ebook img

DTIC ADA429774: Enhanced Spectral Modeling of Sparse Aperture Imaging Systems PDF

29.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA429774: Enhanced Spectral Modeling of Sparse Aperture Imaging Systems

Enhanced Spectral Modeling of Sparse Aperture Imaging Systems by Robert E. Introne B.S., Massachusetts Institute of Technology, 1989 M.S., Georgia Institute of Technology, 1990 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Chester F. Carlson Center for Imaging Science College of Science Rochester Institute of Technology 2004 Signature of the Author // Original Signed // Accepted by // Original Signed // Coordinator, Ph.D. Degree Program Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 25 JAN 2005 N/A - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Enhanced Spectral Modeling of Sparse Aperture Imaging Systems 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Rochester Institute of Technology REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE UU 338 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph.D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of Robert E. Introne has been examined and approved by the dissertation committee as satisfactory for the dissertation requirement for the Ph.D. degree in Imaging Science // Original Signed // Dr. John R. Schott, Dissertation Advisor // Original Signed // Dr. Roger L. Easton // Original Signed // Dr. Robert D. Fiete // Original Signed // Dr. Michael W. Richmond 1 Sep 04 Date DISSERTATION RELEASE PERMISSION ROCHESTER INSTITUTE OF TECHNOLOGY COLLEGE OF SCIENCE CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE Title of Dissertation: Enhanced Spectral Modeling of Sparse Aperture Imaging Systems I, Robert E. Introne, hereby grant permission to the Wallace Memorial Library of the Rochester Institute of Technology to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Signature // Original Signed // Date 1 Sep 04 Enhanced Spectral Modeling of Sparse Aperture Imaging Systems by Robert E. Introne Chester F. Carlson Center for Imaging Science Rochester Institute of Technology Abstract The remote sensing community continues to pursue advanced sensor designs and post- processing techniques that improve upon the spatial quality of collected overhead imagery. Unfortunately, spaceborne applications frequently encounter launch vehicle fairing and weight constraints that limit the size of the primary aperture that can be utilized for a given application. Sparse aperture telescopes provide a potential avenue for overcoming some of the size and weight issues associated with deploying a large monolithic mirror system. These telescope systems are constructed of smaller subapertures which are phased to form a common image field and thereby synthesize a larger effective primary diameter to obtain higher spatial resolution than that achievable with a single subaperture. Much of the research conducted to date in this sparse aperture arena has focused on the panchromatic image quality performance of various optical configurations through approaches that make use of resampled, gray-scale imagery products. The research effort performed in conjunction with this dissertation focused on laying the groundwork for synthetic model-based approaches for evaluating the optical performance of sparse aperture collection systems with enhanced spectral fidelity and a polychromatic object scene. It entailed a fundamental investigation and demonstration of the first-principles physics required to model such imaging systems. This theoretical development ultimately led to the generation of a modeling concept that more rigorously addresses the spectral characteristics of classic sparse aperture optical configurations used in remote sensing applications. To demonstrate the proposed theoretical foundation, a proof-of-concept digital model was implemented that incorporates essential components of the fundamental physical processes involved with typical sparse aperture collection systems, including any potential spectral effects unique to these design configurations. In addition to modeling the detected imagery derived from the collection system, there was also an interest in exploring the quality implications of image restoration techniques typically required for sparse aperture imaging systems. Several variations of the classic Wiener- Helstrom filter were implemented and investigated in response to this research objective. The basic restoration methodologies pursued in this effort provide a foundation for research into more advanced techniques in the future. Finally, a top-level sensitivity study of the image quality performance of various sparse aperture pupil configurations subjected to varying levels of subaperture dephasing and/or aberrations was performed. This exploration of the trade space focused on a panchromatic detection scenario and attempted to bound the performance region where unique spectral quality issues are observed for the unconventional collection telescopes targeted through this research effort. ii The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. iii iv Contents List of Figures.........................................................................................................................ix List of Tables........................................................................................................................xix Nomenclature.......................................................................................................................xxi 1 Introduction........................................................................................................................1 2 Objectives............................................................................................................................5 2.1 Success Criteria..............................................................................................................5 2.2 Goals..............................................................................................................................7 3 Theory.................................................................................................................................9 3.1 Imaging Linear Systems Theory....................................................................................9 3.2 Incoherent Imaging System..........................................................................................12 3.3 Scene Radiance and Detected Signal...........................................................................16 3.4 System Pupil Function.................................................................................................27 3.4.1 Conventional Apertures.......................................................................................28 3.4.2 Sparse Aperture Configurations..........................................................................30 3.5 Optical Transfer Function............................................................................................34 3.6 Point Spread Function..................................................................................................43 3.7 Aberrated Aperture MTF.............................................................................................48 3.8 Detector Sampling........................................................................................................56 3.9 Detector Carrier Diffusion...........................................................................................59 3.10 Image Motion.............................................................................................................60 3.10.1 Smear................................................................................................................60 3.10.2 Jitter..................................................................................................................62 3.11 Atmospheric Turbulence............................................................................................63 3.12 System Transfer Function..........................................................................................69 3.13 Polychromatic MTF...................................................................................................70 3.14 System Noise..............................................................................................................74 3.14.1 Photon Noise....................................................................................................75 3.14.2 Dark Current.....................................................................................................76 3.14.3 Read and Signal Chain Noise...........................................................................77 3.14.4 Quantization Noise...........................................................................................78 3.14.5 Total Noise.......................................................................................................78 3.14.6 Signal-to-Noise Ratio.......................................................................................80 3.15 Image Restoration......................................................................................................82 3.16 Sparse Aperture System Issues..................................................................................86 3.16.1 Effective Collection Aperture..........................................................................86 3.16.2 Fill Factor.........................................................................................................89 3.16.3 Integration Time vs. Fill Factor........................................................................90 v 4 Approach...........................................................................................................................95 4.1 Theoretical Development.............................................................................................96 4.2 Modeling Approach.....................................................................................................97 4.2.1 Modeling Overview.............................................................................................97 4.2.2 Nominal Collection Scenario............................................................................103 4.3 Imagery Collection Geometry....................................................................................107 4.4 Atmospheric Modeling..............................................................................................111 4.5 Scene Spectral Radiometry........................................................................................114 4.6 Imaging System Characterization..............................................................................121 4.6.1 Pupil Phase Profile............................................................................................121 4.6.2 Aperture OTF Evaluation..................................................................................128 4.6.3 Aperture PSF Evaluation...................................................................................133 4.6.4 System OTF Evaluation....................................................................................135 4.7 Quasi-Monochromatic Signal....................................................................................138 4.8 Integrated Detected Signal.........................................................................................141 4.9 System Noise Evaluation...........................................................................................144 4.10 Image Restoration....................................................................................................148 4.11 Gray-World Comparison..........................................................................................154 4.12 Data Analysis Metrics..............................................................................................159 4.12.1 Signal-to-Noise Ratio.....................................................................................160 4.12.2 Relative Edge Response.................................................................................162 4.12.3 Noise Gain......................................................................................................168 4.12.4 Normalized rms Error.....................................................................................169 5 Results.............................................................................................................................171 5.1 Transfer Function Character......................................................................................172 5.2 Quasi-Monochromatic Simulation.............................................................................183 5.3 Integrated Panchromatic Simulation..........................................................................199 5.4 Polychromatic versus Gray-World Model.................................................................209 5.4.1 WASP-Based Object Description.....................................................................209 5.4.2 HyMap-Based Object Description....................................................................220 5.4.3 DIRSIG-Based Object Description...................................................................231 5.5 Alternative Wiener Filter Options..............................................................................239 5.6 Analysis Excursions...................................................................................................245 5.6.1 Filtering Under Different Noise Levels.............................................................245 5.6.2 Integration Time vs. Fill Factor.........................................................................252 5.6.3 Phase Knowledge Sensitivity............................................................................257 5.6.4 Subaperture Dephasing vs. Optical Aberrations...............................................264 6 Conclusions.....................................................................................................................269 6.1 Findings......................................................................................................................270 6.2 Limitations.................................................................................................................275 6.3 Recommendations......................................................................................................278 6.3.1 Sensitivity Studies.............................................................................................278 6.3.2 Advanced Filter Techniques..............................................................................281 6.3.3 Interferometric Investigation.............................................................................283 vi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.