ebook img

DTIC ADA446939: Procedures for Adjusting Regional Regression Models of Urban-Runoff Quality Using Local Data PDF

43 Pages·2.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA446939: Procedures for Adjusting Regional Regression Models of Urban-Runoff Quality Using Local Data

PROCEDURES FOR ADJUSTING REGIONAL REGRESSION MODELS OF URBAN-RUNOFF QUALITY USING LOCAL DATA By Anne B. Hoos and Joy K. Sisolak U.S. GEOLOGICAL SURVEY Open-File Report 93-39 Nashville, Tennessee 1993 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 1993 N/A - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Procedures for Adjusting Regional Regression Models of Urban-Runoff 5b. GRANT NUMBER Quality Using Local Data 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION U.S. Department of the Interior 1849 C Street, NW Washington, DC REPORT NUMBER 20240 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE SAR 42 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: Copies of this report can be purchasedf rom: District Chief U.S. Geological Survey U.S. Gedogicd Survey Books and Open-File Reports Section 810 Broadway, Suite 500 Federal Center Nashville, Tennessee 37203 Box 25425 Denver, Cdorado 80225 CONTENTS Page Abstract ................................................................. 1 Introduction ............................................................... 1 Purposeandscope ........................................................ 2 Regional regressionm odels of urban-runoff quality ...................................... 3 Local urban-runoff quality data 1 .................................................. 4 Proceduresf or adjusting regional regressionm odels of urban-runoff quality using local data ............. 6 Model-adjustmentp rocedures ................................................. 6 Single-factorr egressiona gainstr egional prediction .................................. 7 Regressiona gainstr egional prediction .......................................... 8 Regressiona gainstr egional prediction and additional local variables ....................... 8 Weighted combinationo f regional prediction and local-regressionp rediction .................. 9 Selectiono f appropriatea djustmentp rocedures .................................... 11 Model-adjustmentp roceduret esting .............................................. 13 Testprocedures ....................................................... 13 Testresults .......................................................... 16 Bellevue ......................................................... 17 Denver .......................................................... 18 Knoxville ......................................................... 20 Sensitivity analysis ................................................... 20 Estimating the accuracy of model-adjustmenpt rocedures ................................. 23 Example application ....................................................... 24 Prediction of annual or seasonaul rban-runoff quality ................................... 26 summary ................................................................ 26 Referencesc ited ............................................................ 27 SUPPLEMENTAL INFORMATION A. Program (MINITAB) of exploratory data analysisp roceduresa pplied to calibration data set to guide selectiono f model-adjustmenpt rocedures . . . . . . . . . . . . . . . . . . . . . . 31 B. Program (MINITAB) of statistical proceduresa pplied to calibration data set to derive coefficients for model-adjustmenpt rocedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 C. Formulas for standarde rror of prediction for model-adjustmenpt rocedures . . . . . . . , . . . . . . . . . . . . 36 D. Program (MINITAB) applied to data from an unmonitoreds ite to calculate the prediction using model-adjustmenpt rocedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 FIGURES 1. Graph showing observeda nd predicted chemical oxygen demandl oad in storm runoffforCityX’slocaldatabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Flowchart guiding selectiono f model-adjustmenpt rocedure( MAP) basedo n exploratory data analysis of the calibration data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 TABLES 1. Standarde rrors of estimatef or regional regressionm odels of storm-runoff loads and mean concentrationso f selectedc onstituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Exploratory data analysis of the calibration data sets from the data base for Bellevue, Washington . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Content8 iii Page 3. Exploratory data analysis of the calibration data sets from the data base for Denver, Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4. Exploratory data analysis of the calibration data sets f’rom the data base forKnoxville,Tennessee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5. Root mean squaree rrors and associatedr ankings for model-adjustment proceduresa nd other estimatorsf or verification data sets, compared with rankings for standarde rror of estimatef or corresponding calibrationdatasets,fromthedatabaseforBellevue,Washington.. . . . . . . . . . . . . . . . . . . . . . . . . 17 6. Root mean squaree rrors and associatedr ankings for model-adjustment proceduresa nd other estimaton for verification data sets, compared with rankings for standarde rror of estimatef or corresponding calibrationdatasets,fromthedatabaseforDenver,Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7. Root mean squaree rrors and associatedr ankings for model-adjustment proceduresa nd other estimatorsf or verification data sets, compared with rankings for standarde rror of estimatef or corresponding calibration data sets, Eromt he data base for Knoxville, Tennessee . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8. Effect of size of calibration data sets for model-adjustmenpt rocedures on root mean squaree rrors for verification data sets taken from the l3ellevue, Washington, data base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9. Sampleo f calibration data set and values for standarde rrors of estimate, bias-correctionf actors, and coefficients for the model-adjustment proceduresforCityX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CONVERSION FACTORS Multiply BY To obtain inch (in.) 25.40 millimeter pound (lb) 0.4536 kilogram square mile (mi’) 2.589 square kilometer iV Procedures for adjusting regional regression mod& of urban-runoff quality using local data Procedures for Adjusting Regional Regression Models of Urban-Runoff Quality Using Local Data By Anne B. Hoos and Joy K. Sisolak ABSTRACT Statisticaol perationste rmedm odel-adjustmenptr ocedures(M AP’s) can be usedt o incorporate local datai nto existingr egressionm odelst o improvet he predictiono f urban-runoffq uality. Each MAP is a form of regressiona nalysisin which the local datab asei s useda s a calibrationd atas et. Regressionc oefficientsa re determinedfr om the local datab ase,a nd the resulting ‘adjusted’ regressionm odelsc an thenb e usedt o predict storm-runoffq uality at unmonitoreds ites. The responsev ariablei n the regressiona nalysesis the observedlo ad or meanc oncentrationo f a constituenitn storm runoff for a singles torm. The set of explanatoryv ariablesu sedi n the regressiona nalysesis different for eachM AP, but alwaysi ncludest he predictedv alue of load or meanc oncentrationfr om a regionalr egressionm odel. The four MAP’s examinedin this study were: single-factorr egressiona gainstt he regionalm odelp rediction,P , (termedM AP-lF-P), regressiona gainstP ,, (termedM AP-R-P), regressiona gainstP , and additionall ocal variables (termedM AP-R-P+nV), and a weighted combination of P, and a local-regression prediction (termedM AP-W). The proceduresw ere testedb y meanso f split-samplea nalysis,u sing dataf rom three cities includedi n the NationwideU rban Runoff Program: Denver, Colorado;B ellevue,W ashington;a nd Knoxville, Tennessee. The MAP that provided the greatest predictive accuracy for the verification data set differed among the three test data basesa nd among model types (MAP-W for Denver and Knoxville, MAP-lF-P and MAP-R-P for Bellevue load models, and MAP-R-P+nV for Bellevue concentrationm odels)a nd, in manyc ases,w as not clearly indicatedb y the valueso f standarde rror of estimatef or the calibrationd ata set. A schemeto guideM AP selection,b asedo n exploratory dataa nalysiso f the calibration data set, is presented and tested. The MAP’s were tested for sensitivity to the size of a calibration data set. As expected, predictivea ccuracyo f all MAP’s for the verification data set decreaseda s the calibration data-set size decreased,b ut predictive accuracy was not as sensitive for the MAP’s as it was for the local regressionm odels. INTRODUCTION Urban land use has beens hownt o be a major sourceo f nonpoint-sourcep ollution. Recognizingth is, the amendmentosf 1987t o the CleanW ater Act requiret hat cities with populationso f more than 100,000 provide estimateso f storm-runoffl oadsf rom urban areast o receivings treams( U.S. Environmental Introduction 1 ProtectionA gency, 1990, p. 48070). City engineersh ave a variety of optionsf or developingt hese estimatesr,a ngingf rom simple empiricalt echniques(Y oung and others, 1979; U.S. Environmental ProtectionA gency, 1983; Schueler,1 987)t o more advanceds tatisticalr egression( Driver and Tasker, 1990) and conceptually-basemdo dels( reviewedi n Huber, 1986; Nii, 1991). The Driver-Taskerm odelsa re regressionm odelso f storm-runoffq uality (constituenlto ad and meanc oncentrationo) n physical, land-use, and climatic characteristicfsr om the datab aseo f the NationwideU rban Runoff Program( NURP). Separate setso f regressionm odelsw ere developedfo r mean-annuarlu noff quality and for single-stormr unoff quality. Regardlesso f the methods elected,p rovision shouldb e madef or adjustmenot f the ‘a priori’ prediction using local urban-runoffq uality data currentlyb eing collectedi n eachc ity to meet additionalr egulatory requirements(U .S. EnvironmentaPl rotectionA gency, 1990, p. 4806948070). The local storm-loadd ata basef or eachc ity will consisti n most caseso f aboutt hree stormsa t 5-10 sites, or about 15-30l oad observations. A proceduret o adjustt he regionals ingle-stormm odels( Driver and Tasker, 1990)f or a particular city, using a small datab asef rom that city, was presentedin a recents tudyb y Hoos (1991). Although such 3 model adjustmenpt rocedure( MAP) may seemt o be reasonablea pproach,a t least intuitively, several 3 unansweredq uestionsc omet o the fore aboutt he validity of this procedurea nd of possiblea lternative procedures. For example: What are the assumptionfso r the severalp roposedM AP’s, and can theseb e codified for potential l adjustorsa s they examinet heir local datab ases?F or example,i s there a minimum size for a local data baset o be usedi n the various MAP’s, below which size the assumptionisn the proceduresa re not valid? Of all statisticallyv alid MAP’s, which will provide the most reliable predictionsf or unmonitoreds ites? l Do the modelsf or constituentlo ad differ from the modelsf or constituentm eanc oncentrationw ith respect l to their suitability for MAP’s? How can the uncertaintyo f an adjusted-modeplr edictionf or an unmonitoreds ite be estimated? l Purpose and Scope The purposeo f this investigationis to provide informationr egardinga ppropriates tatisticalm ethodsf or combiningo r weighting regionalm odel predictionso f storm-runoffq uality with local data. This report describes: the assumptionfso r four proposedM AP’s, and how thesea ssumptiontsr anslatei nto requirementsfo r the l local datab ase; a schemefo r selectingt he appropriatea djustmenpt rocedureb asedo n exploratoryd ata analysiso f the local l datab ase; resultsf rom split-samplete stso f the four proposedM AP’s and the selections cheme;a nd l expressionfso r calculatings tandarde rrors of predictiona nd confidencein tervalsf or unmonitoreds ites l using eacho f the proposedM AP’s. 2 Procedures for adjusting regional regression models of urban-runoff quality using local data REGIONAL REGRESSION MODELS OF URBAN-RUNOFF QUALITY Urban-runoffq uality at unmonitoreds itesi s commonlye stimatedu sing either deterministicm odelso f washoff and transportp rocessesin the watershedo r statisticalm odelsc alibratedw ith observedd ata at other sites. Although in the caseo f estimatinga t unmonitoreds ites,n eithert ype of model can be calibratedw ith at-sited ata, the statistical-modeal pproachh as the advantageo f providing a measureo f the uncertaintyi n the modelp redictions. This advantagec ould be an importantc onsiderationfo r city engineerso r planners res onsiblef or developingr emedialw ater-qualitym anagemenptr ogramso r designinga dditionald ata- co1Pe ctionp rograms. Regressionm odelsw ere developedb y the U.S. GeologicalS urvey( Driver and Tasker, 1990)f rom regressiona nalysiso f the NURP nationald atab ase( Mustarda nd others, 1987; U.S. Environmental ProtectionA gency, 1983). Separates etso f regressionm odelsw ere developedfo r mean-annuarlu noff quality and for single-stormr unoff quality. The single-stormre gressionm odelsr elate storm-runoffq uality (constituenlto ad and meanc oncentrationt,h e responsev ariables)f rom a single storm to easilym easured physical,l and-use,a nd climatic characteristic(st he explanatoryv ariables). Modelsw ere developedf or 11 constituents:c hemicalo xygend emand( COD), suspendedso lids (SS),d issolveds olids (DS), total nitrogen (TN), total ammoniap lus organicn itrogena s nitrogen (TKN), total phosphorus(I F), dissolved phosphorus(D P), total recoverablec admium( CD), total recoverablec opper( CU), total recoverablele ad (PB), and total recoverablez inc (ZN). A set of three modelsc orrespondingto three regionald ivisionsw as developedfo r eachc onstituenlto ad (Driver and Tasker, 1990,t ables 1 and 3) and for eachc onstituenmt ean concentration(D river and Tasker, 1990, table 5). The basisf or the regionald ivisionsw as meana nnual rainfall (regionI , lesst han 20 inches;r egion II, 20-40 inches;r egion III, greatert han 40 inches),w hich providedt he best resultso f sevenb asest estedf or regionalization/stratificatio(nD river and Tasker, 1990, p. 5). Standarde rrors of estimate( SE)w ere generallys mallestf or region I modelsa nd largestf or region III models( table l), indicatingt hat as meana nnualr ainfall increasest,h e ability to estimates torm-runoffq uality decreases. Table 1. Standard errors of estimate for regional regression madels of storm-runoff loads and mean concentrations of selected constituents [Vsluer for standarde rror of estimate (SE) from Driver and Tasker, 1990, tables 2, 3, and 6; COD, chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total recoverablel ead; SS, suspendeds olids; Lea, stepwise-analysisre gressionm odel for storm-runoff load; Cta, stepwise-analysis regressionm odel for stem-~noff medn concentration; u, 3-variable rcgmesionm odel for storm-mnoff load] Standard error of estimate Region I Region II Region III Model Percent Log Percent Log Percent LotI COD.Lsa 86 0.324 97 0.355 169 0.505 COD.Csa 61 .245 79 .303 78 .300 COD.L3 116 .403 106 .376 186 .531 TKN.LSl3 71 .277 106 .377 165 .498 TKN.Csa 60 .242 85 .321 85 ,321 TKN.L3 129 .431 107 .381 184 ,529 PB.Lsa 141 .455 131 .435 227 .586 PB.Csa 88 .331 103 .371 179 ,414 PB.L3 166 .500 135 A42 228 .586 SS.Lsa 230 .589 165 ,498 265 .627 SS.Csa 131 .434 128 .427 178 .519 SS.L3 251 .613 173 .512 290 .651 Regional regression models of urban-runoff quality 3 Two separates etso f modelso f storm-runoffl oad were developedfo r eachc onstituenta nd for each region. One set, referred to as the stepwiseanalysirse gressionm odels,w as developedf tom a stepwise regressiona nalysiso f 13 candidatee xplanatoryv ariables;t he numbero f explanatoryv ariabless electeda s significantf or a particularm odel rangedf rom three to six (Driver and Tasker, 1990, table 1). The second set includedo nly the three most significante xplanatoryv ariables: total storm rainfall, total contributing drainagea rea, and imperviousa rea (Driver and Tasker, 1990, table 3). For the purposeo f this report, the stepwise-analysliosa d and concentrationm odelsw ill be referredt o as Lsa and Csa, respectively,a nd the 3-variablel oad modelsa s L3. The Lsa modelsf it the observedd atab etter than L3 models( table 1). SE measuresfi t of observedd atar ather than predictivea ccuracy. The fit of the load and concentrationm odels shouldnl ot be comparedo n the basiso f SE, becauseth e responsev ariableu nits in eachc asew ere different. A final set of nationalr egresion modelsw as developedto predict load from an averages torm (response variable)b asedu pon five explanatoryv ariables( Driver and Tasker, 1990, table 10). Estimatesfr om these modelsc an be used in conjunctionw ith an estimateo f the averagen umbero f stormsp er year to yield an estimateo f meana nnuall oad. LOCAL URBAN-RUNOFF QUALITY DATA Facedw ith the needt o develope stimateso f storm-runoffq uality for a large numbero f unmonitored sites, a city engineerm ight wish to employt he publishedr egressionm odels,p rovided the publisheds tandard errors of estimatea re deemeda cceptable(t able 1). A separateo ption would be to test the publishedm odels by comparingr egional single-stormm odel (henceforthte rmedr egionalm odel) estimatesw ith availablel ocal urban-runoffq uality data to appraiseth e predictivea ccuracyo f the regionalm odelsf or the particular city of interest. The magnitudeo f the model errors could indicatet he relative accuracya nd usefulnesso f these modelsf or estimatingl oads and meanc oncentrationos f constituentsfo r watershedsin that city. When regional-moderl esultsp rove inaccuratefo r estimatings torm-runoffq uality in a particular city, the city engineerm ight wish to use local data to ‘adjust’ (througha partial recalibrationp rocedure)t he regional modelsa nd obtain more accurater esults. Local data basesu sedf or the adjustmenot f regionalm odelss hould possessc ertain attributesi f the adjustmentsa re to result in more accuratee stimates.A mong thesea ttributes are: Ihe monitoring sites in the local data base should represent a wide range of conditions of physical l characteristics (size of drainage area, percent impervious area) and land-use characteristics. This will ensuret hat the valuesf or thesee xplanatoryv ariablesa t any unmonitoreds ite for which an estimateis desiredw ill fall within the ranger epresentedb y the local data base. It may be useful to comparet he ranger epresentedb y the local datab asew ith the ranger epresentedb y the regional NURP datab ase (Driver and Tasker, 1990, table 4). The monitored storm in the local data base should represent a wide range of storm characteristics (rotd l stem rainfall, duration of each storm, and antecedent conditions), for the samer easonc ited previously. Although explanatoryv ariablesr elatedt o antecedenct onditions( for example,p recedingn umbero f dry days, amounto f rainfall during the precedingd ay, 3 days, or 7 days)a re not includedi n the regional models,s uchv ariablesc ould accountf or someo f the unexplainede rror in thesem odelsa nd, therefore, may be candidatesfo r use in adjustingt he models. The following discussionil lustratest he use of a local datab ase( for a hypotheticalC ity X, locatedi n region II) to test the validity of the regionalm odelsf or a particular city. Data for storm-runoffl oad of COD haveb eenc ollectedd uring three stormsa t eacho f five sitesi n City X, with a resultingd ata baseo f 15 observations.F or eacho f theseo bservedlo ads, a correspondingp redictedl oad can be computedb y 4 Procodurw ior adjusting regional rogrossion models of urban-runofl quality wing lood data evaluatingt he explanatoryv ariablesa nd applyingt he regionalm odel for COD for region IX. The observed and correspondingp redictedv aluesa re showni n figure 1 for eacho f the 15 events. Examinationo f the patterno f correspondenc(eo r lack of correspondenceb)e tweeno bserveda ud correspondingp redictedv alues, and knowledgeo f the local datab asea nd NURP datab asef or region II, can lead to one of the following conclusions. 5,000 r E l PREDICTED FROM REGIONAL MODEL 0 OBSERVED IN STORM SAMPLE n 0 n n n 0 10 ’ 1A 1 B 1C 2A 28 2C 3A 38 3C 4A 48 4C 5A 58 SC SITE/STORM NUMBER Figure 1. Observed and predicted chemical oxygen demand load in storm runoff for City X’s local data base. Onep ossiblec onclusionis that the site or storm characteristic(se xplanatoryv ariables)r epresentedb y the local datab asea re not representativeo f the full rangeo f storm-runoffc onditionsi n City X, whereasth e characteristicos f the calibrationd atas et for the region II modelsa re representative.C onsequentlyt,h e regional-modepl redictions,a lthougha ppearingin accuratefo r estimatingth e local data, might be more accuratee stimatesfo r a typical unmonitoreds ite and typical storm in City X. Explanationsfo r drawing such a conclusionm ight include: knowledget hat sitesi n the local data basem ight be influencedb y point-source dischargeso, r knowledget hat stormsm onitoredf or the local datab asea re atypicalo f averages torm characteristicfso r City X. A secondp ossiblec onclusionis that the regionalm odelp redictionsa re biasedr elative to actuals torm- runoff conditionsi n City X, and that the observationsin the local datab asea re representativeo f local conditions. Conditionss upportingt his conclusionm ight include: (1) the valueso f the explanatoryv ariables for watershedsin City X are consistentlyo utsidet he rangeo f valuesf or explanatoryv ariablesi n the NURP region II data base( for example,m eana nnualr ainfall in City X is higher than for any city includedi n the Local urban-runoff quality data 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.