ebook img

DTIC ADA275521: CBSD: The Celestial Background Scene Descriptor PDF

228 Pages·9.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA275521: CBSD: The Celestial Background Scene Descriptor

AD-A275 521 PL-TR-93-MI15 II/l// // I1 Il ///]ltlU CBSD: THE CELESTIAL BACKGROUND DTIC DT SCENE DESCRIPTOR QFEB ELECU " 1 41 994.. J. P. Kennealy P. V. Noah E. F. Tedesco R. M. Cutri S. F. Dermott Mission Research Corporation One Tara Blvd Nashua, NH 03042-2801 January 1993 Final Report April 1988 - January 1993 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNL$ITKED PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 94-04895 L4 q : ..i IIllo2l ll"9IIII This technical report has been reviewed and is approved for publication ,,,R4TICVEHjWQH0-N. D. PRICE Contract Manager Branch Chief tOGIR VAN TASSEL Division Director This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service. If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/TSI, Hanscom AFB, KA 01731-3010. This will assist us in maintaining a current mailing list. Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned. REPORT DOCUMENTATION PAGE I OFMorBm NAop. p0ro7v0e4d-0188 Pubhtcre coning bumtf ot thi coffecton of iflformlno is easmainmto m#im e" I hour oor ,siorm.O lncitidfg hf ti'Im e for wsmitittriiqn structions, asraelfnmri$g illing date sources, gafihth end mintfaining tho 4d fe N , nGodo ff i rmitMe " tffi Coinf o ff i0lotfri|nnf .Send ciaifeofO ra f thfis burden* f effe teo n Onyf other esiW of Ihnt CoillectionoIfni fa 4@fmtio"f.f 01u chn sf pm sfine ne fown fduosg thfis bwedufit o Washfsllmori fedufeoSernice, 0'rectoneIe fW IfOrmelon Ooeretw shiff RSoemo . 1215 Jefferson DavitH ohway. Suite 1204. Aslhgfoq .VA 22202.4302, and to he Office of Managemre nti o Budge, t Pemwwm Redlo i qeoll t07O0 4,0111WN1elLh,u igmfn, Dc 20503 1. AGENCY USE ONLY (Leave 6lan11 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED January 1993 I Final Report (Apr 1988-Jan 1993) 4. TITLE AND SUBTITLE 5, FUNDING NUMBERS PE: 63220C CBSD: The Celestial Background Scene Descriptor PR S321 TA 18 WU AC ContrAct F19628-88-C-0014 6 AUTHOR(S) J. P. Kennealy, P. V. Noah, E. F. Tedesco, R. M. Cutri, and S. F. Dermott 7, PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Mission Research Corporation REPORT NUMBER One Tara Blvd Nashua, NH 03062-2801 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRES'(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Phillips Laboratory 29 Randolph Road PL-TR-93-2215 Hanscom 4FB, MA 01731-3010 Contract Manager: Stephan Price/GPOB 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE' Approved for public release; Distribution unl4mited 13. ABSTRACT (Maximum 200 wotrd) This report documents the Celestial Background Scene Descriptor (CBSD) program which is a suite of models to simulate the radiance of astronomical sources. The models simulate the contribution of the celestial background iWth e wavelength regime 2 to 30 pm with a positional accuracy of 2 arcseconds. The output of the models are tables and images suitable for use in sensor simulation. The CBAMP model calculates the thermal radiance and scattered light for the solar system objects including the Sun, Moon, the planets, the Galilean Satellites, 4559 numbered asteroids, and 9643 unnumbered asteroids, The solar system dust cloud (Zodiacal light) model CBZODY uses a Lorcntzian out of plane dust density distribution to derive a number density from which the emitted and scattered radiances are computed. The stellar point sources model, CBPNTS, is a "fast" running scene generator version of the Air Force/NASA/Ames statistical point source model SKY. The sky is divided into 899 regions with size inversely proportional to stellar density. In addition, there arc 87 different spectral classes, including 82 classes of stars, two classes each of planetary and reflection nebulae, and one of compact MII regions. The nature of the galactic infrared cirrus is discussed, 14, SUBJECT TERMS 1I. NUMBER OF PAGES Sun, Moon, Stars,,Galaxy, Zodiacal Light, Planet, Minor Planet, 228 Asteroid, Infrared, Cirrus, Point Sources, Scattering is. PRICECODE 17, SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT Unclassified Unclassified Unclassified None NSN 7540,01 .280.500 Standard Form 298 (Rev. 2.89) plegsoe by ANSI Sic 23*11 I I II II I llll I II3 I I III0 I 2I TABLE OF CONTENTS 1 INTRO D UC TIO N ....................................................................................................... 1 1.1 RELEVANT DATA PRODUCTS .......................................................................... 1 1.2 THE MAJOR COMPONENTS OF THE CELESTIAL BACKGROUND ............... 2 1.2.1 THE DIFFUSE ZODIACAL BACKGROUND ......................... 2 1.2.2 THE GALACTIC POINT SOURCE BACKGROUND .............................. 3 1.2.3 MOVING SOLAR SYSTEM OBJECTS ................................................ 3 1.2.4 SPATIALLY STRUCTURED SOURCES OF EMISSION ....................... 4 2 THE CBSD ZODIACAL EMISSION MODULE ................................... 5 2.0 INTR O D UC TIO N. ............................................................................................... 5 2.1 C AP A B ILIT IES .................................................................................................. 7 2.2 CBZODY MODEL OF THE ZODIACAL DUST COMPLEX ..................... 8 2.3 THE DUST BAND MODEL ............................................................................... 25 2.4 A DYNAMICAL DUST DENSITY MODEL ........................................................ 28 2.5 AN IMPROVED DUST BAND MODEL ............................................................ 30 2.6 MODEL FITrTNG AND VALIDATION .............................................................. 41 2.7 CBZODY USER'S MANUAL ........................................................................... 45 2.7.0 INTRO DUCTIO N. ............................................................................... 45 2.7.1 INSTA LLATIO N .................................................................................. 45 2.7.2 GNOMONIC PROJECTION OPTIONS ............................ 46 2.7.3 LiNE OF SIGHT OPTION ................................................................... 48 2.7.4 IRAS DATA FILES .............................................................................. 48 2.7.5 S P EC T RA ............................................................................................ 49 2.7.6 MOLLWEIDE PROJECTION OPTIONS .......................... 49 2.7.7 IRAS NON-LINEAR LEAST SQUARES FITS ....................... 50 2.7.8 DATA FILES INCLUDE WITH CBZODY ............................................ 51 2.8 S A MP LE O UTP UT ............................................................................................... 53 2.9 REFERENCES ................................. ............ 58 3 THE CBSD POINT SOURCE BACKGROUND MODULE .......................... 60 3.1 BA C KG RO UN D ................................................................................................ 60 3.1.1 TWO DIFFERENT CBSD APPROACHES .......................................... 64 3.2 INITIAL CBSD IMPLEMENTATION ................................................................. 64 3.2.1 SPATIAL Q UANTIZATIO N ................................................................... 65 3,2.2 SPECTRAL BRIGHTNESS TREATMENT ............................................ 69 3.3 CURRENT CBSD IMPLEMENTATION ........................................................... 72 3.3.1 THE CBSD GALACTIC POINT SOURCE CATALOG ......................... 72 3.3.2 CATALOG GENERATION ................................................................. 75 3.3.3 CATALOG CHARACTERISTICS ................................ 76 3.4 USE & VALIDATION OF THE NEW POINT SOURCE MODULE .................... 79 3.4.1 VALIDATION RESULTS ................................. 80 3.5 RECOMMENDED EXTENSIONS OF CAPABILITY ..................... s8... III 4 THE CBSD ASTEROIDS, SUN, MOON, AND PLANETS MODULE ............................ 88 4.0 INTRO DU CTIO N ................................................................................................ 88 4.0.1 TIM E SCALES .................................................................................... 88 4,0.2 COORDINATE SYSTEMS AND COORDINATE TRANSFORMATIONS ....................................... 89 4.0.3 THEO RY OF ORBITS ......................................................................... 92 4.0.4 THE REFERENCE EQUINOX AND PRECESSION ................................ 95 4.0.5 THE PRECESSION NUTATION MATRICES ...................................... 98 4.1 THE SUN, MOON, AND PLANETS ..................................................................... 101 4.1.1 THE JPL DE/LE-200 EPHEMERIDES ........................... 101 4.1.2 THE ANALYTICAL THEORY VSOP87 ................................................. 102 4.1.3 THE ELP-2000/82 LUNAR THEORY .................................................. 105 4.1.4 A LEAST SQUARES FIT FOR PLUTO ................................................ 107 4.1.5 CONVERSION TO APPARENT POSITION .......................................... 108 4.1.6 CORRECTION FOR PARALLAX .......................................................... 114 4.2 PLANETARY SATELLITES ............................................................................... 117 4.3 A S T E RO IDS ..................................................................................................... 12 0 4.4 FLUX CA LC ULATIO NS ..................................................................................... 125 4.5 CBAM P USER'S MANUAL ................................................................................ 130 4.5.0 INTR O DU CTIO N. .................................................................................. 130 4.5.1 INSTA LLA TIO N .................................................................................... 130 4 .5.2 INP UT S ................................................................................................. 13 2 4.5.3 FORCING THE VSOP87D THEORY .................................................... 132 4.5.4 ELIMINATING THE ASTEROID CALCULATIONS ................................ 133 4.5.5 USING VSOP87D AND NOT RUNNING THE ASTEROIDS ................. 133 4,5.6 FLOATING POINT O UTPUT ................................................................. 133 4.5.7 CBA MP DATA FILES ............................................................................ 133 4.6 A DDITIO NAL VALIDATIO N ............................................................................... 135 4.7 R E FE RE NC ES .................................................................................................. 142 5 TH E INF RA RE D C IRR US ................................................................................................ 143 5.0 INT R O DU C T ION . ............................................................................................... 143 5.1 DEVELOPING ENHANCED "CIRRUS MAPS" ................................................... 144 5.1.1 IMAGE DESTRIPING AND DEWAVING ............................................... 144 5,1.2 COMPARATIVE ANALYSES OF IMAGE PLANE AND FOURIER D E S T R IP E RS ....................................................................................... 14 5 5.1.3 BROAD ZODIACAL EMISSION REMOVAL .......................................... 152 5.1.4 CO-ADDING THE THREE HCONS ...................... ...153 5.2 SPATIAL CHARACTERISTICS OF THE INFRARED CIRRUS .......................... 155 5.2.1 LARGE SCALE CIRRUS MAPS ................................ 155 5.2.2 GLOBAL DISTRIBUTION OF THE INFRARED CIRRUS ...................... 156 5,2.3 THE SPATIAL CHARACTERISTICS OF THE CIRRUS FROM IRAS S KY FLU X DA T A ................................................................................... 157 5.2.4 PROBING HIGHER SPATIAL FREQUENCIES WITH IRAS POINTED O BSERVATIO NAL DATA ..................................................................... 160 5.2.5 SUMMARY OF THE FOURIER ANALYSES ......................................... 181 5.2.6 THE PROSPECT OF HIGH SPATIAL RESOLUTION STUDIES OF THE CIRRUS USING OPTICAL IMAGING ............................................ 182 Iv 5.3 SPECTRAL CHARACTERISTICS OF THE INFRARED CIRRUS B AC KG R O UN D ................................................................................................. 18 5 5.3.1 RELATIONSHIP BETWEEN THE 12 AND 100pm CIRRUS E MI SS ION ....................................................................................... . . 185 5.3.2 THE INFRARED AND OPTICAL PROPERTIES OF A SAMPLE OF COMPACT CIRRUS SOURCES .......................................................... 187 5.4 R EFE R E NC E S ................................................................................................. 190 6 THE COM POSITE IMAGE MODULE .............................................................................. 191 7 S UM M A R Y ...................................................................................................................... 195 APPENDIX A: IMAGE PROJECTIONS ............................................................................... 196 A .1 R EC TA NG UL A R ................................................................................................ 196 A .2 G NO MO NI C ...................................................................................................... 19 7 A.3 MOLLWEIDE ................................................. 198 APPENDIX B: CBSD HEADER FORMAT ........................................................................... 200 APPENDIX C: USER GUIDE FOR NASNAMES SKY VERSION 3 .................................... 202 Arccesior' For NTIS CRAM DTIC TAD ci Avl,, t (. or v LIST OF FIGURES 2 THE CBSD ZODIACAL EMISSION MODULE Figure 2-1. The four IRAS bands (12pm, 25pm, 60pm, and 100pm) showinrg the contribution of the Zodiacal emission. Each data point rcpresei its 0.50 square patch of sky These patches begin at the Nort;, ý .l-iptic pole and end at the South ecliptic pole. The galactic plane lies between ecliptic latitudes of -300 to -90° at the ecliptic longitude of the scan show n here ............................................................................ 5 Figure 2-2. Geometry of the Line-of-sight and observer and dust coordinates (not to scale) ................................................................................................ . . 9 Figure 2-3. Cross section of the dust distribution perpendicular to the Vernal Equinox and through the Sun .............................................................. 12 Figure 2-4. Sectional views of the dust density distribution for three slices, top, along the ecliptic, middle, perpendicular to the ecliptic at Earth's orbit, and bottom, perpendicular to the ecliptic near the Sun ................... 13 Figure 2-5. A best fit to the IRAS ZOHF scan using a non-linear least squares algorithm. The galactic plane is between ecliptic latitudes of -300 and -90". The residuals show the Lorentzian-like fit to be well under 2% outside of the galactic plane region. The band region (200 to -201) is only around 7% since no band model was incorporated in this fit ........................................................................... 14 Figure 2-6. A plot of L,(cid:127), for four different particle sizes ......................... 16 Figure 2-7. Temperature profiles for astronomical silicate at three different distances from the Sun as a function of particle size .......................... 17 Figure 2-8. Volume emissivity spectra for three different heliocentric distances, top, 0.05 AU, middle, 1.00 AU and bottom, 3.30 AU ............................ 19 Figure 2-9. Schematic showing parameters associated with the multi-plane model. The figure only shows symmetry planes and not the 3- dimensional extent of the cloud ........................................................... 20 Figure 2-10. Nine views of the spectrum of the Zodiacal light given In ecliptic coordinates, (%,P) and in units of Miy/sr: (a) 50 away from the Sun In the ecliptic plane. (b) 100 away from the Sun in the icliptic plane. (c) 450 away from the Sun In the ecliptic plane, (d) along the direction of Earth's orbit. (e) 1200 away from the Sun in the ecliptic plane. (f) At the antisolar point, (g) X=300 P=300. (h) X=45= P=45', (i) The North Ecliptic pole ..................................................................... 22 Figure 2-11. Nine views of the spectrum of the Zodiacal light given in ecliptic coordinates, (%,P) and In units of W/cm2/pm/sr: (a) 50 away from the Sun in the ecliptic plane. (b) 100 away from the Sun in the ecliptic plane. (c) 450 away from the Sun in the ecliptic plane, (d) along the direction of Earth's orbit. (e) 1200 away from the Sun In the ecliptic plane. (f) At the antisolar point, (g) X=300 0=300. (h) X =45' P=45°. (I) The North Ecliptic pole ............................. 23 Figure 2-12. Comparison of the effectiveness of the two-plane model, Note that In (a), the single plane model, a small oscillation Is clearly visible in the residual. This oscillation is not as strong when a second plane (b) Is introduced with a break point of 1,00 AU ....................... 24 vi Figure 2-13. Schematic showing how the dust bands are produced from a toroidal dust distribution .................................................................................. . . 25 Figure 2-14. The average profile seen in each lune obtained using linear corrections to remove parallax and latitude variations and adding all the profiles In a given lune. The numbers In parentheses on each profile are, respectively, the ecliptic longitude of the Earth and the elongation angle (a constant 900 in this figure) .................................... 30 Figure 2-15. (a) IRAS observations of the solar system dustbands at a wide range of elongation angles obtained by filtering out the broad background using Fourier methods. Comparisons of these observations with model profiles based on the prominent Hirayama asteroid families obtained using the SIMUL code are shown in (b), (c), and (d) ............. 31 Figure 2-16. Comparison of Model and Observation for SOP 452, Obs 22, e = 1140.68 at 251Am when the dust is allowed to fall to 1.5 AU ................ 32 Figure 2-17 . Comparison of Model and Observation for SOP 392, Obs 29, e = 970.46 at 25/Am when the dust is allowed to fall to 1.5 AU ..................... 33 Figure 2-18. Comparison of Model and Observation for SOP 446, Obs 42, e = 650.68 at 25/pm when the dust is allowed to fall to 1.5 AU ................ 33 Figure 2-19. Comparison of Model and Observation for SOP 452, Obs 22, e = 1140.68 at 25/Am when the dust is allowed to fall to 1.0 AU ..................... 33 Figure 2-20. Comparison of Model and Observation for SOP 392, Obs 29, e = 970.46 at 25pAm when the dust is allowed to fall to 1.0 AU ................... 34 Figure 2-21. Comparison of Model and Observation for SOP 446, Obs 42, e = 650.68 at 25pm when the dust is allowed to fall to 1.0 AU ................ 34 Figure 2-22. Comparison of Model and Observation for SOP 452, Obs 22, e = 1140.68 at 12pum when the dust Is allowed to fall to 1.0 AU ................ 34 Figure 2-23 Comparison of Model and Observation for SOP 392, Obs 29, e = 970.46 at 12pum when the dust is allowed to fall to 1.0 AU ..................... 35 Figure 2-24. Comparison of Model and Observation for SOP 446, Obs 42, e = 650.68 at 25/Am when the dust is allowed to fall to 1.0 AU ................ 35 Figure 2-25. Residual plot, in the sense observation minus model, of SOP 452 Obs 22, e = 1140.68 at 25/Am for an infall distance of 1 AU ................ 37 Figure 2-26. Residual plot, In the sense observation minus model, of SOP 392 Obs 29, e = 970.46 at 25/Am for an Infall distance of 1 AU ................... 37 Figure 2-27. Residual plot, in the sense observation minus model, of SOP 446 Obs 42, e = 650.68 at 25pAm for an Infall distance of I AU ................... 37 Figure 2-28. Residual plot, in the sense observation minus model, of SOP 452 Obs 22, e= 1140.68 at 12/pm for an Infall distance of 1 AU ................ 38 Figure 2-29. Residual plot, In the sense observation minus model, of SOP 392 Obs 29, e = 970.46 at 12pum for an infall distance of I AU .................. 38 Figure 2-30. Residual plot, in the sense observation minus model, of SOP 446 Obs 42, e = 650.68 at 12,um for an infall distance of I AU ....................... 38 Figure 2-31. Comparison of the complete SIMUL model results to the number density description to be used in CBZODY of SOP 452 Obs 22, a = 1140.68 at 25/Am for an Infall dirtance of 1 AU ..................................... 39 Figure 2-32. Comparison of the complete SIMUL model results to the number density description to be used in CBZODY of SOP 392 Obs 29, e = 970.46 at 25/jm for an infall distance of 1 AU ...................................... 39 vii Figure 2-33. Comparison of the complete SIMUL model results to the number density description to be used in CBZODY of SOP 446 Obs 42, e = 650.68 at 25pm for an infall distance of 1 AU ...................................... 40 Figure 2-34. The same ZOHF scan as Figure 2-5 but now using the general param eters of Table 2-3 ..................................................................... 43 Figure 2-35. Appearance of the entire zodiacal cloud to an observer 15 AU from the Sun and in the plane of the ecliptic ............................................... 44 Figure 2-36. IRAS SkyFlux plate of the region Ih and 0o ........................... 53 Figure 2-37. CBZODY model output of the same region as Figure 2-36 .................... 53 Figure 2-38. An all sky projection in Sun-centered ecliptic coordinates ...................... 54 3 THE CBSD POINT SOURCE BACKGROUND MODULE Figure 3-1. Map of IRAS PSC Band I Sources Fainter than 0.5 Jansky .................. 60 Figure 3-2a. All-Sky Galactic Map of SKY vs, PSC 12pm Comparison Differences ....... 62 Figure 3-2b. Galactic Plane Map of SKY vs. PSC 12pm Comparison Differences ......... 63 Figure 3-3. The CBSD Point Source Density Map (PSDM) Sampling Grid ............... 66 Figure 3-4. Two PSDM's for SKY Spectral Class 22 - Showing [12]=6 and [12] = 11 ...................................................................................... . . 67 Figure 3-5. Two PSDM's for SKY Spectral Class 83 - Showing [12]=6 and [12]= 11 ...................................................................................... . . 68 Figure 3-6. Galactic Distribution of the Brightest IRAS 12pm Sources ......................... 70 Figure 3-7. Overall Architecture of the Original CBSD Point Source Module ........... 71 Figure 3-8a. Sample SKY Version 3 Spectral Templates ........................................... 73 Figure 3-8b. Sample SKY Version 3 Spectral Templates ........................................... 74 Figure 3-0. The Sky Spectral Extinction Function ..................................................... 75 Figure 3-10. Galactic -- Equatorial Map Projection Correction ................................... 76 Figure 3-11. Overall Architecture of the Newest CBSD Point Source Modeling Me thod .............................................................................................. . . 78 Figure 3-12. CBSD Compared to the 12pim IRAS PSC at GLon = 0 and GLon = 15 ....... 81 Figure 3-13. CBSD Compared to the 12pm IRAS PSC at GLon= 30 and GLon = 45 ...... 82 Figure 3-14. CBSD Compared to the 12/pm IRAS PSC at GLon=60 and GLon=90.. .... 83 Figure 3-15. SKY vs. CBSD tog(N)-(og(S) Comparison at 12mm .................................... 84 Figure 3-16. SKY vs, CBSD tog(N)-tog(S) Comparison at 25*m .................................... 85 4 THE CBSD ASTEROIDS, SUN, MOON, AND PLANETS MODULE Figure 4-1. Simplified orbit showing longitude of ascending node, 0, argument of the perihelion, w, and orbital inclination, i, to the plane of the ecliptic ................................................................................................ . . 9 2 Figure 4-2. Planetary orbit showing true anomaly, v, and eccentric anomaly, E for an elliptical orbit of eccentricity e and semi-major axis a ........................... 93 Figure 4-3: Schematic showing the effects of nutatlon and precession on the position of the Earth's north pole. The Earth's rotates at a rate, w, once per day. The precession circle is completed in -26,000 years. Nutatlog, Is the smaller, higher frequency wobble ....... ........ ................ 97 Figure 4-4. The satellites of Jupiter (enlarged for clarity) on 16.0 December 1992, From left to right Europa, Calilsto, Ganymede, and Io. ............... 119 viii Figure 4-5. 22 July 1990 total solar eclipse 12 minutes before second contact. ......... 135 Figure 4.6. Annular eclipse of 4 January 1992 at mid eclipse ..................................... 140 Figure 4-7. Mutual planetary occultation Involving Mars and Jupiter in 1170. .............. 141 Figure 4-8. Mutual planetary occultation Involving Venus and Jupiter on 3 January 1818, the most recent such occurrence visible from Earth ....... 141 5 THE INFRARED CIRRUS Figure 5-1. (Top) The ratio of the raw-to-destriped pixel values along a column of the 12pm IRAS Skyflux plate 96 for the UA destriped (upper) and MRC destriper (lower). (bottom) The pixel ratios from the destriped 25p rm Im ages .......................................................................................... 14 6 Figure 5-2. (Top) The ratio of the raw-to-destriped pixel values along a column of the 60pro IRAS Skyflux plate 96 for the UA destriped (upper) and MRC destriper (lower). (bottom) The pixel ratios from the destriped 1001/ m im ages ....................................................................................... 14 7 Figure 5-3. The mean, standard deviation, skewness and asymmetry of the distribution of raw-to-destrIped pixel ratios values along 24 columns in the 12,um IRAS Skyflux plate 96 ......................................................... 148 Figure 5-4. The mean, standard deviation, skewness and asymmetry of the distribution of raw-to-destriped pixel ratios values along 24 columns in the 25/um IRAS Skyfiux plate 96 ......................................................... 149 Figure 5-5. The mean, standard deviation, skewness and asymmetry of the distribution of raw-to-destriped pixel ratios values along 24 columns In the 60pm IRAS Skyflux plate 96 ......................................................... 150 Figure 5-6. The mean, standard deviation, skewness and asymmetry of the distribution of raw-to-destriped pixel ratios values along 24 columns in the 100pm IRAS Skyflux plate 96 ....................................................... 151 Figure 5-7. The raw HCON 1 IRAS Skyflux plate 99 maps at 100pjm (top left) and 12prm (bottom left), The fully processed, 3 HCON coadded images are show n on the right ............................................................................ 153 Figure 5-8. A Galactic Aitoff projection of the high galactic latitude 100apm sky, This image was constructed from our enharnced IRAS Skyflux dat a ba se ................................................................................................ 15 5 Figure 5-9. The distribution of power law slopes fit to the 1 OOpm power spectral cross-sections shown in Figures 5-2 and 5-3. Slopes are shown for fits made in the spatial frequency ranges of (a) 0,01-0,025 arc- minutes-1, (b) 0.025-0.063 arc-minutes"1, (c) 0.063-0.10 arc- minutes"1, and (d) -.10-0.20 arc-minutes"1. The slopes of the spectra which qualitatively appeared to show the least amount of curvature are denoted by filled squares. Note, the large dispersion in the fit slopes, and the trend toward steeper slopes with increasing frequency range .................................................................... 159 Figure 5-10. A comparison of the spatial resolution and sensitivity of IRAS Skyflux and Pointed Observation data. (a) A slice taken through IRAS Skyflux plate 171. (b) An enlargement of the Skyflux data in the region serendipitously covered by a Pointed Observations. (c) The Pointed Observation single detector data in the cirrus cloud .................. 161 Ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.