ebook img

DTIC ADA440180: Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA440180: Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems 1 VishnuSwaminathanandKrishnenduChakrabarty Dept. ofElectrical&ComputerEngineering,Duke University Durham,NC 27708,USA vishnus,krish @ee.duke.edu f g Abstract a number of these methods are aimed at the synthesis of low-power designs and they do not address energy mini- Weinvestigatetheeffectofvoltage-switchingontaskex- mizationduringfieldoperation. ecutiontimesandenergyconsumptionfordual-speedhard Inthispaper,wepresentanon-lineschedulingalgorithm real-timesystems,andpresentanewapproachforschedul- forreal-timesystemsthatattemptstominimizetheenergy ingworkloadscontainingperiodictasks. Ourmethodmin- consumedbyaperiodictasksetwhilealsoconsideringthe imizesthetotalenergyconsumedbythetasksetandguar- voltage switching times and energies. The algorithm is antees that the deadline for every task is met. We present based on the well-known earliest-deadline-first (EDF) al- a mixed-integer linear programming model for the NP- gorithm [9, 7]. We consider a practical scenario where complete scheduling problem and solve it for moderate- a single CPU executes a set of periodic non-preemptable sizedprobleminstancesusingapublic-domainsolver. For tasks. The voltage, and consequently the clock speed, of larger task sets, we present a novel extended-low-energy theCPUmaybeswitchedbetweentwoormorevaluesdy- earliest-deadline-first(E-LEDF)schedulingalgorithmand namicallyatrun-timethroughOSsystemcalls.Thisoption applyittotworeal-lifetasksets. Ourresultsshowthaten- is available in most modern computers, which provide at ergycanbeconservedinembeddedreal-timesystemsusing least two different operating speeds [5]. Unlike previous energy-awaretaskscheduling.Wealsoshowthatswitching approaches,e.g. [4],wemaketherealisticassumptionthat times have a significant effect on the energy consumed in voltageswitchingtakestimeandconsumesenergy. During hardreal-timesystems. this switching period, the CPU cannot execute any tasks. We attemptto findthe voltage at whicheach task must be executed such that the energy consumed by the entire set 1 Introduction ofperiodictasksis minimizedandgeneratea schedulefor In embedded systems with variable-speed processors, thetasksetsuchthatthereleasetimerequirementsaresat- isfied and the deadlines for every task is met, while also the operating system (OS) can reduce energy consump- accountingfortheeffectofthevoltageswitchingtimeson tion by scheduling tasks appropriately. For real-time sys- tems, optimal preemptive off-line scheduling algorithms theenergyconsumptionofthetaskset. havebeendeveloped[16]. Heuristics foroff-lineschedul- 2 Preliminaries ingofnon-preemptivereal-timetaskswerepresentedin[4]. On-lineandoff-lineschedulingalgorithmsforthepreemp- In this section, we present our notation and the under- tivetaskmodelhavealsobeendeveloped[6,11]. Fromthe lying assumptions. We are given a set of periodic tasks hardwareperspective,researchershavedevelopedefficient . Eachtask hnasthefollowing DC-DCswitchingconvertersthatallowthesupplyvoltage Rpar=amfert1e;rsr:2;a::re:l;eransge (or arrival)rtiim2eR , a deadline , a toberapidlychangedunderexternalcontrol[10].Although length (representedinnumberofinstrauictioncycles),daind theschedulingmethodscitedaboveareveryefficient,most aperiodli . of themmake the assumptionthat the CPU can operateat Eachtpaisk isreleasedattime .Weassume,with- several different voltage levels (and hence different clock outloss of gernierality,that all taskts=haavie identicalperiods. frequencies)whichcanbevariedcontinuously.Inaddition, Alltasksmustcompleteexecutionbeforetheirdeadlines. WeassumethattheCPUcanoperateatoneoftwovolt- This research was supported in part by DARPA under grant no. 1 ages: or . Dependingon the voltage level, the CPU N66001-001-8946, andinpart byagraduate fellowship fromtheNorth CarolinaNetworkingInitiative. speedVm1aytaVk2eontwovalues: or . Themodelcanbe s1 s2 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2005 2. REPORT TYPE - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigating the Effect of Voltage-Switching on Low-Energy Task 5b. GRANT NUMBER Scheduling in Hard Real-Time Systems 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Defense Advanced Research projects Agency,3701 North Fairfax REPORT NUMBER Drive,Arlington,VA,22203-1714 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT see report 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 4 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 easilyextendedtohandlemorethantwovoltages(speeds). proportionalto ,wehave: 2 2 2. 2 2 xi s1 s2 ThesupplyvoltagetotheCPUisunderOScontrolandthe We next moxdeil the requirveim=en(cid:11)t2th=ataaill(cid:1)t(cid:11)a2sk+dbeiad(cid:1)l(cid:11)in2es OS may dynamically switch the voltage during run-time. must be met. This is ensured by introducing completion Werestrictourselvestotwospeedsoutofpracticalconsid- time variables , where is the time li erations. CPUspeedsarespecifiedintermsofthenumber takentoperformcia=votlita+gexsiw+itcths,sawnid istasbinaryvari- of instructions executed per second. Each task may be able whose value is if a switch ocscwurired immediately executed at a voltage , , and corrirespond- before task . We h1ence obtain the following inequal- ingly,ataspeed , vi vi 2 .fVT1h;eVv2goltage(speed)may ity: r.iThe above inequalities are non-linear. The beswitchedtoadxiiffexrien2tvsa1l;use2betweentasks. Thesystem non-lciine(cid:20)aridtiiesmaybeeliminatedusingstandardtechniques uses unitsofenergyand unitsoftimeinperforminga [15]. voltagCeswitch. ts Non-concurrencyoftasksmaybemodeledwiththefol- Itiswell-knownthatpowerconsumptioninCMOScir- lowinginequalities: cuits has a quadratic dependence on the CPU voltage. Hence, energy consumed by task of length is given by E2i , and the total energryi consumed floir a ti(cid:0)tj(cid:0) lj (cid:21)0ortj(cid:0)ti(cid:0) li (cid:21)0; 1(cid:20)i;j (cid:20)n;i6=j: given taskEsiet/isvpirloiportionalto . In the subse- xj xi n 2 quent dicussion, we measure enePrgyi=c1ovnisluimptionin units Thisrepresentsthefactthatwhentask hasbeensched- uledtostartexecutionat time ,nootherritask canstart of . PAlnit=ho1uvgi2hlitheschedulingproblemisNP-complete,itcan executionuntil hascompletetdi. rj Theaboveinreiqualityisnon-lineartoo.Thismaybealso besolvedexactlyformoderate-sizedinstancesusingmixed- belinearizedusingstandardlinearizationtechniques.These integer linear programming(MILP). In the following sec- techniquesarenotexplainedhereduetospacelimitations. tion,wepresentanMILPmodelforthelow-energyschedul- Finally,wemodelthefactthatatask startsassoonas ingproblemwithswitchingtimesandenergies. aprevioustask ends.Thisisdonebyirnitroducinginteger 3 Mixed-integer linearprogrammingmodel variables rajnd through . zeroi (cid:12)i1 (cid:12)in ThegoalofMILPistominimizealinearobjectivefunc- tiononasetofintegerand/orrealvariables,whilesatisfying zeroi((cid:12)i1(ti(cid:0)c1)+(cid:12)i2(ti(cid:0)c2)+:::+(cid:12)in(ti(cid:0)cn))=0: The final MILP model is shownin Figure 1. Although asetoflinearconstraints. theMILPmodelistoocomputationally-intensivetobeused Theoptimizationproblemweaddressistominimizethe forlargetasksets,itishelpfulindeterminingalowerbound totalenergyconsumedbythesetof tasksbyoptimallyde- terminingtheirstarttimes n ,theirvoltagesand ontheamountofenergyconsumedbya giventaskset. In correspondingexecutionspte1e;dts2.;:::;tn theMILPformulationdescribedabove,aprioriknowledge of the release times has been inherentlyassumed. We ob- Thefollowingconstraintsneedto bemodeled: (i)CPU serve that energy can be minimized to a greater extent in speeds are limited to one oftwo values— or , (ii) the deadlineforeachtaskmustbemet,(iii)resa1l-timse2tasksare the off-linecase thanin theon-lineone. This justifies use ofMILPas a comparisontool forprovidinglowerbounds non-preemptable,(iv)ataskmaystartonlyafterithasbeen onenergyconsumption. In the nextsection, we providea released,and(v)tasksimmediatelyfolloweachother. descriptionofourheuristicandourexperimentalresults. We observedin Section 2 that the energyconsumedby task is . Moreover, with each task is 4 The E-LEDF heuristic 2 an asrsiociatEedi s/witcvhiilnig cost if a voltage switchrwi as performed immediately beforeCtihe task began execution. AlthoughMILPisausefulandoptimalsolutionmethod forsmallprobleminstances,itcannotbeusedforlargetest Hence,tominimizeenergy,we needtominimizetheterm cases. In order to solve large problem instances, we have ,andthisisnowourobjectivefunction. 2 P(Wlievia+ssuCmi)e a linear relationship between the operating developedaheuristicalgorithmtogeneratenear-optimalso- lutionsinpolynomialtime. voltage ofthe processorand its executionspeed . This generallvyholds true for processors designed usingxCMOS The extended-low-energy earliest deadline first heuris- tic, or simply E-LEDF, is an extension of the well-known technology[13].Hence, . xi earliest deadline first (EDF) algorithm. The operation of vi = First, weintroducebinaryv(cid:11)ariables and torestrict E-LEDFisdescribedinFigure2. ,theexecutionspeedoftask ,tobeeaiither bior . The ToillustratetheeffectivenessofE-LEDF,wealsodevel- xfoillowing constraints relate iand to : s1 s2 opedasimplelow-energyearliestdeadlinefirstalgorithm ,and . ai bi xi xi = ais1 + (LEDF) [14] that does not take into account the effect of bisS2ince aim+abyib=ew1rittenintermsof and ,and is voltageswitching.LEDFgeneratednear-optimalschedules 2 xi s1 s2 vi ProcedureE-LEDF() Minimizethecostfunction 2 subjectto: begin 1. 2 2Plivi +Ci,swi Repeatforever 2. vi2 =ai(cid:1) (cid:11)s12 +bi(cid:1) (cid:11)s22;1,(cid:20)i(cid:20)n Rememberspeedatwhichprevioustaskwasscheduled 3. ai+bi=1; 1(cid:20)i(cid:20)n , iftasksarewaitingtobescheduledinreadylistthen 4. (cid:14)ij1+(cid:14)ij2 =1; 1(cid:20)i;j (cid:20)n;i6=j , Sortdeadlinesinascendingorder;Selecttask withearliestdeadline 5. ci =ti+ui+tssw,i; 1(cid:20)i;j (cid:20)n;i6=j ifthisisthefirsttasktobescheduledthen ri 6. ci (cid:20)di; 1(cid:20)i(cid:20)n , If ,scheduletaskatlowervoltage(speed);continue 7. xi=ais1+bis2; 1(cid:20)i(cid:20), n Iftlow+ts(cid:20)d,ischeduletaskathighervoltage(speed);continue 8. vi(cid:0)liai (cid:20)0; 1(cid:20)i(cid:20)n, Catlhlie+xcetpsti(cid:20)ondhiandler!! 9. (cid:0)ui+vi (cid:20)0; 1(cid:20)i(cid:20)n , else 10. ui(cid:0)vi+liai(cid:20)li; 1(cid:20)i,(cid:20)n ifpreviousspeed=highspeedthen 11. wi(cid:0)libi (cid:20)0; 1(cid:20)i(cid:20)n, Compute and 12. (cid:0)ui+wi(cid:20)0; 1(cid:20)i(cid:20)n , iftaskisnEohtischeduElalobwlethen 13. ui(cid:0)wi+libi (cid:20)li; 1(cid:20)i(cid:20)n Callexceptionhandler!! fij1i(cid:0)fij1j(cid:0)eij1j(cid:0)ds,ij1j+fij2j(cid:0)fij2i(cid:0)eij2i(cid:0)dsij2j (cid:21) else 14. 0; 1(cid:20)i;j (cid:20)n;i6=j , if 15. (cid:13)1ij+(cid:13)2ij =1; 1(cid:20)i;j (cid:20)n;,i6=j itflow+ts(cid:20)dithen 16. fij1i(cid:0)di(cid:14)ij1 (cid:20)0; 1(cid:20)i(cid:20),n IEflow(cid:20)Ehi ,scheduletaskatlowspeed 17. (cid:0)ti+fij1i (cid:20)0; 1(cid:20)i(cid:20)n , elsetlow+ts(cid:20)di 18. ti(cid:0)fij1i+di(cid:14)ij1 (cid:20)di; 1(cid:20)i(cid:20)n, If ,scheduleathighspeed 19. eij1i(cid:0)li(cid:20)0; 1(cid:20)i;j (cid:20)n;i6=j , else thigh+ts(cid:20)di 20. (cid:0)ui+eij1i (cid:20)0; 1(cid:20)i;j (cid:20)n;i6=j , Scheduletaskathighspeed 21. ui(cid:0)eij1i+li(cid:14)ij1 (cid:20)li; 1(cid:20)i,;j (cid:20)n;i6=j ifpreviousspeed=lowspeedthen 22. fij2i(cid:0)di(cid:14)ij2 (cid:20)0; 1(cid:20)i(cid:20),n Compute and 23. (cid:0)ti+fij2i (cid:20)0; 1(cid:20)i(cid:20)n , iftaskisnEohtischeduElalobwlethen 24. ti(cid:0)fij2i+di(cid:14)ij2 (cid:20)di; 1(cid:20)i(cid:20)n, Callexceptionhandler!! 25. eij2i(cid:0)li(cid:20)0; 1(cid:20)i;j (cid:20)n;i6=j ,and else 26. (cid:0)ui+eij2i (cid:20)0; 1(cid:20)i;j (cid:20)n;i6=j . if then 27. ui(cid:0)eij2i+li(cid:14)ij2 (cid:20)li; 1(cid:20)i;j (cid:20)n;i6=j , itfhi+ts(cid:20)di then 28. swi=Pjfolij(aibj+ajbi); 1(cid:20)i;j (cid:20)n;ineqj, SEchhied(cid:20)ulEeltoawskathighspeed 29. folijabsij(cid:0)folij (cid:20)absij(cid:0)1; 1,(cid:20)i;j (cid:20)n;i6=j else 30. Pjfolij (cid:20)1; 1(cid:20)i;j (cid:20)n;i6=j , If ,scheduletaskatlowspeed 31. absij =(cid:13)1ij(ti(cid:0)cj)+(cid:13)2ij(cj(cid:0)ti) , end tlow+ts(cid:20)di 32. folijabsij(cid:0)folij (cid:20)absij; 1(cid:20)i;j, (cid:20)n;ineqj Figure2.PseudocodefortheE-LEDFalgorithm. 33. folijabsij =0; 1(cid:20)i;j (cid:20)n;i6=j speedsaredynamicallyswitchable. Wehavealsoassumed zeroi((cid:12)i1(ti(cid:0)c1)+(cid:12),i2(ti(cid:0)c2)+:::+(cid:12)in(ti(cid:0)cn))= thattheCPUoperatesat200MHzat3.3Vandat100MHz 34. 0; 1(cid:20)i;j (cid:20)n;i6=j , 35. (cid:12)i1+(cid:12)i2+:::(cid:12)in =1; 1(cid:20)i(cid:20),n at1.65V.Furthermore,inordertoemphasizeenergymin- zeroiti+zeroi (cid:21)ti; 1(cid:20)i(cid:20)n imization, the deadlines we have used are tighter than the Figure1.Mixed-integerlinearprogrammingmodel. actualdeadlinesforthe actualtaskset. Theminimumand foranumberoftasksets;henceitwasusedforcomparison maximum voltage-switchingtimes were chosen to be 1 purposes. unitand5units,respectively,andthtes minimumandmaxi- mum voltage-switchingenergies were chosen to be 10 WeranLEDFandE-LEDFontasksetscomprisingthir- unitsand200units,respectively[E10s]. Thesenumbershave teentoseventeentasks[14]. We showaplotoftheenergy been chosen because the DC-DC switching converter de- consumedfor3differentschedulingstrategiesinFigure3. scribed in [10] has a switching time of less than 6 units. Weobservethattheenergiesconsumedinschedulesgen- TheLEDFandE-LEDFresultsareshowninTable1. erated by E-LEDF are greater than that of the MILP and LEDF schedules. Our results show that voltage-switching Taskset Configuration LEDF E-LEDF increase timesandvoltageswitchingenergiesplayasignificantrole =5, =200 213376.26 %6.99 in the energyconsumptionof a real-time system, with the 24tasks ts =5,vs =10 199418.76 212236.26 6.42% energyrisingbyasmuchas . (Avionics) ts=1, vs=200 201771.65 1.17% We next consider two rea1l6-%life task sets comprising 24 ts =1,vs =10 200631.65 0.60% ts=5, vs=200 380317.625 22.90% and39tasks,respectively. Thesetasksetswereusedinthe 39tasks ts =5,vs =10 309338.65 378987.625 22.50% developmentofanapplication-specificintegratedcircuitfor (ASW) ts=1, vs=200 345221.25 11.59% anavionicsapplication[12]andinanembeddedsignalpro- ts =1,vs =10 342751.25 10.80% ts vs % cessing application for an anti-submarine warfare (ASW) Table1.Resultsfortworeal-lifetasksets. system [1]. For the set of 24 tasks, we assume the pro- cessor speeds to be 100 MIPS and 260 MIPS, with corre- We seefromTable1thatvoltageswitchingenergiesdo spondingvoltages1.2Vand3.3Vrespectively.Inthecase nothaveassignificantaneffectasvoltageswitchingtimes oftheset of 39tasks, we have assumedthat theprocessor on the energyconsumptionof the task set. This is due to is capableofoperatingat 100MHz andthat theprocessor the fact that voltage switching energies do not affect the x 105 timetasksets,andshowedthatouralgorithmprovidesnear- 1.9 optimalsolutions. 1.8 References 1.7 [1] J. Anderson, University of North Carolina at Chapel Hill, privatecommunication,March2000. 1.6 Energy consumed 2Σ l )( vii 11..45 LMEE−ILDLPEF D F [2] TNMee.ctBhhneerorlklaoengldaysa,.r.Dftlppe:ss/io/gfltnvpe.,Aicvuse.teroslmeio.tanutie3o..nn0l./SpEeuicbnt/idlophno,svoEelvnineUdhnoivveerns,ityThoef [3] M.R.GareyandD.S.Johnson,ComputersandIntractabil- 1.3 ity: A Guide to the Theory of NP-Completeness, Freeman andCo.,NewYork,NY,1979. 1.2 [4] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. Sri- 1.113 14 15 16 17 vastava,“Poweroptimizationofvariable-voltagecore-based Number of tasks Figure3.Energyconsumptionsof E-LEDF,LEDF, systems”, Proc. Design Automation Conf., pp. 176–181, andMILP. 1998. speedatwhichataskisexecuted.Anyincreaseinenergyis [5] IntelPentiumIIIProcessorBrief,http://www.intel.com merelybecauseoftheincreasedenergyconsumptionwhile [6] T.IshiharaandH.Yasuura,“Voltageschedulingproblemfor switching. Ontheotherhand,a changein voltageswitch- dynamicallyvariablevoltageprocessors”,Proc.Intl.Symp. ingtimeincreasesenergyconsumptionbyasmuchas6 onLow-PowerElectronicsDesign,pp. 197–202,1998 inthe24-tasktasksetand12 inthe39-tasktaskset. Th%e [7] K.Jeffay,D.F.StanatandC.U.Martel,“Onnon-preemptive reasonforthisisthattheeffec%tiveexecutiontimeofataskis scheduling ofperiodicandsporadic taskswithvaryingex- increasedbytime andanytaskthatcouldrunatalower ecutionpriority,”Proc.IEEEReal-TimeSystemsSymp.,pp. speed with a lowetrs now has to run at a higher speed in 129–139,December1991. orderto meet its deatsdline. This results in moretasks exe- [8] E.L.LawlerandC.U.Martel,“Schedulingperiodicallyoc- cutingatahigherspeed,andconsequentlyahighervoltage, curringtasksonmultipleprocessors”,InformationProcess- resultinginincreasedenergyconsumption. ingLetters,vol.12,no.1,pp. 9–12,1981. The MILP model took prohibitively large amounts of [9] C.L.LiuandJ.Layland, “Schedulingalgorithmsformul- time for scheduling task sets consisting of more than four tiprogramminginahardreal-timeenvironment”,Journalof tasks running on a dual-processor Sun Ultra-1 with a 256 theACM,vol.20,pp. 46–61,1973. MBmemorycapacity. Fora fivetask dataset, MILP took [10] W.Namgoong,M.YuandT.Meng,“Ahigh-efficiencyvari- over a day to generate the optimal solution. On the other ablevoltageCMOSdynamicDC-DCswitchingregulator,” hand, E-LEDF took under a second to generate a near- IEEEIntl.Solid-StateCircuitsConf.,pp. 380–381,1997. optimalsolutionforthethirty-ninetaskexample. [11] T. Okuma, T. Ishihara, and H. Yasuura, “Real-time task 5 Conclusions schedulingforavariablevoltageprocessor,”Proc.12thIntl. Symp.onSystemSynthesis,pp. 24–29,1999. As embedded systems become more prolific, energy [12] J.H.Wensley,K.N.Levitt,M.W.Green,J.Goldbergand consumptionisbecominganincreasinglyimportantdesign P.G.Neumann,“Designofafaulttolerantairbornedigital issue.Duetoincreasedtransistorcounts,heatgenerationin computer.Volume1: Architecture,”FinalReport,Stanford embeddedsystems andsystem-on-a-chipdesignsis onthe ResearchInstitute,MenloPark,CA,October1973. rise.Thisadverselyaffectsboththereliabilityofthesystem, [13] J.M.RabaeyandM.Pedram,LowPowerDesignMethod- as well as its availability. Hence, the need for algorithms ologies,KluwerAcademicPublishers,Norwell,MA,1996. that attempt to minimize energy usage both at the system synthesis/design level, as well as the run-time/operating [14] V. Swaminathan and K. Chakrabarty, “Real-time task system level are being increasinglyfelt. In this paper, we schedulingforenergy-awareembeddedsystems”,toappear inProc.IEEEReal-TimeSystemsSymp.(Work-in-Progress havetakenthelatterapproachtoenergyminimization. We Session),November2000. haveprovidedanalgorithmthatgeneratesnear-optimalso- lutionsfortasksetsofvaryingsizeinpolynomialtime. We [15] H.P.Williams,ModelBuildinginMathematicalProgram- provedthattheminimum-energyschedulingproblemisNP- ming,2nded.,JohnWiley,NewYork,NY,1985. complete,andfurthershowedthatmixed-integerlinearpro- [16] F.Yao,A.DemersandS.Shenker,“Aschedulingmodelfor gramming(MILP)is atoolthat maybeused forexactso- reduced CPUenergy”, Proc. IEEEAnnual Foundations of lutionof moderate-sizedproblems. Finally, we appliedan ComputerScience,pp. 374–382,1995. efficient heuristic algorithm to several representative real-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.