Source-Tree Routing in Wireless Networks (cid:3) J.J. GARCIA-LUNA-ACEVES MARCELO SPOHN ComputerEngineeringDepartment NokiaWirelessRouters BaskinSchool ofEngineering MountainView,CA 94041,USA UniversityofCalifornia [email protected] Santa Cruz, CA 95064,USA [email protected] [1],DSR[10,7],TORA[24],SSA[19],ZRP[26]). Alloftheon- Abstract demand routing protocols reported todateare based on distances Wepresentthesource-treeadaptiverouting(STAR)protocoland todestinations, andtherehavebeennoon-demandlink-statepro- analyzeitsperformanceinwirelessnetworkswithbroadcastradio posalstodate. On-demandroutingprotocolsdifferonthespecific links. RoutersinSTARcommunicatetoitsneighborstheirsource mechanismsusedtodisseminateflood-searchpacketsandtheirre- routing trees either incrementally or in atomic updates. Source sponses, cachetheinformationheard fromother nodes’ searches, routing trees are specified by stating the link parameters of each determinethecostofalink,anddeterminetheexistenceofaneigh- linkbelongingtothepathsusedtoreacheverydestination.Hence, bor. a router disseminates link-state updates to its neighbors for only In a table-driven algorithm, each router maintains path infor- thoselinksalongpathsusedtoreachdestinations. Simulationre- mationforeachknown destinationinthenetworkandupdatesits sultsshowthatSTARisanorderofmagnitudemoreefficientthan routing-table entries as needed. Examples of table-driven algo- anytopology-broadcastprotocol,andfourtimesmoreefficientthan rithms based on distance vectors are the routing protocol of the ALP,whichwasthemostefficienttable-drivenroutingprotocolbased DARPApacket-radio network[11], DSDV[3], WRP[21], WIRP onpartiallink-stateinformationreportedtodate. Theresultsalso [15],andleast-resistanceroutingprotocols[17]. Priortable-driven show that STAR is even more efficient than the Dynamic Source approaches to link-state routing in ad hoc networks are based on Routing (DSR) protocol, which has been shown to be one of the topology broadcast. However, disseminating complete link-state bestperformingon-demandroutingprotocols. informationtoallroutersincursexcessivecommunicationoverhead inanad-hocnetworkbecauseofthedynamicsofthenetworkand thesmallbandwidth available. Accordingly, alllink-staterouting approaches for ad hoc networks have been based on hierarchical 1. Introduction routing schemes [20, 6, 18]. To date, the debate on whether a Multi-hop packet-radio networks, or ad hoc networks, consist of table-driven oranon-demand routingapproach isbest for adhoc mobilehostsinterconnected byroutersthatcanalsomove. Rout- networks has assumedthattable-drivenroutingnecessarilyhasto ingalgorithmsforadhocnetworkscanbecategorizedaccordingto provide shortest paths, when infact on-demand routing protocols thewayinwhichroutersobtainroutinginformation,andaccording cannotensureoptimumorshortestpaths. tothetypeofinformationtheyusetocomputepreferredpaths. In Wepresentthesource-treeadaptiverouting(STAR)protocolas termsofthewayinwhichroutersobtaininformation,routingpro- anapproachtoobtainingefficientroutinginadhocnetworksusing tocolshavebeenclassifiedastable-drivenandon-demand.Interms link-stateinformation. Thekeycontributionsofthispaperconsist ofthetypeofinformationusedbyroutingprotocols,routingproto- of: (a)introducingthemostbandwidth-efficienttable-drivenrout- colscanbeclassifiedintolink-stateprotocolsanddistance-vector ing protocol for wireless networks to date, and (b) showing how protocols.Routersrunningalink-stateprotocolusetopologyinfor- a table-driven routing protocol can be more efficient than an on- mationtomakeroutingdecisions;routersrunningadistance-vector demand routing protocol by exploiting link-state information and protocolusedistancesand,insomecases,pathinformation,todes- allowingpathstakentodestinationstodeviatefromtheoptimumin tinationstomakeroutingdecisions. ordertosavebandwidth. Inanon-demandroutingprotocol,routersmaintainpathinfor- InSTAR,aroutersendsupdatestoitsneighborsregardingthe mation for only those destinations that they need to contact as a linksinitspreferredpathstodestinations. Thelinksalongthepre- source or relay of information. The basic approach consists of ferred paths from a source to each desired destination constitute allowing a router that does not know how to reach a destination asourcetreethatimplicitlyspecifiesthecompletepathsfromthe to send a flood-search message to obtain the path information it source to each destination. Each router computes its source tree needs. Thefirstroutingprotocol ofthistypewasproposed toes- basedoninformationaboutadjacentlinksandthesourcetreesre- tablishvirtualcircuitsintheMSEnetwork[25],andtherearesev- ported by its neighbors, and reports changes to its source tree to eralmorerecentexamplesofthisapproach(e.g.,AODV[2],ABR all itsneighbors incrementally or atomically. The aggregation of ThisworkwassupportedbytheDefenseAdvancedResearchProjectsAgency adjacent links and source trees reported by neighbors constitutes (DA(cid:3)RPA)undergrantF30602-97-2-0338. thepartialtopology known byarouter. Unlikeanyof thehierar- chicallink-stateroutingschemesproposedtodateforpacket-radio networks [18], STARdoes not require backbones, the dissemina- Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 1999 2. REPORT TYPE 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Source-Tree Routing in Wireless Networks 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of California at Santa Cruz,Department of Computer REPORT NUMBER Engineering,Santa Cruz,CA,95064 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 10 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 tion of complete cluster topology within acluster, or the dissem- ination of the complete inter-cluster connectivity among clusters. 3. Updating Routes in Wireless Networks Furthermore,STARcanbeusedwithdistributedhierarchicalrout- Wecandistinguishbetweentwomainapproachestoupdatingrout- ingschemesproposedinthepastforbothdistance-vectororlink- inginformationintheroutingprotocolsthathavebeendesignedfor staterouting[16,18,22,9]. wirelessnetworks: theoptimum routingapproach(ORA)andthe Priorproposalsforlink-stateroutingusingpartiallink-statedata least-overheadroutingapproach(LORA).WithORA,therouting without clusters[13, 14] requirerouters toexplicitlyinformtheir protocolattemptstoupdateroutingtablesasquicklyaspossibleto neighbors which links they use and which links they stop using. providepathsthatareoptimumwithrespecttoadefinedmetric.In Incontrast, because STARsends onlychanges tothestructureof contrast, withLORA,theroutingprotocol attemptstoprovidevi- sourcetrees,andbecauseeachdestinationhasasinglepredecessor ablepaths, whichneednotbeoptimum, causingtheleastamount inasourcetree,arouterneedstosendonlyupdatesforthoselinks ofcontroltraffic. that are part of the tree and a single update entry for the root of ForthecaseofORA,theroutingprotocolcanprovidepathsthat anysubtreeofthesourcetreethatbecomesunreachableduetofail- areoptimumwithrespecttodifferenttypesofservice(TOS),such ures. RoutersreceivingaSTARupdatecaninfercorrectlyallthe asminimum-delaypathsormaximum-bandwidthpaths.Therestof linksthatthesenderhasstoppedusing,withouttheneedforexplicit thispaper,however,focusesonasingleTOStoaddresstheperfor- deleteupdates. manceofroutingprotocolsprovidingORA,andusesshortest-path Section 2 introduces the network model assumed throughout routingasthesingleTOSsupportedforORA. therestofthepaper. Section3describestwodifferentapproaches On-demand routing protocols such as DSR follow LORA, in thatcanbeusedtoupdateroutinginformationinwirelessnetworks: thattheseprotocolsattempt tominimizecontrol overhead by: (a) theoptimumroutingapproach(ORA)andtheleast-overheadrout- maintainingpathinformationforonlythosedestinationswithwhich ingapproach(LORA),andelicitthereasonswhySTARisthefirst therouterneedstocommunicate,and(b)usingthepathsfoundaf- table-drivenroutingprotocol thatcanadopt LORA.Section4de- terafloodsearchaslongasthepathsarevalid,evenifthepathsare scribesSTARandhowitsupportsORAandLORA.Section5com- notoptimum. paresSTAR’sperformanceagainsttheperformanceofothertable- Wecanviewthefloodsearchmessagesusedinon-demandrout- driven and on-demand routing protocols. The simulation results ingprotocolsasaformofpollingofdestinationsbythesources.In show that STAR is four times more bandwidth-efficient than the contrast, in a table-driven routing protocol, it is the destinations best-performinglink-stateroutingprotocolpreviouslyproposed,an who poll thesources, meaning that the sources obtain their paths orderofmagnitudemorebandwidth-efficientthantopologybroad- to destinations as a result of update messages that first originate casting, and more bandwidth-efficient than DSR, which is avery at the destinations. What isapparent isthat flooding of informa- efficienton-demandroutingprotocol[10]. tion occurs in both approaches. Interestingly, all the table-driven routing protocols reported to date for ad-hoc networks adhere to ORA, and admittedly have been adaptations of routing protocols developedforwirednetworks.AconsequenceofadoptingORAin 2. Network Model InSTAR,routersmaintainapartialtopologymapoftheirnetwork. table-drivenroutingwithinawirelessnetworkisthat,ifthetopol- Inthispaperwefocusonflattopologiesonly, i.e.,thereisnoag- ogyofthenetworkchangesveryfrequently,therateofupdatemes- gregationoftopologyinformationintoareasorclusters. sagesincreasesdramatically,consumingthebandwidthneededfor TodescribeSTAR,thetopologyofanetworkismodeledasadi- userdata.Thetwomethodsusedtoreducetheupdaterateintable- rectedgraph ,where isthesetofnodesand isthe drivenroutingprotocolsareclusteringandsendingupdatesperiod- setofedgescGonn=ec(tVin;gEth)enodes.VEachnodehasauniqueidEentifier ically. Clusteringisattractiveto reduce overhead due to network andrepresentsarouterwithinputandoutputqueuesofunlimited size; however, iftheaffiliationsofnodeswithclusterschangetoo capacityupdatedaccordingtoaFIFOpolicy.Inawirelessnetwork, often, thenclusteringitselfintroduces unwanted overhead. Send- anodecanhaveconnectivitywithmultiplenodesinasinglephysi- ingperiodicupdatesafterlongtimeoutsreducesoverhead,anditis calradiolink. Forthepurposeofrouting-tableupdating,anodeA atechniquethathasbeenusedsincetheDARPApacket-radionet- canconsideranothernodeBtobeadjacent(wecallsuchanodea work was designed [11]; however, control trafficstill has to flow “neighbor”)ifthereislink-levelconnectivitybetweenAandBand periodicallytoupdateroutingtables. AreceivesupdatemessagesfromBreliably. Accordingly,wemap Giventhatbothon-demand andtable-drivenroutingprotocols incurfloodingofinformationinonewayoranother,atable-driven aphysical broadcast linkconnecting multiplenodes intomultiple routingprotocolcouldbedesignedthatincurssimilarorlessover- point-to-pointbidirectionallinksdefinedforthesenodes. Afunc- headthanon-demandroutingprotocolsbylimitingthepollingdone tionalbidirectionallinkbetweentwonodesisrepresentedbyapair bythedestinationstobethesameorlessthanthepollingdoneby ofedges,oneineachdirectionandwithacostassociatedthatcan thesourcesinon-demandroutingprotocols. varyintimebutisalwayspositive. There has been no prior description of a table-driven routing All messages, changes inthe cost of alink, linkfailures, and protocolthatcantrulyadheretoLORA,i.e.,onethathasnoneed new-neighbornotificationsareprocessedoneatatimewithinafi- forperiodicupdates,usesnoclustering,andremainsquietaslong nitetimeandintheorderinwhichtheyaredetected.Routersareas- asthepathsavailableattheroutersarevalid, eveniftheyarenot sumedtooperatecorrectly,andinformationisassumedtobestored optimum. The reason why no prior table-driven protocols based withouterrors. onLORAhavebeenreportedisthat,withtheexceptionofWIRP andWRP,priorprotocolshaveusedeitherdistancestodestinations, topologymaps,orsubsetsofthetopology,toobtainpathstodesti- nations,andnoneofthesetypesofinformationpermitsarouterto STARassumingthatDijkstra’sshortest-pathfirst(SPF)algorithm discernwhetherthepathsitusesareinconflictwiththepathsused isusedateachroutertocomputepreferredpaths. byitsneighbors. Accordingly,routersmustsendupdatesafterthey AnLSUforalink inanupdatemessageisatuple changetheirroutingtablesinordertoavoidloops,andthebestthat reportingthecharacte(rius;tivc)softhelink,where represents(thue;vc;ols;tt) canbedoneistoreducethecontroltrafficbysendingsuchupdates ofthelinkand isthetimestampassignedtotlheLSU. periodically. Arouter mtaintainsatopologygraph ,asourcetree ,a routingtablei,thesetofneighbors ,thesToGuricetrees reSpoTrited i byeachneighbor , thetoNpoilogy graphs SrTexportedby i 4. STAR Description each neighbor x 2 ,Naind the system time TuGsexd to generate time stamps foxr L2SUNs.i The record entry forTailink in the 4.1. Overview topologygraphofrouter isdenoted andi(sud;evfi)nedby InSTAR,eachrouterreportstoitsneighborsthecharacteristics thetuple ,aindanattribTutGei(uin;vth)etupleisdenoted of every linkituses toreach adestination. Theset of linksused by (u;v;l.;Tt;hdeesla)menotationappliepstoalink in , byarouterinitspreferredpathtodestinationsiscalledthesource Ti,Gani(du;v):ip. issettoTRUEifthe(uli;nvk)isnSotTiin treeoftherouter. Arouterknowsitsadjacentlinksandthesource SthTexsourceTtrGeexofTaGnyi(nue;igvh)b:doer.l treesreportedbyitsneighbors; theaggregationofarouter’sadja- A vertex in is denoted . It contains a tuple centlinksandthesourcetreesreportedbyitsneighborsconstitute v0 0T0 Gi 0 whoTseGvia(lvue)sareusedonthecom- apartialtopologygraph. Thelinksinthesourcetreeandtopology (pdu;taptrioend;osfutch;eds;odurc;esutrcee;.nbr) reports the distance of the graphmustbeadjacentlinksorlinksreportedbyatleastoneneigh- path , is T’sGpir(evd)e:cdessorin , bor. Therouterusesthetopologygraphtogenerateitsownsource isthein;extvhTopGail(ovn)g:ptrheedpathvtowards , 0hio;ldsvthTeGadid(vre)s:ssuocf tree.Eachrouterderivesaroutingtablespecifyingthesuccessorto theprevioushoptowards , 0correspovndssutocthepreviousdistance eachdestinationbyrunningalocalroute-selectionalgorithmonits to reported by 0, 0v0 ids the cost of the path the last sourcetree. timvethecostofthseucpathdchanged by ,and iisa;flavgusedto UnderLORA,arouterrunningSTARsendsupdatesonitssource determine if an update message must(cid:1)be genenrbarted when the dis- treetoitsneighborsonlywhenitlosesallpathstooneoremoredes- tancereportedbythenewsuccessortowards increases.Thesame tinations,whenitdetectsanewdestination,whenitdeterminesthat notationappliestoavertex in , i,anvd i. localchangestoitssourcetreecanpotentiallycreatelongtermrout- Thesourcetree isavsubsSeTtiofSTx . TheTrGouxtingtablecon- ingloops,orwhenthechangeinthecostofapathtoadestination tainsrecordentriesSfoTridestinationsinTGi,eachentryconsistsof exceedsathreshold. Becauseeachroutercommunicatesitssource thedestinationaddress,thecostoftheSpaTtihtothedestination,and treetoitsneighbors,thedeletionofalinknolongerusedtoreach theaddressofthenext-hoptowardsthedestination. adestination isimplicitwiththeadditionof thenew linkused to The topology graph i contains the links in i and the reachthedestinationandneednotbesentexplicitlyasanupdate;a linksreportedbyneighborTGixnamessagebeingprocesSseTdxbyrouter routermakesexplicitreferencetoafailedlinkonlywhenthedele- ,afterprocessingthemessxage i i. tion of a link causes the router to have no paths to one or more i Arouter runningLORAalsToGmxai(cid:17)ntaSinTsxthelastreportedsource destinations, inwhichcasetheroutercannotprovidenewlinksto tree 0. i makethedeletionofthefailedlinkimplicit. TShTeicostofafailedlinkisconsideredtobeinfinity. Theway Thebasicupdate unitused inSTARtocommunicate changes in which costs are assigned to links is beyond the scope of this tosourcetreesisthelink-stateupdate(LSU).AnLSUreportsthe specification.Asanexample,thecostofalinkcouldsimplybethe characteristicsofalink; anupdatemessagecontainsoneormore number of hops, or the addition of the latency over the link plus LSUs. For a link between router and router or destination , someconstantbias. router is called the head node ofuthe link in the direction frovm WerefertoanLSUthathasacostinfinityasaRESET, i to .uTheheadnodeof alinkistheonlyrouter thatcanreport ,and i . TGi(cid:17) uchangves inthe parameters of that link. LSUsare validated using TGi STi (cid:17)STi timestamps,andeachroutererasesalinkfromitstopologygraph 4.3. Validating Updates ifthelinkisnotpresentinthesourcetreesofanyofitsneighbors. Figures1and2specifythemainproceduresofSTAR(forboth STARusestimestampstovalidateLSUs.Aroutereithermain- LORAandORA)usedtoupdatetheroutingtableandthelink-state tainsaclockthatdoesnotresetwhentherouterstopsoperating,or databaseatarouter . Forsimplicity,thespecificationpresentedin asksitsneighborsfortheoldestknowntimestampafteritinitial- thesefiguresassumeistheexistenceofanunderlyingprotocolthat: izesorreboots. Hence,forpracticalpurposes,atimestampbased (a)assuresthatarouterdetectswithinafinitetimetheexistenceof on32bitscanbeviewedasamonotonicallyincreasingnumber. anew neighbor andthe lossof connectivity withaneighbor, and ArouterreceivinganLSUacceptstheLSUasvalidifthere- (b)deliversupdatemessagesreliablyamongneighbors. ceivedLSUhasalargertimestampthanthetimestampoftheLSU storedfromthesamesource,orifthereisnoentryforthelinkinthe topologygraphandtheLSUisnotreportinganinfinitecost. Link- 4.2. Information Stored and Exchanged stateinformationforfailedlinksaretheonlyLSUserasedfromthe We assume in the rest of the paper that a single parameter is topologygraphduetoaging(whichisintheorderofanhourafter used tocharacterizealinkinoneof itsdirections, whichwewill havingprocessedtheLSU).LSUsforoperationallinksareerased callthecostofthedirectedlink.Furthermore,althoughanytypeof fromthetopologygraphwhenthelinksareerasedfromthesource localrouteselectionalgorithmcanbeusedinSTAR,wedescribe treeofalltheneighbors. BuildShortestPathTree( ) description k Construct UdepsdcraitpetTioopnologyGraph(k;msg) fInitializeSingSleSTokuirce( ); NdeosNdceorUidppeti(o)ininitializesitself ffUoprdeaatche(TLGSUi(aun;dvT;Gl;ikt)f2rommLsSgUs) inmsg Qune wSEseTxttroa fcvteMr;tiinc;e(Qsin);kTGik; fgNeiTSSNMNghTTGiSibiio0ii r U p;F(A;;;F;L)A;;;SLES;E; gPdersofgccreisiepfsltsA(iePPoldrrndoo6=Ucceepss1dssAVatode)id(dkUU;ppd(dauatte;e((kvk;;;l((;uut;;)vv);;ll;;tt))));; fwhififle((ni(Tfru(e;GLws6=Oik)SR(nA Tuua)n :lTdplrGannedikedT(wu6=GS)):ikTnp(ur[ule)ld(:ard;n;d<sT);G1ik)(u):pred2=newST) desNceriipgtihobnorkprotocolreportsconnectivity fUrpodmatLeSUtopologygraphsTGiandTGik fif( k=i ) to neighbor (u;v;l;t) iif(>TGi(u):suc and ) fTSNTGikiik N;i;;;[kTfRkUgE;; fiff(ie(flsu(eT(;uGv;)iv2=) 2=TTGTGiGioir[t)f>(uT;Gv;i(lu;t;)vg);:t) iiff((MT69MGi9(xi ix(;u 2yTT))RR:NTUUs2REEuiU;;ScEj;T6=//Ti0//TG/jLL/GixOOyi(RRLu(AAO=u--R)31A:)us-:srru3)uuucllrceeu=0laenidTGTiG(ui()u:s)u:scu>c=i)x sife(nLOdRSATan d and ) fTGi(u;v):l l; TGi(u;v):t t; if(MTGii (u):d00 6= 1andj TGi(u):d(cid:0)TGi(u):d00 j >(cid:1)) k2TGi TGi(k):pred6=null g f TRUE; // LORA-2rule f TRUE; g Mi ; NSi FALSE; if( ) TGi(u):d00 TGi(u):d sendST k6=i g ; g fif( and ) wif( TG)i(u):suc Update(i;(i;k;lik;Ti)); T9G(ri;s )2TGTGiik(cid:0)jfr(r6=;su)g; s=v elsepwat6=hiwucost TGi(u):d(cid:0)TGi(i;w):l; if( ) k k ; f sendST ; if((u;v)2=TGik) ; if(ppaatthhwwuuccoosstt >T0Gi(u):d0) MforSeaGchi(l ink; ) elseTGik TGik[f(u;v;l;t)g fif(r=worTGi(r):;nbr=i) g MSGi (uM;vS)G2iS[Tfi(Tu;Gvi;(TuG;vi)(:ut);gv;):l; fgTGik(u;v):l l; TGik(u;v):t t; gif(TMTGGiii ((ss)T):R:nnUbEbr;r 6=//ii)LORA-3r;ule Send(); g FALSE; TGi(u):d0 pathwucost; g gTGi(u;v):del gTGi(u):suc0 TGi(u):suc NeighborDown( ) ProcessVoidUpdate( ) g description k description k;(u;v;l;t) foreach(vertex adjacencylistof Nfeaiiglhubroertporonteoicgohlborrekportslink ULpSdUa(tue;vto;plo;lto)gryepgorratpihnsgTlGinikanfdaiTlGurikefrom jTGvik(2u;v):l6=1aTndGNikOT(uT)Gi(u;v):del) f ; fif( ) fif( ) NTSTGikiik N;i;;;(cid:0)fkg fif(fu(t;v>)T2GTiG(ui;v):t;) ; fiekfls(es=uiuf(=ci i)i; ) Update(i;(i;k;1;Ti)); gTGi(u;v):l l TGi(u;v):t t elsesucT Gif(xu)j:sxuc2=Niiandx=ug; Send(); ; g if(k6=iand(u;v)2TGik) gelse suc TGi(u):suc LdeinsckrCipotsitoCnhange(k) fTGik(u;v):l l; TGik(u;v):t t; fif( ) Neighborprotocolreportslink g FALSE; iuf(=k ) ; costchange toneighbor TGi(u;v):del elsev=i suc i; k g else suc k fUpdate( ( )); g ; Send();i;i;k;lik;Ti Sfenifd(() ) gRelaxsEudgce(k ;uT;Gv;iQ(u;)s:suucc); g BMroaSdcGasitm6=ess;age ; gif( ) ExtractMin( ); UdepsPdcrraitopect(ikeos;nsmuspgd)atemessage gMSGi ;; MSGi gelseQ6=; uu null; Q sentby routerk msg InitializeSingleSource(k) UpdateNeighborTree(k;newST); fUUBifupp(BiddkldaauttSi6=eelhdRToSoorihputoeo)trsilnottPeggsayTttGPahbarTtlarehpe(T)he;r((eike)(;;km);sg); ffforTTTeaGGGchikikik((((vvvver)))te:::xdpsvur ec2d01T G;TnikGu)lik;l;(v):suc; fif(ifkf(RSL=eOTpRioi0rA)t CanhdannMgeewis(S)STTi0;;nNeSwiS T);FALSE; TGi(v):suc null gelseif(ORA) if(Sken6=d();i) TGkik(v):nbr null; if(ROeRpAorotCr(hLanOgReAs(SanTdi;ne)w) ST); g foreach(link Mi TRUE) g 0; (u;v)2TGi j;TGi(u;v):del= gTGik(k):d Mi TGFAiL SE;TGi(cid:0)f(u;v)g g ; ; STki newST newST ; g Figure1.STARSpecification Wenotethat,becauseLSUsforoperationallinksneverageout, This is in contrast to other routing protocols based on sequence thereisnoneedfortheheadnodeofalinktosendperiodicLSUsto numbersortimestamps,togetherwithaging,whichageoutLSUs updatethetimestampofthelink. Thisisveryimportant,because andmust,therefore,floodLSUsperiodically. itmeansthatSTARdoesnotneedtodisseminateLSUsforagiven linkperiodicallytoeachrouterthatusesthelinkinitssourcetree. sending update messages consists of a router sending an update RelaxEdge( ) k;u;v;Q;suc message every time its source tree changes or when a neighbor fif(TGi(v):d>TGi(u):d+TGi(u;v):lor sendsanoutdatedLSUforalinkknowntothereceivingrouter. ( k and k k and k=i TGik)()v):d=TGik(u):d+TGik(u;v):l In an on-demand routing protocol, a router can keep using a f (u;v)2STi ; pathfoundaslongasthepathleadstothedestination,evenifthe TGik(v):d TGik(u):d+T;Gik(u;v):l pathdoesnothaveoptimumcost. Asimilarapproachcanbeused TGi(v):pred TGi(u;v) TGkik(v):suc suc;k inSTAR,becauseeachrouterhasacompletepathtoeverydestina- if(LORAand and ) tionaspartofitssourcetree. TosupportLORA,router running f// was akn=uniknowTnGdeis(vti)n:sautico0n=null STARreportsupdatestoitssourcetreesintheeventofunrieachable v ; TTGGii((vv))::sdu00c0 TsGuic(v):d; dinegstlionoatpiso,nasn,dnecwostdoesftpinaathtisonesx,cetheedipnogsasigbiivlietyntohfrepsehromldan.eRnoturtoeurt- if( ) elseTsuGci(6=v)i:d0 TGi(v):d(cid:0)TGi(i;suc):l; accomplishes thisbycomparing itssourcetreeagainstthesourcei ; trees ithas received fromitsneighbors after anyinput event, and TGi(v):d0 0 g bysendingtheupdatestoitssourcetreeaccordingtothefollowing Insert( ); Q;v threerules. g g ReportChanges( ) LORA-1: Router sendsasource-treeupdatewhenitfindsanew description oldST;newST GenerateLSUs fornew linksin the router’ssourcetree destination,oranyiofitsneighborsreportsanewdestination. fforeach(link ) if( (u;v)2noerwST or ) (u;v)2=oldST newST(u;v):t6=oldST(u;v):t NS;i Wheneverarouterhearsfromanewneighborthatisalsoanew MSGi MSGi[f(u;v;TGi(u;v):l;TGi(u;v):t)g g destination,itsendsanupdatemessagethatincludesthenewLSUs UpdateNeighborTree( ) description k;newST in its source tree. Obviously, when a router is first initialized or Deletelinks fromTGi and reportfailed links afterareboot,therouteritselfisanewdestinationandshouldsend k fforeach(link ) anupdate messagetoitsneighbors. Link-levelsupport shouldbe fif( (u;v)2ST)ki usedfortheroutertoknow itsneighborswithinashorttime, and (u;v)2=newST thenreportitslinkstothoseneighborswithLSUssentinanupdate f// Hasremoved from itssource tree k (u;v) message. Else,asimplewaytoimplementaninitializationaction if(LORAand ) TGik(v):pred=null consistsofrequiringtheroutertolistenforsometimeforneighbor f//LORAT-R2UEr;ule:khas nopath to destinationv traffic,sothatitcandetecttheexistenceoflinkstoneighbors. Mi if( ) fkor=eacih(link ) LORA-2: Router sendsasource-treeupdatewhenthechangein if( (r;s)2TG)ijs=v TGi(r;s):l=1 ; thecostofthepatihtoatleastonedestinationexceedsathreshold MSGi MSGi[f(r;s;TGi(r;s):l;TGi(r;s):t)g g forrouter oranyofitsneighbors. if(ORAandk=iand(u=iorTGi(v):pred=null)) (cid:1) i f// has no pathto destination or is thehead node i v i In this paper, we assume , i.e., routers force source- if(fTorGeaich(v()li:npkred=null) ) treeupdateswhendestinations(cid:1)bec=om1eunreachable.Whenarouter if(TGi(r(;rs;)s:)l2=T1G)ijs=v ; processesaninputevent(e.g.,alinkfails,anupdatemessageisre- elseif(MSGi MSGi)[f(r;s;TGi(r;s):l;TGi(r;s):t)g ceived)thatcausesallitspathsthroughallitsneighborstooneor // TNeGedis(ut;ov)r:elpo=rt1failed link i ; moredestinationtobesevered,theroutersendsanupdatemessage MSGi MSGi[f(u;v;TGi(u;v):l;TGi(u;v):t)g g that includes an LSU specifying an infinite cost for the link con- if(LORAand and ) k=i TGi(v):pred=null nectingtotheheadofeachsubtreeofthesourcetreethatbecomes f ; TGi(v):d0 1 ; unreachable. TheupdatemessagedoesnothavetoincludeanLSU gTGi(v):suc0 null foreachnodeinanunreachablesubtree,becauseaneighborreceiv- if(NOT( and )) ingtheupdatemessagehasthesendingnode’ssourcetreeandcan k=i u=i fif( ) thereforeinferthatallnodesbelowtherootofthesubtreearealso T(uG;iv) 2TTGGiik(cid:0)f(u;v)g; unreachable,unlessLSUsaresentfornewlinksusedtoreachsome k k if( and ) ofthenodesinthesubtree. TGi(u;v):l6=1TRUE69;x2Nij(u;v)2TGix TGi(u;v):del g g LORA-3:Router sendsasource-treeupdatewhen: g i g Figure2.STARSpecification(cont.) 1. Apathimpliedinthesourcetreeofrouter leadstoaloop. i 2. Thenewsuccessorchosentoagivendestinationhasanad- dresslargerthantheaddressofrouter . i 4.4. Exchanging Update Messages 3. The reported distance from the new chosen successor to How update messages are exchanged depends on the routing adestination islongerthanthereporteddistancefromnthe approach used (ORAorLORA)andtheservicesprovided bythe previoussuccjessortothesamedestination. However, ifthe linklayer. Inthissection, weassume thatthelinklayer provides link failsand isaneighborof ,noupdatemessage collision-freebroadcasts. isne(eid;ejd)regardingnoranydestinatiojnwhosepathfrom For ORA to be supported in STAR, the only rule needed for involves . j i j Eachtimearouterprocessesanupdatemessagefromaneigh- bor,itupdatesthatneighbor’ssourcetreeandtraversesthattreeto 5 b e b e b e determineforwhichdestinationsitsneighbor usestherouter pro- a 1 f a f a f 1 5 cessingtheupdateasarelayinitspreferredpaths. Therouterthen c d c d c d determinesifitisusingthesameneighborasarelayforanyofthose destinations. Aroutingloopisdetectediftherouterandneighbor (a) (b) (c) useeachotherinthepathtoanydestination,inwhichcasetheloop mustbebroken andtheroutermustsendanupdatemessagewith thecorrespondingchanges. b e b e b e ToexplaintheneedforthesecondpartofLORA-3,weobserve a f a f a f that,inanyroutingloopamongrouterswithuniqueaddresses,one oftheroutersmusthavethesmallestaddressintheloop;therefore, c d c d c d ifarouterisforcedtosendanupdatemessagewhenitchoosesa successorwhoseaddressislargerthanitsown,thenitisnotpossi- (d) (e) (f) bleforallroutersinaroutinglooptoremainquietafterchoosing Figure3.Anexampleofasixnodewirelessnetworkwith oneanother, becauseatleastoneofthemisforcedtosendanup- routersrunningSTARwithoutthethirdpartofLORA-3 datemessage,whichcausesthelooptobreakwhenroutersupdate theirsourcetrees. beingineffect. ThelastpartofLORA-3isneededwhenlinkcostscanassume different values in different directions, in which case the second b e b e part of LORA-3maynot sufficetobreak loopsbecause thenode b e 5 withthesmallestaddressintheloopmaynothavetochangesuc- 1 a f a f a f cessorswhentheloopisformed.Thefollowingexampleillustrates 1 5 c d c d thisscenario. c d (b, e, 1) (e, d, 1) (e, f, 1) (b, e, 1) (e, d, 1) (e, f, 1) Considerthesix-nodewirelessnetworkshowninFigure3and assumethatthethirdpartofLORA-3isnotineffectattherouters (a) (b) (c) runningSTAR.Inthisexample,nodesaregivenidentifiersthatare lexicographicallyordered,i.e., isthesmallestidentifierand is thelargestidentifierinthegrapha. Alllinksandnodesareassumfed b e b b to have the same propagation delays, and all the links but links a a a and haveunitcost. Figures3(b)through3(d)showthe c c c (soau;rbc)etree(sb;acc)cordingtoSTARattheroutersindicatedwithfilled (b, e, infinity) (b, e, infinity) (b, e, infinity) circles for the network topology depicted in Figure3(a). Arrow- headsonsolidlinesindicatethedirectionofthelinksstoredinthe (d) (e) (f) router’s source tree. Figure 3(e) shows ’s new source tree after Figure 4. Example of a six-node wireless network with processingthefailureoflink ;wenoctethat doesnotgener- ateanupdatemessage,becaus(ec;d) byassumpticon.Supposelink routers running STAR with the third part of LORA-3 failsimmediatelyafterthecf>ailbureof ,node computes beingineffect. (itbs;nee)wsourcetreeshowninFigure3(f)wi(thco;dut)reportibngchanges toitbecause isitsnewsuccessortodestinations , ,and ,and . A pearmanent loop forms among nodes ,d ,eand f. Fig- b e b e aure<4bdepictsthesequenceofeventstriggeredbyathbeexecuctionof a 1 5 f a f thethirdpartofLORA-3inthesameexampleintroducedinFig- c d c d ures3,afterthefailuresoflinks and .Thefigureshows 10 theLSUsgeneratedbythenode(wc;itdh)filled(cbi;rec)letransmittedinan (a) (b) updatemessagetotheneighbors, andshowssuchLSUsinparen- theses. ThethirdelementinanLSUcorrespondstothecostofthe Figure5.ThethirdpartofLORA-3notalwaystriggers link(aRESEThascost ).Unlikeinthepreviousexample, thegenerationofanupdatemessage: (a)networktopol- node transmitsanupdiantfeimneitsysageafterprocessingthefailureof ogy,and(b)thenewsourcetreeofnode afterprocessing link c becauseofthethirdpartofLORA-3;thedistancefrom c the n(ecw;ds)uccessor to and is longer than from the previous thefailureoflink . (c;b) successor .Whenlbink d fafils,node realizesthatthedestina- tions , ,dand areunr(eba;ceh)ableandgenberatesanupdatemessage arouterthatchoosesanewsuccessortoadestinationwithalarger reportdingethefafilureofthelinkconnectingtotheheadofthesubtree distancetoitdoesnotneedtosendanupdatemessage.Figure5(b) ofthesourcetreethatbecomesunreachable. Theupdatemessage showsthenewsourcetreeofnode afterthefailureoflink . from triggerstheupdatemessagesthatallownodes , ,and to In this case, does not need to sencd an update message be(cca;ubs)e realizbethattherearenopathsto , ,and .Asimilarasebquencecof theparent nocdeofthesubtreeheadedby isaneighbor of and eventstakesplaceattheothersiddeoefthenfetworkpartition. thereforenopermanentloopcanbeformedb. c TheexampleshowninFigure5illustratesthescenarioinwhich Toensurethat theabove rules workwithincremental updates specifyingonlychanges toasourcetree, aroutermustremember packet-radio network, whereby a router broadcasts unreliably its the source tree that was last notified to its neighbors. If any of update messages to its neighbors, and each update message con- LORA-1to LORA-3are satisfied, the router must do one of two tainstheentiresourcetree.ForSTARtooperatecorrectlywiththis things: approachunderLORA,routersmustpreventthecaseinwhichper- manentloopsarecreatedbecauseanupdatemessageisnotreceived If the new source tree includes new neighbors than those byaneighborduetochannelerrorsorhidden-terminalinterference. (cid:15) presentinthesourcetreethatwaslastupdated,thentherouter When the routers transmit updates over a MAC protocol that must send its entire source tree in its update, so that new does not provide collision-free broadcasting, the following addi- neighborslearnaboutallthedestinationstherouterknows. tionalmechanismsareneededinSTAR:(a)thedatapacketsmust recordtheroutetraversed,and(b)fouradditionalrulesareusedto Ifthetwosourcetreesimplythesameneighbors,therouter (cid:15) send an update messages. These added rules are used toprovide sendsonlytheupdatesneededtoobtainthenewtreefromthe persistenceintheexchangeofupdates,probeneighborroutersfor oldone. updateswhenpathstoadestinationarenotknown,andbreakloops To ensure that STAR stops sending update messages, a sim- detectedbythetraversalofdatapackets. plerulecanbeusedtodeterminewhichroutermuststopusingits neighborasarelay,sucharulecanbe,forexample,“therouterwith LORA-4: Router sendsitsupdatemessageasareliableunicastto thesmalleraddressmustchangeitspath.” theneighborthatmi akesrouter senditsupdate,andallneighbors Theaboverulesaresufficienttoensurethateveryrouterobtains of processtheupdatemessagei. loop-lesspathstoallknowndestinations,withouttheroutershaving i tosendupdatesperiodically. Inadditiontotheabilityforarouter LORA-5: Aroutersendsperiodicupdatesinintervalsof60sec- todetectloopsinSTAR,thetwokeyfeaturesthatenableSTARto onds while at least one of its neighbors does not report having a adoptLORAare: (a)validatingLSUswithouttheneedofperiodic pathtoadestination knowntotherouter; otherwise, periodicup- updates, and (b) the ability to either listen to neighbors’ packets datesaretransmittedinintervalsof600secondsorlonger. or useaneighbor protocol at thelink layer todetermine who the neighborsofarouterare. LORA-6: When router has a data packet to send to a destina- tion forwhichithasnoipaths, itsendsanupdatemessagetoits neighjborsreportingtheabsenceofapathto .Thismessageactsas 4.5 Impact of The Link Layer in LORA aquery,becauseanyneighborwithapathtjo receivingthemes- The rulesfor update-message exchange statedinthe previous sagewillgenerateanupdatemessageandsendjitreliablytorouter section assume that an update message is sent reliably to all the .Whilerouter hasnopathto ,itretransmitsitsupdatemessage neighbors of a router. If the link layer provides efficient reliable iin intervals of 6i00 millisecondsj, 6 seconds, and 60 seconds, and broadcast of network-level packets, thenSTARcan relyon send- then backs off to periodic updates transmitted in intervals of 600 inganupdatemessageonlyoncetoallneighbors,withtheupdate secondsorlonger. messagespecifyingonlyincrementalchangestotherouter’ssource tree. Thelinklayer willretransmit thepacket asneeded toreach LORA-7: Router receivesadatapackettodestination andone allneighbors, sothatitcanguaranteethataneighborreceivesthe oftheroutersinthietraversedpathisin ’spathtothedejstination, packetunlessthelinkisbroke. Analternativewaytoprovideare- the data packet is discarded and a ROUiTE-REPAIRupdate mes- liableexchangeofupdatemessagesconsistsofprovidingcollision- sageisgeneratedtobreaktheloop. AROUTE-REPAIRcontains free broadcasts of update messages at themedium access control thecompletesourcetreeofthesender’srouterandtherouterepair (MAC)layerandimplementingtheretransmissionstrategyforup- path,andistransmittedreliablytotherouterintheheadoftheroute datemessagesaspartofSTARitself. repairpath. Therouterepairpathcorrespondstothepath , Areliablebroadcastserviceatthelinklayercanbeimplemented where is the last router in the data packet’s traversed paith;thxat veryefficientlyatthelinklayerorinSTARitselfiftheMACproto- isfirstxfoundinthepath . Whenarouterreceives colusedguaranteescollision-freetransmissionsofbroadcastpack- a ROUTE-REPAIRupdatie;it rjem2oveSsTitiself from theroute repair ets.AtypicalexampleofAMACprotocolthatcansupportcollision- path and transmits a ROUTE-REPAIR with its source tree to the free broadcasts is TDMA, and there are several recent proposals headoftherouterepairpath. Whenarouterdetectsaloopitwill thatneednotrelyonstaticassignmentsofresources(e.g.,FPRP[4], only transmit aROUTE-REPAIRupdate to neighbor if30 sec- CARTS[27]). ondshaveelapsedsincethelasttimeaROUTE-REPAkIRwassent Unfortunately,reliablebroadcastingfromanodetoallitsneigh- to . k borsisnotsupportedinthecollision-avoidanceMACprotocolsthat havebeenproposed[5,12,8]orimplementedincommercialprod- uctsforadhocnetworksoperatinginISMbands.Furthermore,any 5. Performance Evaluation link-levelornetwork-levelstrategyforreliableexchangeofbroad- STAR has the same communication, storage, and time complex- cast updatemessagesover acontention-based MAC protocol will ity than ALP [14] and efficient table-driven distance-vector rout- requiresubstantialretransmissionsunderhigh-loadconditionsand ingprotocolsproposedtodate(e.g.,WRP[21]). However,worst- rapid changes to the connectivity of nodes. Therefore, if the un- case performance is not truly indicative of STAR’s performance; derlyingMACprotocoldoesnotprovidecollision-freebroadcasts, accordingly, we ran a number of simulation experiments to com- thenSTAR(andanytable-drivenroutingprotocolforthatmatter)is pareSTAR’saverageperformanceagainsttheperformanceoftable- betteroffrelyingontheapproachadoptedinthepastintheDARPA drivenandon-demandroutingprotocols.Thesimulationstudywas conducted in the C++ Protocol Toolkit (CPT) simulator environ- clearfromthisstudythatSTARshouldbeusedinsteadofALPand ment,inwhichtheprotocolstackimplementationinthesimulation topologybroadcastfortheprovisionofQoSroutinginpacketradio runs thevery same code used ina real embedded wireless router networks,giventhatanyoverheadtrafficassociatedwithclustering andIP(InternetProtocol)isusedasthenetworkprotocol. wouldbeequivalentforSTAR,ALP,andtopologybroadcast. Thelinklayerimplementsamediumaccesscontrol(MAC)pro- tocolsimilartotheIEEE802.11standardandthephysicallayeris Pause Connectivity PacketsGenerated Time Changes STAR ALP TOB basedonadirectsequencespreadspectrumradiowithalinkband- 0 1090 2542 – – widthof1Mbit/sec. Theneighborprotocolisconfiguredtoreport 30 154 411 1765 5577 45 102 262 1304 3908 lossofconnectivitytoaneighboriftheprobationofthelinkfails 60 90 239 1144 2502 inaperiodofabout10seconds. 90 50 138 623 1811 STAR based on ORA was compared against two other table- Table1.AverageperformanceofSTAR,ALP,andTOB. drivenroutingprotocols,andSTARbasedonLORAwascompared withanon-demandroutingprotocol. Thesimulationexperiments use20nodesforminganad-hocnetwork,movingoveraflatspace 5.2. Comparison with On-Demand Protocols (5000m x 7000m), and initiallyrandomly distributed at adensity WecompareSTARusingLORAwithDSR,becauseDSRhas of one node per square kilometer. Nodes move in thesimulation been shown to produce the smallest number of update messages accordingtothe“randomwaypoint”model[10].Eachnodebegins amongon-demand routingprotocols[10]. Oursimulationexperi- thesimulationbyremainingstationaryfor seconds. It mentsusethesamemethodologyusedrecentlytoevaluateDSRand thenselectsarandomdestinationandmovepsatuostheattidmesetinationata other on-demand routingprotocols [10]. TorunDSRinour sim- speedof20meterspersecondforaperiodoftimeuniformlydis- ulation environment, we ported the ns2 code available from [23] tributedbetween5and11seconds. Uponreachingthedestination, into the CPT simulator. There are only two differences in our thenodepausesagainfor seconds,selectsanotherdes- DSR implementation with respect tothat used in [10]: (1) inthe tination,andproceedsthepreauasseprteivmioeuslydescribed,repeatingthis embedded wireless routers and simulated protocol stack we used behaviorforthedurationofthesimulation. thereisno accessto theMAC layer and cannot reschedule pack- etsalreadyscheduledfortransmissionoveralink(however,thisis thecaseforalltheprotocolswesimulate); and(2)routerscannot 5.1. Comparison with Table-Driven Protocols operatetheirnetworkinterfacesinpromiscuousmodebecausethe We chose to compare STAR against the traditional link-state MAC protocol operates over multiple channels and a router does approach and ALP [14]. The traditional link-state approach (de- notknowonwhichchannelsitsneighborsaretransmitting,unless notedbyTOBfortopologybroadcast)correspondstotheflooding the packets are meant for the router. Both STAR and DSR can of linkstatesinanetwork, orwithinclusterscoupled withflood- buffer 20 packets that are awaiting discovery of a route through ingofinter-clusterconnectivityamongclusters. ALPisarouting the network. Routers running STAR exchange update messages protocol based on partial link-stateinformationthat wehave pre- according to LORA (rulesLORA-1to LORA-7) because the un- viouslyshowntooutperformpriortable-drivendistance-vectorand derlying MAC protocol used in the simulations does not provide link-stateprotocols. ALP’sefficiencyisderivedfromthefactthat collision-freebroadcasts. arouterrunningALPdoesnotreporttoitsneighborsthedeletion Theoverallgoalofthesimulationexperimentswastomeasure ofalinkfromitspreferredpathsifthecostofthelinkhasnotin- theabilityof therouting protocols toreact tochanges inthenet- creased;however,theroutermaybeforcedtoreportthedeletionof worktopology whiledelivering datapacketstotheirdestinations. suchalinksubsequentlyifthecostofthelinkincreasesorthelink Todothis,weappliedthreedifferentcommunicationpatternstothe becomesunreachable. simulatednetwork,correspondingto8,14,and20dataflows. The ForthesesimulationsSTARusesORA,becausebothALPand totalworkloadinthethreescenarioswasthesameandconsistedof TOBattempt toprovide paths that areoptimum withrespect toa 32datapackets/sec. Eachcontinuous-bit-rate(CBR)sourcegener- definedmetric. Thethreeprotocolsrelyonthereliabledeliveryof atedfourpackets/secinthescenariowitheightflows. EachCBR broadcast packets by thelink layer. Weran our simulations with sourcegenerated1.6packets/secinthescenariowith20sources.In movementpatternsgeneratedforfivedifferentpausetimes: 0,30, thescenariowith14flows, therewere7flowsfromdistinctCBR 45, 60, and 90 seconds. A pause time of 0 seconds corresponds sourcestothesamedestination ,generatinganaggregateoffour to continuous motion. The simulation time in all the simulation packets/secandsevenflowshavDing astheCBRsourceandthe scenariosisof900seconds. other seven sources of data asdestinDations. Ineach scenario, the Table1summarizesthebehaviorofthethreeprotocolsaccord- numberofuniquedestinationswaseightandthepacketsizewas64 ing to the of the nodes. The table shows the num- bytes. Thedata flowswerestartedat timesuniformly distributed ber of linkpcaounsneecttiimvitey changes and the total number of update between20and120seconds(wechosetostarttheflowsafter20 packetsgeneratedbytheroutingprotocols;ALPgeneratesonaver- secondsofsimulatedtimetogivesometimetotheLinkLayerfor agemorethanfourtimesthenumber ofupdatepackets generated determiningthesetofnodesthatareneighborsoftherouters). by STAR,and TOB generates more than 10 times the number of Theprotocolevaluationsarebasedonthesimulationof20wire- packetsgeneratedbySTAR.TheperformanceofALPandTOBfor lessnodeswithmovementpatternsgeneratedforfivedifferentpause 0couldnotbeassessedbecausetheamountofupdate times: 0,15,30,45,and60seconds. Thesimulatedtimeisof900 ppaacukseetstgimeneeratedbytheroutersleadtocongestionatthelinklayer. secondsand1800secondsforthesimulationscenarioswithpause Because STAR can be used in combination with any cluster- time0,and900secondsforpausetimesotherthan0. ing scheme proposed in the past for packet-radio networks, it is Pause Num. UpdatePktsSent DataPktsDelivered DataPkts tinuousmotion. Thechangesinthenetworktopologyduring1800 Time Flows STAR DSR STAR DSR Generated 8 908 791 15110 14740 24100 secondsofsimulatedtimemadeDSRtosendmorecontrolpackets 0 14 930 1460 15845 10975 25917 thanSTARforallworkloads. 20 916 3122 13689 6830 23718 TheMAClayerdiscardsallpacketsscheduledfortransmission 8 615 460 19544 20831 24396 15 14 636 702 23027 23210 25989 toaneighborwhenthelinktotheneighborfails,whichcontributes 20 686 1535 17254 10129 23649 tothehighlossofdatapacketsseenbynodes.InDSR,eachpacket 8 559 350 20180 20492 24160 header carries the complete ordered list of routers through which 30 14 551 464 23086 23228 25892 20 580 763 19929 18341 23716 thepacketmustpassandmaybeupdatedbynodesalongthepath 8 517 280 21685 22683 24100 towardsthedestination. ThelowthroughputachievedbyDSRfor 45 14 526 2352 23776 20481 25917 20 507 1880 20749 19898 23731 thecaseof20sourcesofdataisduetothepoor choiceofsource 8 522 482 22536 19102 24100 routestheroutersmake,leadingtoasignificantincreaseinthenum- 60 14 507 1357 24473 23436 25917 ber of ROUTEERRORpackets generated. Datapackets arealso 20 493 744 22218 21899 23775 discardedduetolackofroutestothedestinationsbecausethenet- Table2.PerformanceofSTARandDSR(900sec). work may become temporarily partitioned or because the routing Pause Num. UpdatePktsSent DataPktsDelivered DataPkts tableshavenotconvergedinthehighlydynamictopologywesim- Time Flows STAR DSR STAR DSR Generated ulate. 8 1583 1963 33068 32650 52900 0 14 1582 3249 21085 21830 54716 Figures 6(a) through 6(c) show the cumulative distribution of 20 1609 5199 27040 21755 52518 packetdelayexperiencedbydatapacketswhennodeswereincon- Table3.PerformanceofSTARandDSR(1800sec). tinuousmotionduring900secondsofsimulatedtime,forawork- Number Protocol NumberofHops loadof8,14,and20flowsrespectively. Wenotethatthedistribu- ofFlows 1 2 3 4 5 6 tionofthelatencyisaboutthesameforbothSTARandDSR. 8 STAR 94.0 4.1 1.9 Thenumberofdestinationswassettojust40%ofthenumber DSR 64.9 31.2 2.6 1.3 14 STAR 76.0 16.4 4.2 3.0 0.4 ofnodesinthenetworkinallthescenarios,whichfavorsDSRby DSR 64.1 26.9 4.0 4.5 0.5 limitingthenumberoffloodsearchesneededfromeachnode. For 20 STAR 90.8 6.4 1.6 1.1 0.1 the cases in which all network nodes receive data, STAR would DSR 61.9 32.4 5.1 0.3 0.3 introduce noextraoverhead whileDSRwouldbeseverely penal- Table4.Numberofhopstraversedbydatapackets(900 ized. Itisalsoimportanttonotethelowratioofupdatemessages sec,pausetime0). generatedbySTARcomparedtothenumberofchangesinlinkcon- nectivity(Table5),whenwerunthesimulationsfor1800seconds ofsimulatedtimetherewere2792changesinlinkconnectivity. Pause Connectivity Time Changes Wenotethat,incaseswhereroutersfailorthenetworkbecomes 0 1461 partitionedforextendedtimeperiods,thebandwidthconsumedby 15 605 30 424 STAR is much the same as in scenarios in which no router fails, 45 350 becauseallthatmusthappenisforupdatesaboutthefailedlinksto 60 322 unreachabledestinationstopropagateacrossthenetwork. Incon- Table5.Changesinlinkconnectivity(900sec). trast, DSR and several other on-demand routing protocols would continue to send flood-search messages trying to reach the failed Tables2and3summarizethebehaviorofSTARandDSRac- destination,whichwouldcauseaworst-casebandwidthutilization cording to the simulated time. The tables show the total number forDSR.Toillustratetheimpactthefailureofasingledestination ofupdatepacketstransmittedbythenodesandthetotalnumberof has in DSR we have re-run the simulation scenario with 8 flows data packets delivered to the applications for the three simulated present in the network for 1800 seconds making one of the des- workloads. Table 4 shows the number of hops traversed by data tinationsfailafter900secondsofsimulatedtime,routersrunning packets during 900 seconds of simulated time when nodes are in STAR sent 1823 update packets while routers running DSR sent continuous motion. Thetotalnumber of updatepacketstransmit- 3043 update packets. The existence of a single flow of data to a ted by routers running STAR varies with the number of changes destinationthatwasunreachablefor900secondsmadeDSRgener- inlinkconnectivitywhileDSRgeneratescontrolpacketsbasedon ate55%moreupdatepacketswhileSTARexperiencedanincrease bothvariationofchangesinconnectivityandthetypeofworkload of15%(seeTable3). insertedinthenetwork.RoutersrunningSTARgeneratedfewerup- datepacketsthanDSRinmostofthesimulatedscenariosfor900 seconds of simulated time, the difference increased significantly 6. Conclusions whenthenumberofflowsinthenetworkwas20(routersrunning WehavepresentedSTAR,alink-stateprotocolthatincursthesmall- DSRsentthreetimesmorecontrolpacketsthanSTARwhennodes estcommunicationoverheadofanypriortable-drivenroutingpro- wereincontinuousmotion).BothSTARandDSRwereabletode- tocol, and also incurs on average less overhead than on-demand liveraboutthesamenumberofdatapacketstotheapplicationsin routing protocols. STAR accomplishes its bandwidth efficiency thesimulatedscenarioswith8and14flows. Whenweincreased by: (a) disseminating only that link-state data needed for routers thenumberofsourcesofdatafrom8to20nodes,whileinserting to reach destinations; (b) exploiting that information to ascertain thesamenumber ofdatapacketsinthenetwork(32packets/sec), whenupdatemessagesmustbetransmittedtodetectnewdestina- weobserved that STARwas able todeliver as much as twicethe tions, unreachable destinations, andloops; and(c)allowingpaths amountofdatapacketsdeliveredbyDSRwhennodeswereincon- to deviate from the ideal optimum while not creating permanent