ebook img

DTIC ADA276803: Algebraic Functions for Recognition PDF

12 Pages·1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA276803: Algebraic Functions for Recognition

ATON PAGE AD-Al2~7ll~6i H[8 03 rfmAae ATION •~ OBMWo 0XId-01n I lo imrWe(cid:127)Lf (cid:127)MwMmAa. W WuWefotw ftnt boumW(cid:127) (cid:127)m WftMmswnl mvk NftaWUm(cid:127) " ,w aWl (cid:127)d IMeo-f cotswou rad, wl k n(cid:127) a 1. AGENCY USE ONLY (Loam BSank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED January 1994 memorandum 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Algebraic Functions for Recognition N00014-91-J-1270 N00014-92-J- 1879 NSF ASC-9217041 6. AUTHOR(S) N(cid:127)I 2-S07-RR-07047-26 N00014-91-J-4038 Amnon Shashua PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION REPORT NUMBER Massachusetts Institute of Technology Artificial Intelligence Laboratory AIM 1452 545 Technology Square CBCL 90 ( Cambridge, Massachusetts 02139 9. SPONSORING/MONITORING AGENCY NAME(S) AND AW!S)l 10. SPONSORING/MONITORING iii • r5 P AAGGENNCC Y RREPORT NUMBER Office of Naval Research - (cid:127)O3 1IU3 _ Information Systems Arlington, Virginia 22217 ___,__ 11. SUPPLEMENTARY NOTES None 12aL DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE DISTRIBUTION UNLIMITED 13. ABSTRACT (Daxiu 2 words) In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks. 14. SUBJECT TERMs 15. NUMBER OF PAGES 11 alignment visual recvognition projective geometry invariants 16. PRICE CODE visual reconstruction 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED S 7'40-1-U0-,5=SLdard f-orm 297(MEv. 2-69 Pmiwbd by ANSI SW. 239(cid:127)18 2...02 MIASSA( II I SLI"IS I NSITl I 'I OFF IA II N( LO)( AUT'IFI( IAL IN'I'LLI( ;iEN( LAIIOH AlORY anid CEINTERK FOR 131IOIO(1(Al. ('ONI "IATIONA L LLA IININ( WHIT~AKE11 (OLLIA 4: A.T Metmo No. 115~2 .1laii nar. 1991 C.l.( 'L. Paper No. 90 Algebraic Functions For Recognition Amnuon Shashua Abstract I ittIit -generalI case. a I r IlIinear relat joilsl IlI) bet wee II t II ree lperslp(ective views is s II owIit to exist 'TwI tui-ifit a ttI yf result is shown to be of' muiich practical lise, inl visuial r-cog[li t ion byxa li gnmniit yie'ldinig a direct met hlod that cuts thlroughl thle computations of' camera t ranisformat ion, scene st rrct lire aiid epipolar geolinet r\. T11w Proof of thle ceiitral iresult mnax he of further interest as it demninistrates certain regularities across hjoinographies of' thle Plane anid int roduces new view invariant s. Experiments onl simulated and real imiage dat a were, conduicted, including a coimparat ive ana lysis wvit It epipolar intersect ion andtitl( l linear comiiiiai ion Ilethlods. %\-[ith iresillts Ind icatinig a greater degree of robuist ness inl practice and a higher level of jwrforinatice lin re- p)roject i0on tasks. Accesion For NTIS CRA&M DTIC TAB Unannounced 0 Justification....... By ................. Dist, ibution I Copyright 0c Massachusetts Institute of Techniology. 1994 Availability Codes Avail and I or Dist Special T1his report dlescrib~es res.earch dlone wvithtn the (-enter for Biological and (iornpttat~io;,.al Learning in i le D)epart nent of Brain and C ognitive Sciences, and at the( Artificial Intelligence Laboratory. Suipport for the ALI Laborator.-s artificial intelligence research is provided iii part by the Advainced Research Projects Agenc 'y of the( Department of Defeiise tinder Office of Naval Research contract N0001tt4-91-.1-40t38. Support for the Center's research is provided in part by ONR contracts N0001t4-9 I-1- 1270 and N t0itt14-92-1-1879: bY a grant froni the Natioiial Science Foundation uinder contract AS('-921 7(41 (funds, provided by t~his award include funds from AR PA provided tinder H P( '('): andl by a grant fromt t lie Nat ional Inst itilites of Hecalt Ii under contract INIlH 2-Stt7-1111070t47-26. Additional support is provided by the North Atlantic Treaty Organization. ATR Audio aiid Vistial Perception Research Laboratories, Mitsubishi Electric C orporation. Sjenieuis AC;.. and Suimitonmo Metal Industries. A. Shashuia is supported by a McDonnell-Pew post~doctoral fellowship froni the department of Blraini arid Cognitive Sciences. 94-07593 ortiii I nI dlt o. ellitl' luss ttes t ht Ihitv a- ~ t'i I mitlt 'It 'l t %t2h.a.t 1 1 1" 1 ;ir ljis. bi?'v' tatcros vt t's i'ois h t' w1) oltect3 1t tbailp.:III'Idit e It [17 2s1 t.b i ti1 i 0 i. lit. t227Sit t]. "' lo.d sit ;jltecta'lhit.' lsit str iiote tsioap p iics iaire ogn tio 6 t ailill11 lit j~T l,(cisit ltto t's; it' ' n Iottd'I 'ttt it'its 01o~( 'crt' roltli ont ii'irowt n ast i t' t'tte- abijalli ct'rt i i'rst'gttlart llt(' l'ss ()I' Al Sl"'lot, ou 5 otli r'titllaro\a itti 'of, \itarat jt at~lld sis' iorojt''t lt' tn i llattiso t atol ts ao c tiw'ihti t .1ant' at i lNlot . i it,o v l~kio s t nato tepoa'di t i'tal ji l'o i mtagt'(Isr - roi-c I) new thvo ,,apt i ncv alnt-tta it (Linsi tinea ai).r eonw ihIIhII"I Ost' ol stoai jt . ;Il tit's "e '' iitc r W( trtI ilijit' to tlitv'iotr ' s '1cO [vI ari-a rei ci\ ke[3' ala1lusi biiiyt' id a cr ai it'l ap's iitlret(t 't et'tlo ll [o lailets l we*1a1wlojoo l\tI '~ld oli1c(t ;lI ahtcir e&' e 11lidjol hitit1 \' rt(t(eswf o l t wao la'd ciat l twe r) f iori ti- or.t 'oocrin it tro 't'ed soiew r rt~l.il' s( as a fi rtjo s ( lts of i i po ag e'o or- lt'tit~~~~~~~iw~~t ~~~t~at~b ~i~p~ra~oc; atyaei'sesd'tleb tial' bt thitilw e at'lso ('all) 'iilgtoobraic [ntitict Ill ratnjo ttai (, 11i,1t (lti'tlotri oo or ilgon ia pl(l'e t it oliflt -txtjpse ws . otif, n elstit w st'tatst'i.t i'otI retiatttloul tOr a~lb tilita om jtpisthtsuivh. rr(o rtIt' Isasc aseilbao f ol[lt.- li tli't,' t wpoa s slto~i' "t hIa nt s v I int'"f liThi e scvi lit'sal rt'ili osi I it' ii I e I wo nfeta ii e( vA w n or hicvj w f l li cIstif i et 'itcIjl Iit'st itit tw hrettyilts' stvralahilitat olt (tis showlicert' to sitttlvy it unjti nt' aheo g o)I' larger st'tf l- Ot'tisse It aen t jot2 . bhir t theout'em stitsie t bi'ttgi, i-at- gbacfiitjls a t eirllat iita ott tbj vip'n isu r tahet f'i toxtfo ds o~3i1 ) I lob' I it b t it'st' linet' ils[2 2 tttS.'( ' .l 21ai1t1 ] a jT'w bs .o f a i ([ali1b]rate d rt'ft'r'tc t' tearmas t'isfy) is brelaton Ifh ( it' srel t rt'(')ver sliapto' rilt altlt'r eg - ottitr)'t rv~ as t caiin trit'da, Att' tiatIlt 'tu-2v al'it(etrIa ss ot views tof arholtj ett igitor m est tilit-c e aters at,(itr't 'l'lr o atrmci'eaittil tiandam.ot' ialig sti' n focin sitis)c iiittlt'rg oit 31) rigid s~trut' ure ro-' ta i ta I'w (t 't riiae olll r'ettte \ttt'. A s . wtI jec jy' nacisafin ia1t1iu'(t 'ait iit't i soniigit !) ti meft teh itodsiots. iln it'ate ig t'polit' nt's a ~rt't t'Is at Itt't'' lIbcobjecto frit objet. mortion.pl bhes toringat Lt'ilasttto l'~it o nyi)astt fstguai s ti sw arbi raievw "siiootle l ilt objct ssnllilg tila shalSlit ie protelitt ' vernttw't hi dt'e't j oll it corre acct'at t thuiec do resottlitic p nolitt'tT fhe trem t tIlt' bi otit' Vinterest j'lrtait i i'pts'i''o'trtn i tg'iialr' caist o~n ve~ [25~. c 2il). ~ soaretttt~l it' pol wit tfe o. artt mitgeeth-odes oiheiito wnas tlatttiltt'. of'saih c'ort'sinoi'ttit poaintis bt'rwess be ~~ atidtnllo lp~ ai ttadeenvi twaf ~ ~tpa ticas2iNn~t aip nfttv ie(ew Seoion t'alojeclatt frant'(a'rte sitcitotifs It , ''eprojec tii(lit' to~iiotb'i ultdln ra i af~ newt I inviltv iewiatsg positn 1ol. jotipcheeut Forgitis ttrpoe ohj't sitabt'i t)lit'. Ihlr ci tl'tI r te, -d tneiito ta tT I' oerempro2'1te, ltiagt'ios scorssolla y ofi Ihoe agIa't(li st extl'ort'n' mo'rpae direcatttioisliagt' sjact to bt tilt' tato tone ainsttt iigage.cat' prefertoitalai prbetut isso wtnrt 'dj itt ig d in'isjtanc.inspro iy ote'' spce n Lt 4icot f shp eI ans t'i-o af tltv,' views frttiu. ast't ohtanedt' viepwa r llig ar~ cl ottl'tlr. it ants st atIding f ai or o e1sit'blis aid irect connetitlotn itth e r reo F orrespto tds a t pciab iitte.asr it p`6-1tl1-'t o eq f. i - vt t'ws ( n ra pr es t( asl iavlie i. of . ofi(tt t it apo ca r- P'jletly i. uo't' b. obaie by eras wit\ itspccetive en atal P 7tt'~. tit w~it h~ ~~ ~~~l ~h~p~e~vai~vli~cn ot ntacitl ea to o. 0'wit.I t it c iwtga' iaritse. u et'abIust' tit'llat ithae isho reutis nt otlte t'a ssitnaI storinc Impirst'hro t simjltt p r ret ods-i n li t'gect i ttttltso titrl .tlt att f'orri~ig~r~ttr~ ~~~~~~r~eo~1v 0ri i ~llarllt'siit te- Iashiit t cas iItge[3 1] Th-rtit s w'o~ las t thotw'b at';il\ Ibfrsi ncto s cap(e32 . are po1. b I1 5. f' ati twtot rtfrect'te Vt'I t-V irtgtit ographi .litats. ifa'l . objec sarlt'i etst'rvt'tlna Iitiogt orditnates of, somiie Itolit ( wit 11 r'espet'c itt sttiiit ar'lit 'ar' trh It the oe Ili(fit 1 o Isi_1,..,12. ali Ihl it /o origin say hilt ge'omietric cetntter of' thli m'iage), I lien (III points, flit 111oifff IIIf Sit /l ilt.4 1t/i ,~ (1 Oft 'f faI/ s% t fli 1) (4.1- y. 1) denlotes I Ilie loiltitgt'itt'fis f'ofroltiiatt's off a1d it - 1 lIi'lil twii ;ttlxliar'v lfrfflfsitlulls. alt- iist'tl a., pail ()I' three' \iItI's at a I tule. \\t' tlelot'itt tict rcltvaiit e'liplfOt.5 I e rt as fl ollows: le~t I Et, and I-' Ei ., itt lithec trrespfOniffiig Lm a1(uiir xsoc)L 11: t'jtijoles lbt' we'lli \ Iews I. -. allot itt v C- u, aiiIt(~ 1 Lt"'ii 1C uiir xseic)L . (3 Il ieltC' I'espofffitlig t'jipflt's be'tweeni view.,(s .( : bti.f 1 pflfoapj (ff11mi appiffq 1himt tiaphylffti t 1 I - 2(iflt it, Likew~~ise'. corretspondintig liniage' poinits across I btrtow viewI' '.tiff p utii T L tt .AI itts (tf li dl 1ft %tflrsfi If' 11, '+ v, %vIll bet dentii edi iV If x.. q,. I ". ( xt '. YI'. I ) alio1t it h t j.. E I) 1 tflf I f, t -t (l tf iIt o tftfffospn da pottfi 1 I Itt 0 ,. Y ''. I). I1lb t' t r "'iii igmtaei c'(ffiliiialtt' w~ill (I,-- fofff li tl ffq 1f (titf tibliItilfJ pointif V q -r. Ilionf. /0/i (tIlly note tl iet noii-hoiiogenvt'ois coordiniatt' repireset'iat ion F (l (f 0V stof 1)iifffilifrfpa Iv p C ui 1 (111 p, I ', I fffffft /ff) (flitt P2.e.,(.' ) (o' (j,", I1/'' ) for I it' t lirt't corrt'sltoiild- arivilt /'lf /fftlf 1) G P:'., tuht at in pointsii us r + Ak' tA Planes will bet denotedi bty 7i. indexed by1 nkJs , if' only ouit' plant' is (lis('lsst'(l .All ptlanits art' assumiitd ttt lift cm Il Ii iffI A- .s it d ( /tit dift itt tot j1 2 - .o s Ifi t I tllf Itl I be' arititrau'v and tfi,4nt Fi('romol lt' aiiother. [lie sviiltttl ito fin tlftict ]j lit ( smtffd vit Ii. tde'notes equiality utit to at scale. GiL,, stanlds lor' lt'e Ilit' ltemima. it. prtioolf and it, I litoi't' ical atitll Itiact ical group of' if x If mtatrtic'es. anid (L is t lit' p'oip de'fiiitd imiiplicat itons art' tdis'cusst'tl ii italttil iii [26]. Nt tt' thlat lilt to a scale. thlp 'jartit'ular case- whit're thit lioiiiogi'aphlt .1 i atlitit', A coordlinatt' 't'pit-sv'ittation 'R?0of 'P:' is a ltt- ratl tf and lit tilt(iolt' I., Is, Oiil lilt' lint' at ininityii . 'orret spofnds c'oordlinates [j~-2 :] such thlat it' 'Ro is aiiv out' al- to Ilt'e ('ostni'ctilou of' atlinit strutctufre' fromu two otl lil- IowabHe repi'esenltat ion. the w~hole class 'R consists Ol' all gIrai tic views (17 . 'iT'e scalar A' i cal letd a if Itiin (ljIf those rt'prt'set'ttatitonts thfat canl be obtaiiied t'roi 'P.(, b\ Iffnv11arian anid repfrest'nts lth' ratio of t lie tdist anct' of' P the ac'tioni of' t he grouip PGL4 . Given a set of' v'iew~s ',. 'Roii 77 a10log tl lit'line Of Sight, aildot ilie (list aiice of I' S=L 2.. .... of (. wxhere coordtlates oil 'j are (x. Y. 1] allo froniitlh camlera 'util tr of' i tioriiali'/ed by t ie ratio RI)0 is a reptresenltation f'or which ( ) (ix. :. Y. 1). of distaiices of P,~, froni tlie pl1a nut and t it'('acamera ct'liter. we w~ill sav t hat the( Object is underg',oing at mtost 3D 'Fliis niormtalizedl ratio cali be coiiiptitetl witl Iilit' aidl of' 1tah((1,C affine transfoi'tmat ions bet weeni views It' thle class aI seconid arbit rat'% view u-' of' represent at ions 'R ('onsists of a.l1 those represeiltat ions Dehuitimll 1 lb 111C tgi' st _Ij ECt PlLU: 3 frotmIf t - U that canl be Obt aiiied from R.0 b\ ilie act ion of' anl ffjfiiidnt( fC5filCjifI !.(1f51( ~ t (1 ttl~~ll stilfgrouij of' P L.I Ilii Other words, tilhe object undergoes IIl!.Cffdt ~ ~' 1 lCil1fC .t t I14 fti soe roject ive tranisformat iotn and pfro jected nt th CEi) D r'opcn o(f1n)ttoj f C-t (aflin d E ui', IlII If( tfists (i view t. ', after whichi all ot herut ransl'oriiuat ions applied to scalar' A' that satis fifs (Pare, affiiie. Note that t his deffin~i tioin is general and( al- lows fiti mincalibrat ed pin-hole catmera iiot ion (for tmore pi v1 , ±+ (let ails oii mitnali brated camitera mnotioni versuis relative for'(aln y vlU i't'v fl Cjr t~ I'' Ci ti I.% I& C Citoh w1ilth u, alline transformat ion versus taking pictures of' pictulres (scYal~t ar'biC'ar'dq). of the scetie, see Appetidix of [26]). Lemmna 2 (Auxiliary Uniqueness) L0 A. V C- 3 The Trilinear Form P(;L:3 b( hr11 ilthomo'Jf'h(fjliC o u1 f- .- dito, to plants 71'j. 7,.,. IC spC r(tIyI.C I/C i-. MirfI'C Cists af so-alCf s . Itlat 'I'lut' central resuilt of t his paper is presented iii the fol- sfftisfi~s /1,C Cqlatioff: lowving thleoremi. Thet remainiing of Ilie sect ion is devoted . - 'S , [o 7". -,v to thle proof of' t is resuilt and its Implications. fl-sn((~f(/ t 1 1 lTheorem 1 (Trilinearity) b I CI', U2'.U3 b(C Iilf'aCI` Proof. Let q E ui beo any point iii t lie first view. b~t(I~p(-sr~~ciIsI . osom bjiCi. od~~d sI 'lThere exists a scalar x, t hat satisfies rI ' Aq - sq~q. or nf o rm atil /I o ns 6DfI. (ICi 'g tifi CIIý Tfl f m.I/! 'iaq tfC' r i .ff f Cae I I( .--I s A_._a n d w e h av t' H q~ r'. B ilt a s.S h ow ni tif fC isififCcii ((fif ais 'l I's.flt littlC ~ftf'i of ~ iii [271~A. t c I' for aiiy lioiiografhv u, ' ", tdut' to aii' ctrr (il3o' ./ )r CS J I fI 'i( ii~f 3p J. in-otfsf I a/&1cI o/ufsfol l lf(l/'lClf g oIfII C' w iI ' ifqn lgC3Crlii il l tf'osir m o-: s /Ifl ) sf q aC p~'ti~r off f pdo(till/say tni fiilein .c tT hpfeorineitftosc r eq.,f r I'H ob in l-tl jot CIth-' e a. ss a wiamei td ll. p o~'I l'liiinest , 1ai,u afip(x'Ope liiud g dý s hcoaafpl'a ptrwe sno This, lin tuirn, imtplies t hat 11 is aI nat rix whose col iiniiis .1'(w+ (W.,! + Cl:j) + X"Xjt( , + I~ + o';)+ ~ are niult iples of' 1". 0 01 1 J'(O7'. + 08!/ + 0 010-fl +. 011Y~f + (11J, 9 0 Lemina 3 (Auixiliary for Lemma 4) DL 1A.. Y' P(;L: Ili foniiogrfafifI is fromtf f1 I.. dul hto f/Is/li, 1 andl plan. - 71 ,7-. Ii'sp/ICflvi(lly. ainf dl. lit E I'(;l~:i Nt if f li- ~l+' +. 121 + 3) ,I +il 'JT tg'Jp+i-'s+ ='+ ATfl ofiofr 'l *sf1o (ot- t TfCdC luf C( lPto(7 7':1s ,.', Tf-ta. ndI~ i'Bf f3( /III=til y. Hf '7'T(lllt . "(' + dy+ ,)+ 11"j, + .3 1 !1 + 31t2-_, t ichi tI - ( 'I' - graph)11ies f'roml ti t-, oho 71. rcsioe't ix'vN. Siiiilairf i'dii'. '': Ap+4.'. aiiii p"~ 2_ I?/+ At'' caI ~A isuilaIt, * i)iow Ti . re'sji'tcI~lvI. Let'It.ft = tc, c-2,:0 miad'i ItI I- II .7 11 C-CJI -UIC '7 ' ' tll ('atiL ouif, the ei'~ptiles I . vC wInl ch cCoovils ~o ii's d byv f where b, b, bj and U1 i,(~ art till irow 'N i''or, of .1 101 7-- alifl' '(l. til'he liogi'aplv Froui T- to T~ . I otlit' iiiaiilaiD'i (f A-w e call c'tfiati' I-iiini of' Lquiii Itl I -Iof, iiniagf' r( )o.(hnifat es acroiss hin't' Nlows. For t'xaiiiIplI. aind Wit 11 prioper'I scainiig of' ( ve hiave.~, ii L' ='B .I , m I F 1 1+bi Lemmiia 4 (Auxiliary Unliqueness) Ini* .iili 'si~i iiriqi Iii~t~nfirst termOinof liia- /oj . C l -u ii2 r tuii ji i h ibb o lu rm l(cid:143) h u. %. I b y( fi~ l ' T h u ' tfi. I w it h t lie s e c o n id u te riim o 4' E q u io n 2 . W e~ o f t a i ii Is. qpt(n aai oibilohavq fluiid vite it' ta. 1(/ 1 . B' b( lll( lho- ~ I/ V, 1.1 "I a ) TP -+ !//j-( i j a:, - v',Ii fj,1 1. BI bt scilo -(oii jia ib/i nil/io .1. uand BI' 6ii mC/-coillya Ilb/f 3 2fb :, 2. wil/i .1'. 7/it ni. Both eiiquat ions are of tilie desired forii. with tiltli first six B s 13 = [(1o' 11' -1", coefficieints identic'al across hoothI eq1uat ions. The quest ion of' iiililfti'iess arises biecatise LemiiaIia Proof. W~e show first that .s is invariant. i.e.. thfat 13 - holds for ainv planie. It' we choose a di fferenut pdaiw SaY' s1'is a itialriix whose cofuniius are muiilt iples of i''. Fromu 72 Witlli lioiliografdiies T. 1.' . thele WO MUSt -,i1)%\' thfat Lem ma 2. aliid Letmma 3~ there exists a ma t rix Ii. wh os tilie new lioiographies gierise to thIe samen c'oefhici'it s coltiiiiii are inult iples of c',. a miat rix 'T that sat isfies (ilp to anl overall scale). '['lie parenithiesized termis iii XA= .17'. amnd a scafar.s such thfat I -sI'.Ti .Afti V(fiht iots 3 and I have thle genteral f'ormi: ev b, ± a. iiiilt iplving bothI sidles by BC . and thleu pire-iiitlt iplvin" f'or somie i and~ *.' [fis, we need to show t Ia t hlere iexit bv C'- we obtain ti scalar s that satisfiies BI - .sBC('('- BCA'.rH('-. i(a,, - j -'i (bi -sb Froii Leniiuia 3,. we have B' = B( T( . 'fThe ma- This however, follows direct ly froiii Lemminas 2 aiid -1. trix .1`11l has columins which are intilt iples of v (be'- TIhe direct iiflllicat ion tof' theit t heoreiii is ith at oiii' c-an caulse, A1'i' ý_- i. ) '- 1J is a matrix w~hose col uinis generate a iiovel view (r~j) fby Simiuply coiiibininig two are imult iple of v'. and B( A - [I is a mat rix whose model views (A I1, u'.2 ). 'Fhel coefficiemnts (W, and 3* of thi' columns are niult iples of I,'. Pre-imuftiplying BA'A 11 comubinat ion canl be if,%'(i'cred( together as a solmut ion of' fIx C` does iiot chiange its foirm b~ecausie everx' coluiini a linear sstemi of' 17 i'quat ioins (2-I - 6- I) given niiiii of B( I-'HI( ' is iif alna colinbiiatioui of thlt correspoiiding points ac'ross t lie t hreie views ( more thani columins of B( A - H1. As a result, 1B - sB1' is a matrix nine points caii be used for a least-squares soliit ion). w~hose coliumns are, innltiples of r"'. Taken t oget her. Etnat ions I aiid 2 lead it 9 alIgebiraic Let HI= A -sA' and 11 B-.sB'. Since thle hoiiogra- funict ions of thbree views, six of whiit'h ar' separate for- x'" ph iles are, scale compja tiblde. we have from Lemni ia I t Ihe antI yJ". ''l'ie ot her fouir funct ioiis are listetd below: existence of' Invariamits k'. A" associatetd w~it Iha ii arbit ranv +" + 0. 1) E ti. where A' Is duei( to -71 r and A" Is due to 7,r, 1/iy( /( t .11) + At"ý_- A'lp + AVi' andl 1"ý _ Bj 'p+V~v/ / . Yq"( -) + Y"!/'(-) + Y'( ') + H 0 . Then fromi Lemmtta 2 we have 11p~ = (.sk - A)' v' aiid] ""''( )+ ''() ++ o(.i~()+ii(' Hp = (.sk' - A')".Since p, isa rbitrary. t his coultd hap- "."(')+ !//,I' (.') + x/'(.) + oI.'(') pieioin ly ift hle coefficients of tiem1l1t1ip les of v, in 1 wfiire (.)r ifiresent Iiiiiar fpolynomials InI.i. Th.[slolem- andl lie( coefficients of' lthmeu ltiples of'u ' inlH . coincide. U tion for x.y''. isi iuiitielf witlimit conist raints onl t Ib af- f~~~owcvaemd iera t ransforinat ions. If we chioose' Eqiuat ions3 Proof of Theorem: Lemjima I prov'itdes thfie existence aind -1. thlen vt aini Iu',' sholoid( not vaniish sinmultamneously. part of theworem . as follows. Siii(e Lenmma I hlods for I'.e. I r'' ((.I t0,) Isa singulfar casi'. Alsf) r"' ý_ (0, 1. ( any~~ia~e~T~ ~~~~~~i~o~ ~p~Ie~n~ .c os. L etlesae ii "~( . 0). 0) gi ve rise I o siiiu fa r cases. 01ti' caiiea1s - comipfat ible honiograpfiies. u1 tu- , andt oi ý- ut:. res'pec- ify show that for earh simigiia' cast- there -"woot her tivelvy Thfiimi. foi e'verN Poinlt p E ti . Witllc'ior resp~ondingi funictionis tit of' fit nine a~alhanfi' ones thfat provide a tiiiidjt't t'tlut ion't litr x"l it' liii l' itl-h taItl sinigular' cases S m( r lN F~>')p -f--oI ~ re uc tof~'+- plicit I , covlpae s dl 1o( I're. caIl ewra i' raiislu illtt lull.r 'I +~ js3tttj tit fnl');tlusIbt'\t.2wlt Iehae iocur gIwtucieot p lr. Hit' prsctoes ;s dtltscri'i ed illier' Btiltt 'q liai't'tl an, (&lvOliw t ib' it-- form.itit %%otHcu fi rst getrode'. iist'Ol ol' also've ssp rtl:sct..Ilt nitu cociiciv'(t'lt',id ellilt'lits !iio th oit' wortplal'.. it Fs-1 tl li prat t ila o t: rt' olsth eti't prset 'a'l as* a soiiti oa i nai- , lu t*n .' in ';nain3. illi t'a lltr ol vieiwt ca jlbilell ea ik ('coorliilsht' o l tli uti't h lier two v it'Xt A il ijlol t e to tIn' love al tirul'-c stWlsl hast itt lad\ av lit .w ~ ~lict' alicit t I.\ reo veyrl i st rul trot'' (is well Ideatiit'd) iiati o , -s) asj list' 1 1r to I 1 lt'( 'jist . loll \'. Ft'Is at.' I1 11i'.\ tli~tt 'rst-'C~t ie~s~ Ieo~ he~ iii~ia '('g.'~'i1 1iet~pli ~ ~ ~ 1rI-~ oiii'a iic. poisjl ca lst'isiaji tit li lt' of dli d irt ",t(t\xW %%,i ilit' t iplre( ' ti t~lrte'rau ter aT'e Po'o esui's(rF 'tirt l d lioir' b1,l Sto lt tolI iw l'tknoiv it.i s10 avoolii rtIclio' t' it'tlItloi - eilulr eoiarr 0 t't' fi It'd tOri' t 6ligit toh at lit' t kti l jt'i'ia obtilaillntasglily icant Ftro mic a idaitermaligt ill hi'tpipo-iac lwaer 11ail4'dl v(,it lact l~t'I ttis (asiui lg wt alt' Icst'aitig ail geonee ry iswtli ea ý firost , ws' eoliis t, l ivtt 'oth to li't ~~lto- wi b o ~ tI r c glti n a i' a I'tit tc g ll l) W'orkiiigit ' ~'vitit 'Iwi sh ~rsltt-ct I t I atrll ej lirt'itl'llo iss alt Ild bell" I .,lict' ' t'('ttlii l Mlts re~s ul~t ~c ai 'siv~It tenb~ [3-h]- ~ ~ ~ i woors irtoIrsa~i~tts is t(tin proesa nd B n Ito er'seciit'ion'P. atIhe .1ad or0 5tl o Eg x e imcental Dta taIl ih'.odr11,1" id (fnlor oftili'o:j. a taolioti 3e l't arlll(to'' s a S iii l Fa ;I i rl l' q a i l 3 ill m i h rc n ua .l1m'le ilcl' lle or i a e -WSf th tw \ ribuito' x t 'iioi it. o tver ia(l1l 1,)l st'sins l 11o)e1t 'w ere iu it'ill wn tliiri b of lit(, proreii defnto caoe ear resll reirjtl cowhetret lilgeilo ii~ ~~ ~31~'+~(ol ~~1.1 1.1 1 .lratter iiitt'rsecwt eiohnaolvaae tit 4i clsiheoulwilna ise asri ll(i'opllitvia tolilt iiiig.ata lprptoosift lm at f[3](tlt ion. 'lI s itnh, litc' ame r wcen 'er allt, cohirevet 'are. ourtbograpict . Sinceitar resttlt ve saelk no k oic .i , lt aV'' is ' g lirt'ssteel as o riietco nibintheeioll o imaeo ovrowli i'eioaenesctiu li' o xasinlttttdi ntoa e oh tlie rviws--asdicoerd y i-] leasolloitigb way Let l"ctat atIhe% be Ilt'ke illat ntsp( 't's eItlalmlkat ict's aic ele elassicrai iiomlo gv I, wacr iiclinwi 4a Theone BislivneatFr ormsnim adopnet lurwhhaoaif j'"lt 0.ailp F:t I ( orisidtr w ith Peaspetf'o v vwicthe wst wot refereititn raheniodel) rc~nlt views~a~reI' liata keiillo ootafuoiresmkina l anaisid (Isonb jeca P 13) 2 durin recogilct ioli aewenttyr htet ivnervai ew oftli' 01 trii I'cist t lieree sitncs we callreo vtw tl%le twcito' we ee itao e latr itct fu ci co nto nnete viaw t lal-h 11efa r tcombions atist n of v hiews duiiw iln p ra co i(lt' iout' prwonIt st'ts oe. a egiI101 rear): biea bnala for1 recvein trlhiegwrtpcsi a nli iasil rsces r r',x " (1S Ii+( i r~'i I' I',b i 7'21 f Thetliie xprees silmentst dvscrioeii iagt'hoisset', wunes ridl t onii plt whu uichoi s 1 il/onio l(,f of o i/o i'll' earO rke'isnudl l rprovited y1ctiotn cmatidol Lsn optii oa t~ous:'['in e frst e t'xnt'rlliit-lititus w-it ii siitiiat siontlt afs:; I liowii + (10 il X +0 2-1+(1 4 1'V+ ".AY+ (W5i; . 011 1 atterv it isv still siig i mliyan at'lter ton cast'Ile tf rillitna Thus./ troes oitt'rect lritoIenal rwe[hliict'h) avoids thlire ofehwa t' secondh epiplar i nt ersectiso n ieotai o wtasto' fImplemg t eod. il- x"~n ectxorfmoibsaitncda tio oft' tiit of t lit'a liodse atitlli nal/I 1'f( (ij, t4. ~ iw --a icvre y(4.t tie 1b1er o flnc orrs.ttiet igjp oitts tha3bet art' maeet' rinpac Pterso f.~ (- tttlle~ itIi on wehav frni e'iilil sI i't'ato achi everse casoi t carlee -rmioetloll [1,S], hcltw ha Thi salittinea Fatoidrt 0.at lit'r'fort h'uat io 5.1 hCeomreu)t e Simulatio0. 0, vl(-%N-s~tWaki eonfe t oratlto goabjpte cti cll ofe supin2a1 1cPtt rai"oi ly_w it I c1 b1 ~-ttI1ait) -7u~'+'''+ i''a 1 1K T'her.ecordiaes givteneilg h ofrre~spattdin point acarothsse '.f 40 1 4 350- I 1 25 20 80- 060- 10.40 1 04 0.50 00 20- 0'S 1 0 1.5 2 0 2.5 05 1 0 1 5 2 0 2 5 Figure 1: C omp~aring the- performlanice of I le epiliolar Ilitorsect ion metthlosi (thet dollted line') anid Ible I iiliii.ar fiiiet bus iiiet hod (d(ashiedl flne) in thle p~r'esence of illiage noise. Thie graph oil lth left shows the mjaximial re-prop-cction error ar~ioed ove~r 200 trials per noise, level (bIars represent stanidard dex iat iou ). (4uapli onl thie right displays, thli t' tvrage s-t-jr ojectioti error averaged over all re-projected points averaged over t Ie 200 trials per 11n5olevel coordlinates ranging railoinfly between -125 and + 125. 5.2 Exp~eriments Ona Real Images local lenigthI was of' 50 units and thle first view was oh- t~an.el w f.u/T e ecndvie (.2 wa gtir- Figure 2 showvs t hree, views of the( obsject we selected for at ed I1w a rot at ion around thle point (0. 0. 100) wxithI axis fie, expserimientit. T[le 0object is a Sports shoe with add1l~ed 0o1.- 1. 01.7, 0.7) and byva n anigle of'0.3 radians. The third tx r ofcltt h 'reloielepoes li vgieuwie(a1.t~e)l wsh ya rt atiouaroii(Ian xis ohject was chosen because of' its comuplexityv. i .t.. it has a (0. 1.0() withIi tlie same t ranslat ion and angle. Various shape of a nat~ural ob)ject and cannot easily bet (describhed amounts of' randoni noise was apsplied to all point, t hat p aralnet ricallv (as a collect ion of' planes or algebsraic stir- were to he re-proj'e cted ont~o a thlird view. hut not to t he faces).. Not e that the situnat ion depicted hiere I., clialleuig- eighit or nine points t hat were used for recovering tble lbncga use thle re-project el view Is not in-bhetween tie paramlete-rs (esseintial matrices, or t riliiiear coefficieints). two model views. i.e.. one( should expsect a larger seiisi- The noise was random. added separately to each coor- flvit~y to image iiois, tiani in-bet weeti situnat ions. A set of liliate and wvith1 varying levels fromi 0.5 to 2.5 pixel er- 34 points were manually selected onl one of thle framnes. ror. W~e have d[one 1000 trials as follows: 20 random t.j . atid their correspondences were automiat ically ohs- o' jects were creat~ed. an(l for each degree of error the talled along all ot her frames used iii t hiis experiment. slimulation was ran 10 times per object . W'e collect-ed The correspondence process is bsased oii ali iinllemiemita- the maximal re-projection error (iii pixels) atid the av- tioii of a coarse-to-hune optical-flowv algorit lini described erage re-project ion error (averaged of all the points that in [7]. To achieve accurate correspondIences across dis- were re-projectedl). These numbers were collected sepa- atit views, intermediate in-hbetweeii framies were takeni rately for each degree of error hy averaging over all trials aidte(-paeet cos osci v rne ere (200 of them) and recording the staiidard dleviat ion as added. T[le overall displacement field was then used to well. Since iio error were added to the eight or ninef push (-'warp" ) the first frame towards the target frame point~s that were used to det~ermine the epijsolar g-eoni- amid t hums create a svyithlet ic inmage. Optical-flow was ap- etrv a~ndl lie trilimmear coefficients, we simpfly solved the pleagiIeteithsitImtcfr eanItheagt associatedl Iimear systemis of equtiatons required to ob~t aiin faea~ h eutn hipaenn a de i the essential miat rices or the trilinear coefficients. overall displacement obtaiiied earlier. This p~rocess pro- vides a (dense displacement field whichi is then saim pled The results are shown in Figure 1. The graph oii to ohtainm thle correspondences of the 34 poinits Init iallv he etf es ows efomfaile f ot agoitmsfo chosen in) the first frame. The results of this psroce'ss art' eachi level of imiage noise bsy measuring the maximal re- sliowt Iin Figure 2 hy displaying, squares (-einteredl arounid projection error. We see that undler all noise levels, the the compumtted locatiotns of tbme corresponiiniig points. One trilinear meth1o0 1Is significanitly better and also has a canl see t hat the correspondences obt ained in this manner smialler standard (leviat[ion. Similarly for theI(a verage re- are reasonable. amid ii niost cases to stib-pixel accuracy. projection error shown in the graphi onl thle right. One can readily automate flin her I his process by select- ing points iii the first frame for which thle Hessian uiia- This difference iii perfortmaince is expected, as thle tni- trix of spat~ial (derivati ves is well conditioned simuilar - linear met hodl takes all thiree views together, rat her t han to the confidence valutes suggested ii thue iummpleimenira- every pair separat~ely. aimd thus avoiding line imitersec- tioiis of [4. 74.: 30] - however, the intent ion hiere was iiot I.ions. much as to buuild a coimpslet e systenm hut to test thle -so -00,, ('orrpeospnot ild(i.n g~p~o~nt~)~ ~~B~o~t~o~ ~~R~o~...wo i~ te Thr t.a..~i ot iihtw ei ia d ' kn he e cr t- pi ro on r o b e m m r e c a l l n gi n ( i e .. e r f o ni a c e i mo e s e si ti e t i ni ge.o i.e t.h....- b et.e e Figur 2.4 Tthoep ~ : Tweoriioa r is e5 .7 Ownst elf tohnes wnr ri ght.-1n ieli Teas oqnaresfit:saveraesero istrte-a nd marrsimal er n oris 1.4t ons.Bto o:T i~ ýIWt3 oeta 3i lt nbtenu n . nkn th rp-pooelceio m recialegng(ie. eror aneismoe esiiv o nae osethn I-btwe Figure 1: Hesiiltl" of re-projection usinig initersect ion of* eppolar inhs t I hi tItprop tt d poinits art' maruked vI,tt' rt),5es tierefore should be at t he center of' thle squares for accrte rIjeioifertt *tonI.n I th ltItft liaiid display the 'rnuiitl plant', poinits were, used for re'covering the essenit al matrix (set, tex\t). and ini lth uiglut lianud tlp~Ntl tti the lit hi1l mirlar t'' were recoveredl Fromi thle imuplemuentation of [19] using all 3-1 po(inits d( tos thi thrt viie s Ml atximt umiii (listldct-tiiitii error InI tile lef~thanld display is 25.7 pixels andt average error is . pixels Mlaximal efrror in t lit righlthlaiit tli.play is .13A pixels anid average error is 9.5S pixels. perl'orianice of thle trilinear re-projection met hod and is then known (sete [26, 20]) that 1`1j [r'']BI. wiutri [r''' compare it to thet perl'ormana ce of ('piftolar Initersectioin is theit ant j-sviiietrnc iiat rix of' v'. A siimilar prtott'turt' aii(I thle linear coiibi nation methlods. was uised to re'covter [2:j. iThere'fore, on l six ftoinits won,'t 'I' lie t riIiniea r ime t h od requiriies at letast nini e corrtespon d- uisedI For re- lprol ect iou, btu t nevyerthlt'less. thle resuiift.s we rt iuig points across the three views (we need 17 equmation, slight ly bet ter: iiaxiimal error of 25.71 pixt'ls amid avt'rage aiid uniit poilits provite 18Ie quations). whereas epipolar error of 7.79 pixels. F'igure I shows t hets resuilts. intersect ion cati be done (iii principtle) w~ithI eight points. F~inally. we tt'sted t lie perforiiainct' of' rt'-jrojectionii s- 'Fhe (qnesti on we are, about to address is what is thle iiig the liinear coiibiiiat ion muethiod. Since thle linetar coim- iiumiber of points t hat are requtiretd iii practice (d(tile to tiiiat iou miethtlods holtds onN i~o r ortblograph11ic view~s. we, errors iii correspondtenlce. lt'is distort ions aiid ot her t'f- are actunally testing thlit onrtiographiic assumipt ionu idt'i fects that are not adequtately imi odeledl b% t lie pin-hole a persp'ct ive situhatitoii or III ot her words. w betlit'r t lit camlera mlodlel ) to ac'hieve reasoniable' petrformnaice' h igher (bilinear and( t rilinear ) ordetr t ermls of thlit t riliii- . 'Fie t rihitiear resuilt. w~as first applied w~ithI thli 'Minimal ear equtat ioiis art' sigtiificaiit or not . 'hit linhear comiiiia- niumiber of points ( ninie) for sol vinug for thlit coefficients. t mon miet hod requires at least four corre'spoiidinig potiiits and tht'ti ap~plited w'ithI 12 poitlts tisilit a liiiear least- across tlit'tt hree views. Wt' applietI It', miet liotl wit Ii four. squares solu tion. 'nit results art' shiown iin Figure 3. 12 (for comnparisoin w~ithI t hit trnh near cast' shuown' iii F'ig- Nine points providet a rt'-project iou with miuaxiiial t'rror tire 3). aiid all 341p oinits ( th ltat tetr two uising I iiitar lt'ast of 3.7 pixels and~ avt'ragt' error of 1. 4 pixels. 'it', solutit on squares). 'I'lit' results art' tdisplavted ini Figirt' 5. 'I'lit' ten- uising 12 point~s providt'd a significant imiproveme'nt withI fori alict iii all cast's are sigiiificantNly poorer thlati w~wlut muaxiinal error' of 1.4 and avteragt' error of 0.1i pixels. ('s- tisiiigt tli'rilihut-ar fi'ict ions, bln bet te'r thlaii tli' tpiftolar Inig iiore points dlid not ilnprovt'sigiiificaiit l thle resuilts: intittrsectiloll miethlud. for exaimiple. wheii all 3-1 points were uised t he miaximial error went dlown to I .1. pixels aiid avt'rage error st aved 6 Dsuso at 0-42 pixels. Next the efpifola inuters'ct ion met hod w~as applied. Wt' have seen that at)iv view of a fixetd 31) objtect call We used two mlethlods for recovering thit tessent~ial iiiat ri- bte expressed as a t rilinean funiction withI two rt'ft'rt'ict' (ces. Oiie miethlodl is by iisintg the imiplemniitat ion of [19] views iii the gent'ral cast', or as a biliiitar fuutict ioul whetn andI thle ot her is by t akiing advantage that four oft lit cor- thli 'reft'rtence vit'ws art' createtdt by imeanis of' parallel p~ro- rt'spondhing points are coining from a planet (thle groundl jt'ctioti ht'llst' funlctiouis p~rov'ide altetrniat ive. nitiuch situ- plane). III the formier cast'. mutch more t haii t'ight points plt'r. mueanis for t inaniplat inug views of a scent' iaii other were required iii order to achiievt' reasona ble result s. For meit'thods. Experimenut al rt'sult s shuow~ that tlivt'riliiitar examnple. whien usinig all the 34 poitnts. thle mnaximial erI- fitnict ions. are also uiseful inI pract ictNv it'ldinig tt'rforiimancte ror was '13.4 pixels amid Ilie averagt' t'rror was 9.5s pixt'ls. thfat Is significantly better thaii epiltolar intetrsection or lII thle lat ter case, we rec'overedI first thle ioi iograpliy. 1 the linear coimbinuat ion meithtlot. duie to the grouiid plane anid thleu the epipolt'v i''usitig lThe applicat ion t hat was t'miphiasized t hrouigheut tilt' two atddit ionual jpoiits (thost' oin thet filni cart ridges). It per is visual nt'cogiit ion via aligiiiet'it. Rt'asoniablet -pa Figure 5: R~esults of re-pro'ject ion using t he liii ar combinat ion of views mei t hod proposed by [341] ( appdica ide to p~arallel projection). Top RowI: In the lefthand display thle linear coefficients, were recovered from four correspond inig p~oints: maximal error is 56.7 pixek and1a( verage error is 20.3 pixels. lit the right Iiaiid displIay tble coefficienits were recovered usinig 12 lpoints ini a linear least squiares fashion: mnaximial error is 21.3 p~ixels andl average error is 6. pixels. Bottom Row': 'Flit, coefficients were recoveredl using all 34 points across thle three views. M~axim~al error iN 29.1 pixels aid average error 'is 5.03 pixels.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.