ebook img

DTIC ADA417647: Methods to Account for Accelerated Semi-Conductor Device Wearout in Longlife Aerospace Applications PDF

128 Pages·0.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA417647: Methods to Account for Accelerated Semi-Conductor Device Wearout in Longlife Aerospace Applications

Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 29 SEP 2003 N/A - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Methods to Account for Accelerated Semi-conductor Device Wearout in 5b. GRANT NUMBER Longlife Aerospace Application 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION The Department of the Air Force, AFIT/CIA, Bldg 125, 2950 P Street, REPORT NUMBER Wright Patterson AFB, OH 45433 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE UU 128 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ABSTRACT TitleofDissertation: METHODS TO ACCOUNT FOR ACCELERATED SEMI- CONDUCTOR DEVICE WEAROUT IN LONGLIFE AEROSPACEAPPLICATIONS JoergDieterWalter,DoctorofPhilosophy,2003 Dissertationdirectedby: ProfessorJosephB.Bernstein DepartmentofMechanicalEngineering Theaerospaceindustryisconcernedthatassemiconductorfeaturesizesarereduced futuretechnologygenerations,devicelifetimewilldecreaseaswell. Inherentdevice failuremechanisms,suchaselectromigration,hotcarriereffectsandtimedependent dielectric(oxide)breakdown,mayleadtoshorterlifetimesatthesesmallerfeature sizes. Manylonglifeaerospaceapplicationsmustusecommerciallyavailable off-the-shelfdevices. Thereliabilitymarginsinfuturedevicesmaybedecreasedas semiconductorsupplierstradeperformanceforreliabilitytomeettherequirementsof theircoremarkets. Ifthelifetimeoffuturedevicesprovestobeinadequateforlonglife aerospaceapplications,operatingthemataderatedstressconditioncanextendtheir lifetime. Thisisaccomplishedbyreducingtheoperatingvoltageofthedevices. METHODS TO ACCOUNT FOR ACCELERATED SEMICONDUCTOR DEVICE WEAROUT IN LONGLIFE AEROSPACE APPLICATIONS by Joerg Dieter Walter DissertationsubmittedtotheFacultyoftheGraduateSchoolofthe UniversityofMaryland,CollegeParkinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy 2003 AdvisoryCommittee: ProfessorJosephB.Bernstein,Chair ProfessorJohnS.Baras ProfessorMichelCukier ProfessorMohammedModarres ProfessorCarolSmidts ACKNOWLEDGMENTS ThisworkissponsoredbytheAerospaceVehicleSystemsInstitute(AVSI).Theproject principleinvestigatorisLloydCondraoftheBoeingPhantomWorks. Theprinciple investigatorattheUniversityofMaryland,andmyacademicadviser,isDr. Joesph Bernstein. OtherstudentsonthisprojectincludeJinQin,whoanalyzedouravionics fieldfailureratedataandBingHuangwhoisleadingsemiconductordevicetesting. Myeducation,andworkonthisproject,wassponsoredbytheUnitedStatesAir ForceandtheAirForceInstituteofTechnology. Theviewsexpressedinthisarticlearethoseoftheauthoranddonotreflectthe officialpolicyorpositionoftheUnitedStatesAirForce,DepartmentofDefense,orthe U.S.Government. ii TABLE OF CONTENTS ListofTables viii ListofFigures ix 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 TechnologicalTrends . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2.1 ITRSRoadmapTrends . . . . . . . . . . . . . . . . 9 1.1.2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.3 AerospaceIndustryBusinessClimate . . . . . . . . . . . . . . 10 1.2 AVSIProject#17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1 WorkPackages . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 ProjectScope . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 ReportOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Methodology: ASystemsEngineeringProcess 16 2.1 WhatisSystemsEngineering? . . . . . . . . . . . . . . . . . . . . . . 17 iii 2.2 SystemsEngineeringMethodologies . . . . . . . . . . . . . . . . . . . 18 2.2.1 ProjectMethodology . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 FirstSpiral: DevicePhysics . . . . . . . . . . . . . . . . . . . 23 2.2.3 SecondSpiral: Derating . . . . . . . . . . . . . . . . . . . . . 25 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Background: ImpactofScaling 27 3.1 UnderstandingFailure . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 WhatisFailure,DegradationandWear-out . . . . . . . . . . . 27 3.1.1.1 InfantMortalityFailures . . . . . . . . . . . . . . . . 31 3.1.2 Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.2.1 Non-lethalDefects . . . . . . . . . . . . . . . . . . . 33 3.2 FundamentalFailureProcesses . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 TheArrheniusModel . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1.1 AccelerationFactor . . . . . . . . . . . . . . . . . . 35 3.2.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 ModelingFailure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 ReliabilityDistributions . . . . . . . . . . . . . . . . . . . . . 39 3.4 Wear-outMechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.1 Electromigration . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.1.1 PhysicsofFailure . . . . . . . . . . . . . . . . . . . 43 3.4.1.2 LifetimePrediction . . . . . . . . . . . . . . . . . . 46 iv 3.4.1.3 LifetimeDistributionModel . . . . . . . . . . . . . . 47 3.4.1.4 LifetimeSensitivity . . . . . . . . . . . . . . . . . . 48 3.4.1.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 HotCarrierEffects . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.2.1 PhysicsofFailure . . . . . . . . . . . . . . . . . . . 51 3.4.2.2 LifetimePrediction . . . . . . . . . . . . . . . . . . 55 3.4.2.3 LifetimeDistributionModel . . . . . . . . . . . . . . 57 3.4.2.4 LifetimeSensitivity . . . . . . . . . . . . . . . . . . 57 3.4.2.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 TimeDependentDielectricBreakdown . . . . . . . . . . . . . 59 3.4.3.1 PhysicsofFailure . . . . . . . . . . . . . . . . . . . 61 3.4.3.2 LifetimeDistributionModel . . . . . . . . . . . . . . 64 3.4.3.3 LifetimeSensitivity . . . . . . . . . . . . . . . . . . 64 3.4.3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5 ImpactofTechnologyNodesonLifetime . . . . . . . . . . . . . . . . 66 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Mitigating the Impact of Decreasing Device Reliability in Aerospace Applica- tions 71 4.1 LifetimeModels—ConstantFailureRateJustification . . . . . . . . . . 72 4.1.1 EmpiricalEvidence . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1.1 AnalysisofAvionicsFailureData . . . . . . . . . . . 74 v 4.1.1.2 “BathtubCurveFallacy” . . . . . . . . . . . . . . . . 77 4.1.2 WhyaConstantFailureRateModelisJustified . . . . . . . . . 79 4.1.2.1 Purpose,ScopeandAssumptions . . . . . . . . . . . 79 4.1.2.2 FailureMechanismLifetimeModels . . . . . . . . . 80 4.1.2.3 ComplexSystemLifetimeModels . . . . . . . . . . 83 4.1.2.4 ConstantFailureRateSummary . . . . . . . . . . . . 84 4.2 LifetimeEnhancementThroughDerating . . . . . . . . . . . . . . . . 85 4.2.1 DeratingFactor . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.2 ModelingVoltageDerating . . . . . . . . . . . . . . . . . . . . 88 4.2.3 SupportforDerating . . . . . . . . . . . . . . . . . . . . . . . 92 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 Summary 94 5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.1 VerificationandValidationoftheDeratingModel . . . . . . . . 96 5.2.2 DeratedDeviceSpecificationSheets . . . . . . . . . . . . . . . 97 5.2.3 AlternativeSystemArchitecture . . . . . . . . . . . . . . . . . 98 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Bibliography 100 vi LIST OF TABLES 1.1 ScalingFactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 TechnologyNodeSizevs. Year . . . . . . . . . . . . . . . . . . . . . . 67 4.1 FieldDataSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 FieldDataHypothesisTest . . . . . . . . . . . . . . . . . . . . . . . . 76 vii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.