ebook img

DTIC ADA441085: Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies PDF

41 Pages·2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA441085: Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies

T R R ECHNICAL ESEARCH EPORT Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies by Andrew J. Newman, P.S. Krishnaprasad CDCSS T.R. 99-2 (ISR T.R. 99-19) + CENTER FOR DYNAMICS C D - AND CONTROL OF S SMART STRUCTURES The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center, supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This document is a technical report in the CDCSS series originating at the University of Maryland. Web site http://www.isr.umd.edu/CDCSS/cdcss.html Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 1999 2. REPORT TYPE - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Modeling and Optimization for Epitaxial Growth: Transport and Growth 5b. GRANT NUMBER Studies 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Army Research Office,PO Box 12211,Research Triangle Park,NC,27709 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT see report 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 40 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies AndrewJ. Newman (cid:0) P.S.Krishnaprasad InstituteforSystemsResearchand InstituteforSystemsResearchand ElectricalEngineeringDepartment ElectricalEngineeringDepartment UniversityofMaryland UniversityofMaryland CollegePark,MD20742 CollegePark,MD20742 [email protected] [email protected] OriginalVersion: January10,1999 CurrentVersion: March17,1999 Abstract This report details the objectives, methodologies, and results for Phase II of the project, “Modeling and Op- timizationfor Epitaxial Growth” (see [21] for Phase I report). This project is a joint effort between the Institute forSystemsResearch(ISR)andNorthropGrummanCorporation’sElectronicSensorsandSystemsSector(ESSS), Baltimore,MD.Theoverallobjectiveistoimprovemanufacturingeffectivenessforepitaxialgrowthofsiliconand silicon-germanium(Si-Ge)thinfilmsonasiliconwafer. GrowthtakesplaceintheASMEpsilon-1chemicalvapor deposition(CVD)reactor,aproductiontoolcurrentlyinuseatESSS.PhaseIIprojectresultsincludedevelopmentof anewcomprehensiveprocess-equipmentmodelcapableofpredictinggasflow,heattransfer,speciestransport,and chemicalmechanismsinthereactorunderavarietyofprocessconditionsandequipmentsettings.Applicationsofthe modelincludepredictionandcontrolofdepositionrateandthicknessuniformity;studyingsensitivityofdeposition ratetoprocesssettingssuchastemperature,pressure,andflowrates;andreducingtheuseofconsumablesviapurge flowoptimization. Theimplicationsofvarioussimulationresultsarediscussedintermsofhowtheycanbeusedto reducecostsandimprove productquality, e.g., thicknessuniformityofthin films. Wedemonstratethatachieving deposition uniformity requires some degree of temperature non-uniformityto compensate for the effects of other phenomenasuchasreactantdepletion, gasheatingandgasphasereactions,thermaldiffusionofspecies,andflow patterns. (cid:1) ThisresearchwassupportedbygrantsfromtheNorthropGrummanFoundation,theNationalScienceFoundation’s EngineeringResearch CentersProgram: NSFDCDR8803012andNSFGrantEEC-9527576,andtheArmyResearchOfficeundertheODDR&EMURI97Program GrantNo.DAAG55-97-1-0114. Contents 1 Introduction 1 2 ProjectSummary 2 2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.4 SummaryofPhaseIResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.5 SummaryofPhaseIIResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.6 Follow-OnPlans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 EquipmentandProduct 4 3.1 ProcessChamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 ProductandConsumables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 ProcessConditionsandRecipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.4 EquipmentSettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.5 OperatingStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Process-EquipmentModel 8 4.1 Motivation:UniformityCaseStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 Process–EquipmentState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 ModelingApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.4 ReactorGeometryandFiniteVolumeMesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.5 TransportPhenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5.2 GasPhaseTransport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5.3 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.5.4 MaterialProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.6 ChemicalMechanismsforGrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.7 UnmodeledPhenomenaandEquipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 ResultsandApplications 20 5.1 DepositionRatePrediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 WaferTemperatureSensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 ChamberPressureSensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.3 FlowRateSensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1.4 CarrierGasSensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 DepositionUniformityPrediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 ProcessChamberTransportPhenomenaPrediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4 PurgeFlowOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.5 InjectorFlowAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Conclusions 32 7 Acknowledgements 33 i 1 Introduction This report details the objectives, methodologies, and results for Phase II (covering March 1998 through February 1999) of the project, “Modelingand Optimization for Epitaxial Growth” (see [21] for Phase I report). This project is a joint effort between the Institute for Systems Research (ISR) and Northrop Grumman Corporation’sElectronic SensorsandSystemsSector(ESSS),Baltimore,MD.Theoverallobjectiveistoimprovemanufacturingeffectiveness for epitaxial growth of silicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Growth takes place in the ASM Epsilon-1 chemical vapor deposition (CVD) reactor, a production tool currently in use at ESSS. Phase II project results include developmentof a new comprehensiveprocess-equipment model capable of predicting gas flow, heat transfer, species transport, and chemical mechanisms in the reactor under a variety of process conditions and equipment settings. Applications of the model include prediction and control of deposition rate and thickness uniformity; studying sensitivity of deposition rate to process settings such as temperature, pressure, and flow rates; andreducingtheuseofconsumablesviapurgeflowoptimization. Theimplicationsofvarioussimulationresultsare discussedintermsofhowtheycanbeusedtoreducecostsandimproveproductquality,e.g.,thicknessuniformityof thinfilms. Wedemonstratethatachievingdepositionuniformityrequiressomedegreeoftemperaturenon-uniformity to compensate for the effects of other phenomena such as reactant depletion, gas heating and gas phase reactions, thermaldiffusionofspecies,andflowpatterns. TheEpsilon-1isasingle-waferlamp-heatedCVDreactormanufacturedbyASM,Inc.,Phoenix,AZ.Thereactor isusedfordepositinglayersofepitaxialSi-Ge,epitaxialsilicon(epi-Si),andpolycrystallinesilicon(poly-Si). Initial physical-mathematicalmodelsforgrowthofpolycrystallinesiliconintheEpsilon-1arepresentedin[21]. Theinitial modelsfocusonthermallyactivatedgrowthofpoly-SiintheEpsilon-1.Theyincorporateheattransferwithinthewafer andbetweenwafer,chamberwalls,andlamps;andsurfacedepositionchemicalkinetics. Experimentalvalidationof lamp heating models and experimentaldeterminationof chemical kineticsparameters are also presented. However, theinitialmodelssufferfromsomedeficiencieswhichwenowdiscuss. ThemodelingoffundamentalaspectsofCVDinvolvesbothchemicalkineticsandtransportphenomena.Depend- ingonthespecificprocessandoperatingconditions,itisoftenassumedthatoneormorefactorshassignificantlymore influencethanallothersoverdepositionproduct.Inthosecases,thefactorsthatareconsideredlessimportantareoften completelyormostlyneglected. Thistypeofsimplificationwasadoptedintheinitialmodels,whichfocusedonlowtemperatureepitaxy.Inthelow temperatureregime,growthrateislimitedbysurfacereactionphenomenaratherthanbymasstransportphenomena. Furthermore,surfacereactionphenomenasuchasadsorptionanddesorptionofreactantspeciesarestronglydependent ontemperature. Forthisreason,thelowtemperatureregimeissaidtobethermallydriven(kineticallylimited). This motivated an approach in which initial models consisted only of a simplified conjugate heat transfer model and an Arrhenius growth law. Dynamics of transport phenomena were neglected. Inlet conditions for gas phase species concentrationsandtemperaturewereassumedtoholdthroughouttheprocesschamber.Chambergeometryplayedno role. However, as we show in this report, the simplifications made for the initial models seriously compromise their usefulnesstowardstudyinguniformityissuesforthinfilmgrowthintheEpsilon-1.Itturnsoutthatchambergeometry andavarietyofcomplexphenomenaplayarole,includingdepletionofreactants,non-uniformgasheating,gasphase chemistry,thermaldiffusion,andgasflowpatterns. Thisnecessitatestheincorporationofdetailedmodelsforthree- dimensionaleffectsofgasflow,gasphaseheattransfer,andtransportofchemicalspecies,inadditiontothepreviously modeled heat transfer phenomena. Furthermore, a more accurate model for surface reaction chemical kinetics is requiredtoincorporatereactiveintermediariesproducedinthegasphase. Finally,itiscrucialthatthemodelsreflect thecouplingamongthesevariousphenomenaintheprocesschamber. Deficiencies in the initial models have been addressed by development of a comprehensive process-equipment modelwhichaccountsforthemechanismsandfactorsdescribedabove. Themodelprovidesaplatformforstudying theeffectofequipmentsettingsandprocessconditionsondepositionproductcharacteristics,e.g.,depositionrateand thicknessuniformity. This report is organized as follows. Section 2 serves as a stand-alone executive project summary and general overviewofresults. Section3providesdetailsoftheequipmentandprocessesonwhichthemodelsare based. The comprehensiveprocess-equipmentmodel is presentedin Section 4. Results and applications of the modeling effort arecontainedinSection5. WegivesomeconcludingremarksinSection6. 1 2 Project Summary Thissectionservesasastand-aloneexecutivesummary. Itsummarizesprojectobjectivesandresultsfromtheview- pointofbenefitstosemiconductormanufacturingatNorthropGrumman. 2.1 Objectives Asstatedearlier,theoverallobjectiveoftheprojectistoimprovemanufacturingeffectivenessforgrowthofthinfilms intheEpsilon-1reactor. Theoverallgoalisaccomplishedviaimprovementofproductquality,increasedflexibilityof operation,andreductionofmanufacturingcosts.Thedescriptionofprojectobjectivesandprocessdetailsthatfollows isbasedondiscussionswithanddemonstrationsbyNorthropGrummanparticipants[23]. Within the scope of this phase of the project, product quality is determined solely by deposition thickness uni- formity. Other factors, such as film composition and resistivity uniformity, are important quality measures but not consideredhere. Thicknessvariationsof5%arecurrentlyacceptableformostapplications,althoughthereisnoguar- anteethatsuchaspecificationwillremainstable. Currently,variationsintherangeof2%areroutinelyachievedwith theEpsilon-1. Improvedresultsarealwaysdesirable. TheEpsilon-1iscapableofoperationinseveralregimesforpressure,temperature,andflowrates,anddeposition viainjectionofseveraltypesofprecursorandcarriergases.Predictionofdepositionratesandotherfilmcharacteristics foragivencombinationofprocessconditionsiskeytotakingadvantageofthemachine’sflexibility.Themanufacturer provides some predictive guidance and data. However, there is the desire for manufacturing “off-the-curve,” i.e., operatinginregimesandproducingfilmswithcharacteristicsthatdonotappearinmanufacturerprovidedinformation. Wehaveidentifiedandfocusedonseveralmanufacturingcostsforwhichreductionwouldbeadvantageous. Per- formance of devices at high frequency is difficult to predict based on properties of the product and manufacturing parameters. Toachieveaproductwiththedesiredproperties,NorthropGrummanoperateswithathreetofourmonth manufacturingcyclefollowedbyalongtestingcycle. Itcantakeuptotwoyearstoconvergeonthedesiredproduct. Each manufacturing cycle requires an initial period of experimentation in which the necessary equipment settings andprocessconditionsaredetermined. Onceparametersaredetermined,andthecustomerissatisfied,theprocessis certified,andparametersareusuallynotchangedforseveralyearsinordertoprovidethecustomerwithaconsistent product.Itispossible,however,fordriftofequipmentcharacteristicsovertimetocausesdegradation,necessitatingad- ditionalexperimentation.Inaddition,thechambertubeisperiodicallycleanedandreplaced,requiringare-calibration ofprocesssettings.Theresultisthatthevarioustrial-and-errorstepshaveasignificantimpactontime-to-manufacture andotherproductioncosts. Othercostconcernsincludeoperationalintegrityand“down-time”ofequipment,andtheuseofconsumablessuch asprocessgases. Itisclearthatreductionsinexperimentalsteps,equipmentfailure,andgasconsumptionwillhavea beneficialimpactonmanufacturingcosts. 2.2 Methodology Projectobjectivesareaccomplishedby gaininganunderstandingoftheprocessesandequipmentviaphysicalandmathematicalmodeling,and (cid:2) usingtheresultingvalidatedmodelsforoptimizationofprocessconditionsandequipmentsettings. (cid:2) ThemodelingeffortincludesdevelopmentofphysicsbasedmodelsforfundamentalCVDphenomena,experimen- taldeterminationofmodelingparameters,andexperimentalvalidationofmodelpredictions. Processandequipment models are used to develop software and analytical tools for “off-line” prediction of deposition results, conducting “what-if”experiments,anddeterminingoperatingparametersforimprovedperformanceandproductquality. 2.3 History Theproject“ModelingandOptimizationforEpitaxialGrowth”wasinitiatedinDecember1996,underanagreement betweenNorthropGrummanESSSandtheISR.PhaseIoftheprojectroughlyencompassedtheperiodJanuary1997 throughSeptember1997. FinalPhaseIresultswerepresentedtoNorthropGrummanparticipantsinAugust1997,at theSEMATECHAdvancedEquipment/ProcessControlSymposium[20]in September1997,andpublishedin[21]. 2 Phase II of the project began in March 1998. A formal presentation of results to Northrop Grumman participants was made in October 1998. This report, which includes some additional results, and revisionsto the October 1998 presentation,waswrittenduringthesubsequentperiod. 2.4 SummaryofPhaseIResults TherearetwomaincomponentsofthePhaseIeffort[21]: physicsbasedmodelingofpoly-SigrowthintheEpsilon-1 andacomparativestudyofmethodsforreducingthecomplexityofthosemodelssotheyareeasiertouseforsimulation andcontrolpurposes. Theinitial modelingeffortproduceda detailedanalysisof physicalandchemicalmechanismsfor growthin the Epsilon-1,alongwithanoverallmodelingframeworkwhichidentifiedandintegratedthenecessarymodelcomponents suchasmacroscopiclevelheattransferandmicroscopiclevelmorphologyevolution. Then,simplifiedphysicsbased modelsforpoly-SidepositionintheEpsilon-1weredeveloped.Thesemodelspredictthetimeevolutionfor heat transfer within the wafer and among wafer, heat lamps, and chamber walls (temperature distributions in (cid:2) solids),and reactionrateatthewafersurfaceviachemicalkinetics. (cid:2) Theinitialwaferthermalmodelaccountsforeffectsofconductionwithinthesolidwafer,convectivelossestothe gasphase,andradiativelossestotheambient.Radiativeheattransferfromlampstowaferismodeledbydetermining spatialprofilesofradiantheatfluxintensityforindividuallampgroupsandlampzones.Theseradiantintensityprofiles werecomputedanalyticallyusingviewfactormethodsandthenvalidatedusingdatafrompoly-Sigrowthexperiments usingtheEpsilon-1reactor. TheinitialchemicalkineticsmodelisanArrheniusrelationshipforsurfacereactionrateversustemperature. The Arrhenius parameters, activation energy and pre-exponential constant, were determined via poly-Si growth experi- mentsusingtheEpsilon-1reactor. The initial models were used to predict growth rates and thickness profiles for several test process recipes. It shouldbeemphasizedthatthepredictivecapabilityoftheinitialmodelswaslimitedtothelowtemperaturethermally activatedregime.Theydonotaccountfortheeffectsofgasflowpatterns,gasphaseheattransfer,gasphasechemical reactions,andotherphenomenaaffectingtherateandspatialdistributionoftransportofchemicalspeciestothewafer surface. DuetothecomplexityandhighcomputationaldemandsofCVDmodels,weinvestigatedtheuseofmodelreduc- tiontechniquestoreducethemodelcomplexity,leadingtofastersimulationandfacilitatingtheuseofstandardcontrol andoptimizationstrategies. Thecomparativestudyofmodelreductionmethodsexaminedtheproperorthogonalde- composition(POD)andbalancedrealizationapproachestoreducingmodelcomplexity. Thesemethodswereapplied tothe dynamicmodelsforheattransferinvolvingthewaferandlampsintheEpsilon-1. Numericalsimulationsand subsequentanalysisrevealedthatboththePODandbalancingmethodsproduceastatespacebasisthat allowsfora significantreductioninmodeldimensionality(seealso[22]). 2.5 SummaryofPhaseIIResults We developeda comprehensiveprocess-equipmentmodel, incorporatingthree-dimensionaleffectsof gasflow, heat transfer, species transport, and gas phase and surface chemical mechanisms. The process-equipment model is im- proved over initial models, in that it is based on more accurate information providedby the manufacturer, and has the capabilityto takeinto accountmorephenomenasuspectedto havea significantinfluenceon depositionrateand uniformity. Theprocess-equipmentmodelprovidesatoolforpredictionofdepositionrateandotherprocessvariablesgiven aset ofprocessconditionsandequipmentsettings. ThesepredictionsallowNorthropGrummanto simulategrowth experimentsinadvance,narrowparameterchoices,andperformfeweractualexperiments.Conditionsandsettingscan beoptimizedoff-line,takingintoaccountsimulationresultsandsensitivityanalysisforpressure,temperature,andflow rates. Theeffectofadjustmentstowafertemperatureset-point,chamberpressure,sourcegasflowrate,thermocouple offsets,andinjectorsettingscanbepredictedandtunedoff-line. We validated the predictive capability of the model over a range of operating conditions by comparing simula- tionresultswithexperimentaldata. We usedsimulationstopredicttherelationshipbetweensilicongrowthrateand wafer temperature, chamber pressure, source gas flow rate, and choice of carrier gas. We determined an Arrhenius 3 relationship for temperature sensitivity of silicon growth rate, with activation energy the same for simulations and experiments. Simulationresultsindicatethatgrowthrateincreaseswiththelogarithm(base10)ofchamberpressure, inagreementwithknownrelationships.Wefoundapowerlawrelationshipconnectingpoly-Sigrowthratewithsilane flowrateattheinlet. Finally,wedemonstratedthatsubstitutionofnitrogenforhydrogenasthecarriergasresultsina significantlyincreaseddepositionrate. Weshowinthisreportthatauniformtemperaturedistributiononthewafersurfaceresultsinanon-uniformdepo- sitionthicknessprofile.Thus,itisapparentthatachievingdepositionuniformityrequiressomedegreeoftemperature non-uniformitytocompensatefortheeffectsofotherphenomena.Thistemperaturenon-uniformityisprovidedbythe thermocoupleoffsets.Thefactorsthatinfluencedepositionrateanduniformityarestudiedwiththegoalofformulating strategiesforthesettingofthermocoupleoffsets. Simulationresultsshowthatconsumptionofprocessgasescanbereducedbydecreasingthepurgegasflowfrom 7slmto5slmandpossiblyfurtherwithoutcompromisingtheabilityofthepurgegastopreventback-sidedeposition. 2.6 Follow-OnPlans ExistinggasinjectionequipmentintheEpsilon-1willbereplacedinthenearfuturewithnewgasinjectors. Thenew equipmentwillprovidemoredegreesoffreedomforadjustingthegasflowprofileintheprocesschamber.Themodels shouldberevisedtoreflectthenewequipment,andtheeffectofvaryinginjectoropeningsizesshouldbeinvestigated viasimulationsandexperiments. ItisclearthatthesettingofthermocoupleoffsetshasastronginfluenceondepositionuniformityintheEpsilon-1. Anexperimentalstudyisnecessarytoinvestigatetheeffectofeachindividualoffsetonwafertemperaturedistribution andgrowthrateuniformity. NorthropGrummanhasobservedthatabuild-upofdepositedmaterialleavesacoatingonthequartzshelves[23]. The effect on deposition uniformity is unclear, although it has not yet caused a problem in that regard. Its main damageistothestructuralintegrityofthechamber. Inoneinstance,mechanicalstressesduetofilmbuild-uponthe quartzcausedthequartztocrack,destroyingthechamber. Forthisreason,thequartzchamberiscleanedorreplaced periodically.Inaddition,theflowguidehasbeenusedtodirecttheflowsothatthebuild-upoccursinalessdamaging location. Inordertopreventunwantedbuild-upoffilms,anetchcleanstepusingHClisperformedpriortodepositionsteps. Duringthisstep,HClispumpedintothechamberalongwithH purgegases.Itispossiblethattheflowofpurgegases 2 throughthering-shelfgapforcestheetchgasawayfromcertainlocationsontheshelfnearthegap,thuspreventing etchinginthoselocations. Areductioninpurgegasflowratemayalleviatethisoccurrence. Theeffectofpurgegas flowontheHCletchcleanofthechambershouldbestudiedviasimulationwiththegoalofreducingthebuildupof depositsonchamberwalls. ModelsforSi-Gechemicalmechanismsareneededtoapplytheprocess-equipmentmodeltoSi-Gegrowth. ISR participantsarereceivingassistancefromagovernmentlaboratory[19]towarddeterminingchemicalkineticsparam- etersforgrowthofSi-Ge. NorthropGrummanisinterestedinthinfilmgrowthonpatternedwafers.Itisnecessarytostudytheeffectofflow and thermal conditions on film morphology for patterned wafers, and to determine the relationships among pattern pitch,thicknessuniformity,andprocessconditions. 3 Equipment and Product TheASMEpsilon-1reactorisaradiantlyheated,gasinjected,singlewaferprocessingsystemforCVDofdopedor undopedepitaxiallayersona6inchdiametersemiconductorwafer. Accurateanddetaileddataregardingthereactor geometry,materials,andoperationwasfurnishedbythemanufacturer,ASMAmerica,Inc.,duringanApril1998visit bytheauthorstotheirheadquartersandmanufacturingfacilityinPhoenix,AZ. 3.1 ProcessChamber Figure1showsacross-sectionalviewoftheASMEpsilon-1processchamberandlampassembly. Figure2showsa top-downviewofthewaferlevelapparatus. Diagramsofotherviewsofthereactorarefoundin[21]. Theinletand outletsidesofthereactorarereferredtoasthefrontandrear,respectively. 4 Figure1:Cross-sectionalviewoftheASMEpsilon-1processchamberandlampassembly.Processgasesflowthrough uppersection(abovewafer)from inlet(left)to outlet(right). Purgegasesflowinlowersection(belowwafer). The upperlamparrayilluminatesthetopsurfaceofthewafer. Thelowerlamparrayandspotlampsilluminatethebottom ofthesusceptor. Deposition takes place in the process chamber, which is a horizontally oriented quartz tube of lenticular shape, i.e., a cross-sectionalview looking into the chamber front shows a flat bottom, short verticalsides, and curvedtop. Processgasesarepumpedintothechamberthroughtheinletflange,flowhorizontallythroughthechamberoverthe wafersurface,andarepumpedoutthroughtheexhaustflangeviapneumaticactuators.Anoptionalflowguidecanbe usedtoforcetheinletflowawayfromthechamberroofandtowardthewafer. Theinletflangeisdesignedtocreatea specializedsonicflowwithpossibleswirlingandmixingpropertiesasthegasenterstheprocesschamber.Ithasbeen observedbythemanufacturerthattheinletflangedesignaidsinachievingdepositionuniformity[18]. The6inchdiameterwaferrestsonsmallquartzpinsattachedtothepocketofarotatingsusceptorthatissurrounded bythesusceptorring. Thesusceptorandringareconstructedofgraphitecoatedwithsilicon-carbide. Thechamberis dividedbythesusceptor,ring, anda quartzshelfintoupperandlowersections. Thingapsbetweenthequartzshelf and the ring, and between the ring and susceptor, allow gas to flow between upper and lower chamber sections. In addition,diffusionofspeciesfromuppertolowerandvisa-versacanoccurduetoconcentrationandthermalgradients. Forthisreason, purgegasesare pumpedintothe lowerregionthroughthe susceptorrotationshaft andapurgeinlet inthe frontwall. Thepurgeflowpreventstheprocessgasesfromescapingtothe lowersection, whichcanresultin unwanteddepositionontheback-sideofthesusceptor. The wafer and chamber are heated by upper and lower arrays of linear tungsten-halogen lamps, and four spot lampsdirectedatthecenterofthesusceptor(see[21]fordetailsandanalysis). Heatradiationisintensifiedbygold coated reflectorssurrounding the process chamberon all sides. Four thermocouplesmeasure the temperature at the center,front, rear, andsideofthe susceptor. Wenotethat thewhilethe centerthermocoupleislocatedatthecenter of the susceptor, the other three thermocouples are located at the front, rear, and side of the ring that surrounds the susceptor.Thus,susceptortemperatureismeasuredonlyapproximatelyatpointsotherthanthecenter. The quartz chamber and lamp-house are cooled by air flow. All components are contained in a stainless steel enclosure. 3.2 ProductandConsumables Northrop Grumman uses the ASM Epsilon-1 reactor to deposit thin films of epitaxial Si-Ge, epi-Si, and poly-Si. Epitaxiallayersaredepositedonsiliconwafersthatareeitherbareorcoveredwithapatternedlayerofsilicondioxide (SiO ). Poly-Siisdepositedonalayerofsilicondioxide. 2 Themajorsourcegasesusedtodepositepi-Silayerscommerciallyare(see,e.g.,[24,28]) (cid:2) silane(SiH4)atlowtemperatures((cid:3) 1000C);and silicontetrachloride(SiCl ),dichlorosilane(SiH Cl ),andtrichlorosilane(SiHCl )athighertemperatures. (cid:2) 4 2 2 3 5 Gap (cid:5)Wafer Susceptor (cid:4)Ring Quartz Shelf (cid:7)Front (cid:4)Rear (cid:6)Thermocouples Figure2: OverheadviewoftheEpsilon-1atwaferlevel. Gasflowsfromfront(upstream)torear(downstream). The quartzshelvesareconnectedto thequartzchamberwallstoform acontiguousbody. Thegraphitecoatedsusceptor ringfitsintoaspacewithinthequartzstructure,leavingathingapbetweenringandshelfonallsides. Thegraphite coated susceptor fits into the ring structure, and is supported and rotated by special apparatus located through and under the lowerchamber section. Thereis also agap, although muchsmaller, between the ringand susceptor. The waferrestsonsmallquartzpinsattachedtothesusceptor.Thecenterthermocouplemeasurestemperatureatthecenter ofthesusceptor. Thefront,rear,andsidethermocouplesmeasuretemperatureatthreelocationsinthering. Thisprojectdealswithlowtemperaturegrowth,forwhichNorthropGrummanusessilaneasthesourcegas.Germane (GeH )isaddedtothemixtureforgrowthofSi-Ge. Thecarriergasiseitherhydrogen(H )ornitrogen(N ). Dopant 4 2 2 precursorssuchasarsine(ArH )canalsobeaddedtothemixture. 3 Thereisadirectrelationshipbetweengrowthofpoly-Siandepi-Si.Theprocessingstepsareidentical,andgrowth rates are virtually identical [23]. Experiments are performed at Northrop Grumman by depositing poly-Si rather than epi-Si, because they have tools for measuring poly-Si films (e.g., nanospec, ellipsometer) but not for epi-Si (e.g.,SIMS).(Itisthepresenceoftheoxideboundarythatallowsforeasiermeasurementofpoly-Si.) Thus,poly-Si experimentsallowforrapidprocessevaluation. Forthisreason,NorthropGrummansometimesperformsepi-Siand poly-Siexperimentsinparallel,withmeasurementstakenforthepoly-Sifilms. Inlightoftheabove,forpurposesofthisreport,weperformedexperimentsandsimulationsforgrowthofpoly-Si. Theprocessgasesusedwereamixtureof2%SiH dilutedinH asthesiliconsource,togetherwith20slmH asthe 4 2 2 carrier,exceptasnotedotherwise. Specificationsforthefinalproduct(thinfilm)includecharacteristicssuchaschemicalcomposition,filmthickness, dopantconcentration,crystalstructure,resistivity,andpossiblyotherfactors. Bothaggregateandspatiallydistributed quantitiesareimportant.Usually,spatialuniformityisspecifiedbyavariationtoleranceacrossthewafersurface,e.g., 5%allowablenon-uniformity. Ingeneral,aggregatecharacteristicssuchasaveragegrowthratearedeterminedbyprocessconditionsfortemper- ature,pressure,andflowratesassetbytheuserinprocessrecipes. Thespatialdistributionsofthevariousproperties, andhenceuniformity,aremainlycontrolledbyequipmentsettingssuchasthermocoupleoffsetsandinjectoropening sizes. Thesetwomethodsofequipmentandprocesscontrolaredescribedbelow. 3.3 ProcessConditionsandRecipes Inordertoachievethedesiredaggregatecharacteristics,theprocessengineerdesignsstep-by-steprecipes. Eachstep performs a particular task such as etch, bake, purge, or deposit, for a specified amount of time. We consider only thedepositionstepshere. Theprocessengineerspecifiesthechoiceofsource,carrier,andpurgegases,set-pointsfor temperature, pressure, and flow rates, and time duration, for each deposition step. We refer to these specifications asrecipeinputs. TheyareprogrammedintotheEpsilon-1microprocessorandcontrolledautomaticallyin–situ. For example,PIDcontrollersandMFCsregulatethethermocoupletemperaturesandinletflowratesaroundtheirrespective set-points. Si-Ge films are deposited at a temperature of 675 C. This falls within the low temperature regime which is roughly 600–800 C. At low temperature, surface reactions are thermally activated and controlled by deposition ki- 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.