ebook img

DTIC ADA444118: Measuring Taylor Slough Boundary and Internal Flows, Everglades National Park, Florida PDF

17 Pages·3.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA444118: Measuring Taylor Slough Boundary and Internal Flows, Everglades National Park, Florida

Measuring Taylor Slough Boundary and Internal Flows, Everglades National Park, Florida U.S. Geological Survey Abstract Open-File Report 01–225 Four intensive data-collection efforts, intended to representthespectrumofprecipitationeventsandassociated flowconditions,wereconductedduring1997and1998inthe TaylorSloughBasin,EvergladesNationalPark.Flowveloc- itieswere measuredbynewlydeveloped,portable Acoustic Doppler Velocitymetersalongthree transectsbisectingthe Taylor SloughBasinfromeasttowest,roughlyperpendicu- lar tothe centerline axisofthe sloughaswellasa fourth transectalongthe slough’saxis.These metersprovidedthe requiredlevelsof accuracyinflow-velocitymeasurements whileenablingtherapidcollectionofmultipletimeseriesof flow data atremote sites.Concurrently,flow measurements were made alongborderingroadculvertsandunder L-31W andTaylor Sloughbridges.Flowsacrossthe studyarea’s boundariesprovidednetflow of water intothe systemand transectmeasurementsprovidedflow data withinthe basin. Collecteddata are available throughthe WorldWide Web (http://sofia.usgs.gov/projects/flow_velocity/). The high- water andlow-water eventscorrespondedwiththe highest andlowestflow velocities,respectively.The July1998data hadlower thanexpectedflow velocitiesand,insome cases, strongwindsreversedflow direction. By Gina M. Tillis 1 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 2001 N/A - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Measuring Taylor Slough Boundary and Internal Flows, Everglades 5b. GRANT NUMBER National Park, Florida 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION U.S. Department of the Interior 1849 C Street, NW Washington, DC REPORT NUMBER 20240 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE SAR 16 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 INTRODUCTION Overthelastcentury,manhasextensivelyalteredthehydrologic systemofsouthern Florida by constructinga system ofcanalsand leveesforthe purposesofdrainingthewetlands,providingwater supply,andcontrollingfloods.Althoughtheseeffortsmadesouthern Floridamoresuitableforurbanizationandagriculture,theycreated another set of problems, which included lowering of ground- and surface-waterlevelscausedbyover-drainage,frequentdry-seasonfires indrought-strickenwetlands,andsaltwaterintrusionincoastalareas. TaylorSlough(fig.1),historicallyamajorcontributoroffreshwater toFloridaBay,lieswithinthesoutheasternpartofEvergladesNational Park(ENP).Theduration,timing,andextentofwetlandinundationof TaylorSlough’sinterconnectedwetlandsandfreshwaterflowsthrough FloridaBaycreeksareacriticalcomponentoftheEvergladesecosys- tem.Sincethemid-1960’s,numerouscontrolstructuresontheL-31W andC-111canalshavemanipulatedTaylorSloughwaterlevels,resulting inalteredtiminganddistributionofflowsintoTaylorSlough.Hydro- logicregimealterationspromotedhypersalineconditionsinFlorida Bay,alteredplantandanimalcommunities,decreasedpopulations ofwadingbirdandanimalspecies,andreducedhabitat.Anthropogenic encroachmenthasplacedtheCapeSableseasidesparrow,American crocodile,andFloridapantherontheendangeredspecieslist,andhas had many other detrimental effects on the ecosystem. To better managethesystem,inflowandcirculationpatternsfortheTaylor SloughBasinarebeinganalyzedsothatthenaturaltiminganddistrib- ution offlowstothe basincan assist water-resourcemanagersin theoverallEvergladesrestorationeffort(McPhersonandothers,1999). TheU.S.GeologicalSurvey(USGS),incooperationwiththe Americanalligator EvergladesNationalPark,beganastudyin1997tocollecthydrologic dataintheTaylorSloughBasin.Thestudywasaccomplishedaspartof theSouthFloridaEcosystem Program,a collaborativeeffortbythe USGS,variousotherFederal, State, andlocalagenciesand Indian tribes,toprovideearthscienceinformationneededtoresolveland-use andwaterissuesinsouthernFlorida.Ongoingeffortsareunderwayby theUSGSandENPtocollectadditionalhydrologicdatainthepark. Purpose and Scope Thepurposeofthisreportistodescribethemethodologyusedin collectingandassimilatingflowdataintheTaylorSloughBasinandto referencetheresultantdataarchiveavailableontheWorldWideWeb (http://sofia.usgs.gov/projects/flow_velocity/).Datawerecollectedat boundaryandinternalsitestohelpcalibrateandverifyahydrodynamic modeloftheinterconnectedwetlandandtidalecosystemandtoprovide baselinedataforevaluatingprocessessuchasevapotranspiration,flow resistanceeffectsofvegetation,andground-water/surface-waterinter- actions.Thiseffortwasoneofthreeconcurrentstudiescollectingflow data acrossthestudyarea’sboundaries. Flow datathroughFlorida Bay’s tidalcreeksand along theC-111 canaloverbankand outflow areasareavailableathttp://sofia.usgs.gov/projects/freshwtr_flow/#data andhttp://sofia.usgs.gov/projects/coupling_mdls,respectively(Patino, undated;Schaffranek,undated). 2 Thisreportdescribesdata-collectionmethods,illustratesone oftheavailabledataformats,identifiesgeometricpropertiesofthe internaltransects,anddiscussesseasonalvariabilityinsurface-flow velocitymagnitudeanddirectionthroughtheTaylorSloughBasin. Datacollectionwasconductedduringfourintensivecollectionefforts (July1997,September1997,November1997,andJuly1998)and coveredawidespectrumofprecipitationeventsandassociatedflow conditions.Seasonalvariabilityinsurfaceflowwithinthebasinas Figure1. LocationofTaylorSlough studyarea,southFlorida. wellasnetflowofwaterintothesystemisdocumented. EXPLANATION EVERGLADESNATIONALPARK TAYLORSLOUGH URBANAREA BUILT-UPAREASAND AGRICULTURALLAND F ROCKYGLADES L O AIRBOATTRAIL RI CANAL S-174 CONTROLSTRUCTUREANDNUMBER DA TRANSECTS T1 T4 T2 Centerline T3 (cid:12)(cid:5)(cid:3)(cid:8)(cid:1)(cid:6)(cid:4)(cid:5)(cid:11) (cid:12)(cid:5)(cid:3)(cid:7)(cid:8)(cid:6) (cid:12)(cid:5)(cid:3)(cid:4)(cid:13)(cid:6)(cid:4)(cid:5)(cid:11) (cid:12)(cid:5)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1)(cid:8)(cid:3)(cid:4)(cid:5)(cid:6) 27 1 S-174 C-113 Homestead Pa-hay-okee Frog C Overlook Pond -1 TaylorSlough 11 9336 Bridge S-332 S-175 S-178 d RoyalPalm oa Road S-177 R L C (cid:1)(cid:8)(cid:3)(cid:1)(cid:1)(cid:6)(cid:4)(cid:5)(cid:11) nPark RoRSyataanltigPoeanrlm -31W -111E ai M L-31W M gh Bridge u OD Slo NA or S-18C RODE Mahogany Tayl C-111 1 E Hammock S-197 (cid:1)(cid:8)(cid:3)(cid:10)(cid:8)(cid:6) NineMile Pond JoeBay PicnicArea WestLake Florida Bay BasefromU.S.GeologicalSurveydigitaldata,1972 0 5MILES AlbersEqual-AreaConicprojection,DatumNAD1983 StandardParallels(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)and(cid:7)(cid:8)(cid:3)(cid:4)(cid:5)(cid:6)(cid:9)centralmeridian(cid:1)(cid:4)(cid:3)(cid:5)(cid:5)(cid:6) 0 5KILOMETERS 3 Previous Studies TheEvergladeshydrologiccyclehasintriguedresearchersand environmentalistsfordecades.AmongnumerousstudiesintheTaylor Slough Basin,the following areexamplesthathaveanalyzed the relationbetweenrainfall,waterlevels,andoutflowstoFloridaBay (MeyerandHull,1969;VanLent,1993;VanLentandothers,1993; Tsihrintzisandothers,1996;Balesandothers,1997).However,inter- nalflowsweredifficulttoquantifyduringtheaforementionedstudies asaresultofinstrumentationlimitationsandadverseenvironmental Figure2. AerialviewofTaylorSlough. conditions. Area Description TaylorSlough,withheadwatersintheRockyGladesareaof westernDadeCounty,providesoneoftwomajorfreshwaterpath- waysintoeasternEvergladesNationalPark(fig.2).Inthisbasin, surfacewaterandgroundwaterflowsouthwardforabout20miles (mi)beforemergingintoFloridaBayviaanumberofsmallcreeks andchannels.Thesloughcoversmorethan158squaremiles(mi2) andextendsabout21mifromitsupstreamendnorthofFrogPond tothecoastalmangrovesalongcentralFloridaBay(fig.1).TheMain ParkRoadpartiallyencirclesthestudyareatothenorthandwest; theC-111canalistheeasternmostboundary,andFloridaBayisthe southernmostboundary(fig.1).Thenorthernportionoftheslough isfreshwatermarshdominatedbyrushandcypressheads;saltwater influenceisapparentbythetransitiontosawgrassandmangroves onthesouthernpartoftheslough. Precipitation Figure3. Monthlyrainfalland30-year PrecipitationdatafromtheNationalOceanicandAtmospheric normalmonthlyrainfallfortheNational AdministrationstationattheRoyalPalm VisitorCenter,located OceanicandAtmosphericAdministration withinthebasin,wasutilizedinthisstudy(fig.3).Thebimodalwet stationattheRoyalPalmVisitorCenter, EvergladesNationalPark,Florida. season,whichischaracteristicofsouthFlorida,hasintenserainfall 25 30-YEARNORMALPRECIPITATION TOTALMONTHLYPRECIPITATION S E 20 H C N I N 15 I N, O TI A 10 T PI CI E PR 5 Data o N 0 F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 1996 1997 1998 4 Table1. Timetableofdata-collectiontrips [Darkshadingrepresentsthedatesofdatacollection] 1997 1998 7/29 7/30 7/31 9/22 9/23 9/24 9/25 9/26 11/17 11/18 11/19 11/20 7/20 7/21 7/22 7/23 Transect1 Transect2 Transect3 Transect4 Centerlineofslough C-111outflowarea L-31W TaylorSloughbridge Parkroadculverts C-111culverts duringJune,followedbyaperiodofminorprecipitationeventsuntil theonsetofgreaterrainfallinlateAugustorearlySeptember(Van Lent,1993;McPhersonandHalley,1996).The1997calendaryear wasaparticularlywetyear,mostlikelytheresultofElNiñoinflu- encedweatherpatterns.Juneprecipitationpeakedat20.90inches (in.),morethantwicetheaverageof9.64in.(NationalOceanicand AtmosphericAdministration,1996-98). DATA COLLECTION Fourintensivedata-collectiontripsintotheTaylorSloughBasin wereconductedduringJuly,September,andNovember1997,and July1998(table1).Thesetripscoincidedwithprecipitationevents thatwouldproducesufficientwaterlevelsforairboataccess(fig.4), andcoveredawidespectrumofwaterlevelsandflowconditionswith whichtoconductanalyses.Datacollectedinthisstudyhavebeen usedtocalibrateandverifyahydrodynamicmodeloftheintercon- nectedwetlandandtidalecosystemandtoprovidebaselinedatafor evaluatingprocessessuchasevapotranspiration,flowresistance effectsofvegetation,andgroundwater/surface-waterinteractions. (Harvey,1996;JenterandSchaffranek,1996;Schaffranek,1996; LeeandCarter,1997;Swain,1999). Equipment Thedata-collectioneffortcoveredawidevarietyoftasksand requiredvarioustypesofequipment.Atsiteswheretheuseofacoustic instrumentswasimpractical,vertical-axiscurrentmeterswereusedto Figure4. AirboataccesstoTaylorSlough. measurewatervelocity.Vertical-axiscurrentmetersoperatebasedon theproportionalitybetweenthevelocityofthewaterandtheresulting angularvelocityofthemeter’srotor.Thenumberofrevolutionsthe rotorcompletesduringameasuredintervaloftimeisdirectlyrelated tothewatervelocityatthatpoint.Additionally,multiplyingthewater velocitybythecrosssectionalareaofthestreamproducesanestimate ofdischarge. 5 Acousticinstruments,calledAcousticDopplerVelocity-meters (ADVs)andAcousticDopplerCurrentProfilers(ADCPs),usethe Dopplershiftprinciplebytransmittingsoundatafixedfrequencyand recordingthefrequency-shiftedechoesreturningfromparticlesinthe Figure5. SignalpatternsofanAcoustic DopplerVelocitymeterandAcoustic water(SimpsonandOltman,1993;Gordon,1996;SonTek,1996). DopplerCurrentProfiler. Bymeasuringacoustictraveltime(fig.5),theseinstrumentsareoften capableofdetectingthedistancetoasolidboundary,suchasachannel bottom.Thecompass-equippedADVrecordsthevelocityinthree directionalcomponents:X,Y,andZ,whicharetranslatedintomag- neticeast,magneticnorth,andup.Thewading-rod-mountedADV isapointvelocitymetercapableofmeasuringvelocitiesaslowas 0.0033feetpersecond(ft/s)indepthsasshallowas0.33foot(ft). ADV AcousticDoppler Velocitymeter ADCP AcousticDoppler CurentProfiler Compass Customized wadingrod 6 Thesamplevolumecentroidisapproximately0.16ftfromtheprobe tip.Thevessel-mountedADCPmeasuresvelocitythroughoutthe water-columnandcomputestotaldischargeastheboatmovesacross thecrosssection.TheADCPaccuratelymeasuresflowsasslowas 0.4ft/sindepthsasshallowas3.3ft(USGS,1997;RDInstruments, undated). Customizedwading-rodsweredesignedforADVvelocity-profile measurements.A top-setting rodwasusedbecauseofthe conve- niencein settingthe meter atthe properdepth. The top-setting wading-rodhasa1/2-inchhexagonalmainrodformeasuringdepth andanadapted3/8-inchdiameterroundrodforsettingtheposition oftheADV,accountingforthesamplevolumeoffsetfromtheprobe tip.Typically,awading-rodbasemeasures31/4in.indiameter.The speciallydesignedwading-rodbasediameteris1ft.Thelargerbase distributesthe rodandmeterweightover agreaterareaandmini- mizes compaction ofthesoftlitterlayeron theslough bottom. Thebaseplaterestsonthelitterlayer,andthedepthofwateris readonthegraduatedmainrod. Figure6. TypicalAcousticDopplerVelocity metermountedonaspeciallydesigned Water-quality meters(collocated withall velocityprofiles) wadingrod. collecteddataatmiddepthandmeasuredthetemperature,specific conductance,salinity,dissolvedoxygen,andpH.Measuredtemperature andsalinityvalueswereusedincomputationofwatervelocitybecause bothparametersaffectthespeedofsoundinwater.Allwater-quality meterswerecalibratedatthebeginningofeachday. GlobalPositioningSystem(GPS)instrumentationestablished horizontalsampling locations inNorthAmerican Datum of1983 (NAD83)coordinates.Fieldnotesincludedthelatitudeandlongitude coordinates,GPSdrift,anddescriptionofdistinctivefeatures,(nearby staffgagesandcypressheads).Thesecoordinateswereconvertedto UniversalTransverseMercator(UTM)coordinates(NAD83,Zone17) forreportingandmodelinputpurposes. Afterpositioningthe ADV foravelocity measurement with minimumdisturbancetothesurroundingvegetationandflowfield,the hydrographerretreatedfromtheprobeandthepresumedflowpath (fig.6).About2minuteswasallowedforthesampleareatoreturnto equilibrium beforestarting avelocitymeasurement.Measurement burstslasted120seconds,ata10hertzsamplingrate,andproduced time-seriesmeasurementsof1200pointsattheappropriatedepthsin thewatercolumn. Description of MeasurementSite Network Thedata-collectionnetworkwasestablishedforthepurposeof quantifyingboundaryandinternalflowsfortheTaylorSloughBasin alongfiveinternaltransectsinthebasinandthroughculvertsacross theMainParkRoad.Theinternaltransectsdatawereusedtodeter- minesurface-flowmagnitudeanddirectionthroughthebasin.The MainParkRoadprovideda“natural”boundarytothestudyarea. 7 Inflowsacrossthisboundaryweremeasuredconcurrentlywiththe internaltransects,utilizingvertical-axiscurrentmetersandADCPs. TwoconcurrentSouthFloridaEcosystemprojects,theFloridaBay andCanalWetlandFlow/TransportInteractionprojects,provided tidalcreekflowandC-111canaloverbankandoutflowdataalongthe southernandeasternboundariesofthestudyarea(Patino,undated; Schaffranek,undated). Measurementsiteswererestrictedtoareasalongestablished airboattrails(fig.1).Initially,internalflowsweremeasuredacross threetransectlines(T1,T2,andT3)bisectingtheTaylorSlough Basinfromeasttowestaswellasatransectalongthecenterline axisoftheslough.InNovember1997,afourthtransect(T4)was addedtothedata-collectioneffort,connectingtransectsT2and T3alonganorth-southairboattrail.Three-dimensionalvelocity measurementswereconductedatthetransectsitesutilizingADVs, which provided therequiredlevelsofaccuracyaswell asrapid collection of multiple time series of flow data at these remote sites.Waterdepth,water-qualityparameters,litter-layerthickness, weatherconditions,sitedescription,sitelocation,bottomconditions, andvegetativecoverwererecordedconcurrentlywithADVmea- surements.Individualvelocitysamplingsiteswerechosentoberepre- sentativeofthevegetationtypeanddensityaswellaswaterdepthin thesurroundingarea. Forwaterdepthslessthanafoot,thevelocitymeasuredat60 percentofthedepthfromthewatersurfacewasusedasthemean velocity in theverticalwatercolumn.Thethree-pointmethod (multiplemeasurementsat20,60,and80percentofthedepthfrom thewatersurface)wereusedwhenwaterdepthswere1ftorgreater. Windinfluence,non-uniformbottom,vegetativeresistancetoflow, variableflowarea,andshallowwaterdepthsaddedtothecomplexity ofthevelocityprofile.Therefore,thethreeobservationswereaver- agedarithmeticallytodeterminethemean water-columnvelocity (Rantzandothers,1982).Onoccasion,morepointsweremeasuredin thewatercolumnandthedepth-weightedmeanoftheobservations wasusedasthemeanwater-columnvelocity. Flowthrough128culvertsacrosstheMainParkRoadfromthe ENPentrancetoNineMilePond,fig.1,wasmeasuredusingvertical- axisPygmycurrentmeters.ThePygmycurrentmeterswereusedfor waterdepthsof0.3to2.5ftandvertical-axisPriceAAcurrentmeters wereusedfordepthsof2.5ftandgreater(Rantzandothers,1982). FlowunderTaylorSloughandL-31Wbridgeswasmeasuredwith vertical-axisPriceAAcurrentmeters.Additionally,anADCPmea- suredflowlossesfromtheL-31Wcanal,betweenstructureS175and itsterminus(about3.5misouthofS175)whereallflowbecomes sheetflowthroughthewetlands. 8 Geometric Properties of Transects Thedata-collectioneffortintendedtohavetransectsperpendicular to theslough axis.However,tominimizeenvironmentaldamage, measurementswereconfinedtolocationsalongestablishedairboat trails(fig.1).Thesetrailsfollowtheslough’snaturallandscapefea- turesandarenotalwaysperpendiculartothesloughaxis.TransectT1 isfairlystraightwiththeexceptionofadetouraroundcypressheads neartheslough’scenter.TransectT2isthemostnoncollineartran- sect,owingtonumeroustreeislandsandfirebreaks.TransectT3’s bowedshaperesultsfromthenaturalmeanderofcreeksthroughthe densemangroveforestnearthecenterlineoftheslough.However,the mangrovesgivewaytoopenwaterandsparsesawgrassonthewestern andeasternsectionsofthetransect.TransectT4followsawinding airboattrailsouthfromtransectT2totransectT3. Data Analysis ADVdatawerepostprocessedutilizingsoftwarefromtheequip- mentmanufacturer.Postprocessedfilesincludethecontrolfile(input informationrequiredtooperate theADV equipment), velocity (componentsinthemagneticeast,magneticnorth,andupdirections), correlation(dataqualityforeachofthethreeacousticreceivers),and signal-to-noiseratio(signalstrengthforeachofthethreeacoustic receivers). Anautomatedspreadsheetincorporatedpost-processedfilesfor furtherprocessingtodeterminetheaverageeast-westandnorth-south velocitycomponentsateachmeasurementdepth.Thevelocitycompo- nentswereadjustedtoaccountfordeclination,thedifferencebetween truenorthandmagneticnorth.Thesedatawereusedtocalculatethe time-averagedvelocitymagnitudeanddirectionateachmeasurement depthaswellasthemeanwater-columnvelocity,withrespecttotrue north,foreachmeasurementsite. Adatabasewasdevelopedtofacilitateinformationanddata transferofallcollecteddatatoSouthFloridaEcosystemProgram researchers.Thedatabasecontainsallfieldnotedataaswellaspro- cessedvelocitydata.Thedata-base“key,”auniqueidentifierforeach data-baserecord,isbasedonthesitelocationanddateofmeasure- ment.Forexample,W01T20997representsthemeasurementatsite W01ontransectT2inSeptember1997.Sitelocationsareavailable inbothNAD83latitudeandlongitudecoordinatesaswellasUTM coordinates.Anoutputdataformatthatemulatestheactualfield notesisshowninfigure7.Thedatabaseandspreadsheetscanbe accessedathttp://sofia.usgs.gov/projects/flow_velocity/ontheWorld WideWeb. Asaquality-assuranceprocedure,spotcheckswereconductedas wellascompleteduplicationofthedataanalysisprocessforrandom sites. Utilizinga spreadsheettemplateminimized datainput and processingerror.Additionally,examinationofthecontrolfile,filtered datasummaries,profilecomputations,histograms,andgraphshelped detectdataerrors. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.