.Pramanik,Mater.Lett.2002,52, Vulfson,Biotechnol.Lett.2000,22,1211.d)S.R.Whaley,D.S.Eng- 140. lish,E.L.Hu,P.F.Barbara,A.M.Belcher,Nature2000,405,665. [8] a)T.M. Yanushkevich,V.M. Zhukovskii,Zh.Neorg.Khim. 1973, e)R.R.Naik,S.J.Stringer,G.Agarwal,S.E.Jones,M.O.Stone, 18,2234.b)B.Lindblom,Scand.J.Metall.1989,18,61. Nat.Mater.2002,1,169.f)M.Sarikaya,C.Tamerler,A.K.-Y.Jen, [9] a)F. Schneider, J. Löwe, R. Huber, H. Schindelin, C. Kisker, J. K.Schulten,F.Baneyx,Nat.Mater.2003,2,577.g)R.R.Naik,S.E. Knablein,J.Mol.Biol.1996,263,53.b)C.A.Trieber,R.A.Roth- Jones,C.J.Murray,J.C.McAuliffe,R.A.Vaia,M.O.Stone,Adv. ery, J.H. Weiner, J. Biol. Chem. 1996, 271, 27339. c)C. Li, G.D. Funct. Mater. 2004, 14, 25. h)M.B. Dickerson, R.R. Naik, M.O. Botsaris,D.L.Kaplan,Cryst.GrowthDesign2002,2,387. Stone,Y.Cai,K.H.Sandhage,Chem.Commun.2004,1776. ______________________ Adv.Mater.2006,18,1759–1763 ©2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.advmat.de 1763

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.