ebook img

DTIC AD1005707: Sources of Bias in Particle-Mesh Methods for PDF Models for Turbulent Flows PDF

24 Pages·0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC AD1005707: Sources of Bias in Particle-Mesh Methods for PDF Models for Turbulent Flows

SOURCES OF BIAS IN PARTICLE(cid:2)MESH METHODS FOR PDF MODELS FOR TURBULENT FLOWS by Jun Xu and Stephen B(cid:3) Pope FDA (cid:4)(cid:5)(cid:2)(cid:6)(cid:7) January(cid:8) (cid:7)(cid:4)(cid:4)(cid:5) Abstract Numerical errors(cid:8) in particular bias(cid:8) in PDF(cid:2)based particle(cid:2)mesh methods for turbulence modeling have been explored(cid:3) It is shown that bias decreases linearly with the increase of the number of particles(cid:8) but increases with grid re(cid:9)nement(cid:3) The (cid:10)uctuations in mean (cid:9)elds which are fed back into the coe(cid:11)cients of stochastic di(cid:12)erential equations are attributed to be the sources of bias(cid:3) The Frozen Coe(cid:2)cient approach has been proposed and adopted to pinpoint the sources of bias in detail(cid:3) These results provide guidelines for improving the numerical accuracy of PDF models for turbulent (cid:10)ows(cid:3) (cid:7) INTRODUCTION For complex turbulent reactive (cid:10)ows(cid:8) probability density function (cid:13)PDF(cid:14) methods have been well developed and o(cid:12)er great potential (cid:15)(cid:16)(cid:17) (cid:15)(cid:18)(cid:17)(cid:3) In the application of these methods(cid:8) a particle(cid:2)mesh method is used to solve a modeled equation for the evolution of a PDF(cid:8) e(cid:3)g(cid:3)(cid:8) the joint velocity(cid:2)frequency(cid:2)composition PDF(cid:3) This is a Monte(cid:2)Carlo method in which the PDF is represented by a large set of particles distributed in the physical space(cid:3) This space is divided into a number of cells in order to estimate the mean (cid:9)elds such as the mean velocity as a function of position(cid:3) Such a method has been implemented in the PDF(cid:19)DV code (cid:15)(cid:20)(cid:17) which is a Fortran code to calculate the properties of statistically two(cid:2)dimensional (cid:13)plane or axi(cid:2)symmetric(cid:14) turbulent reactive (cid:10)ows using the joint velocity(cid:2)frequency(cid:2)composition PDF model(cid:3) Inthepresentwork(cid:8) numerical errors(cid:8) inparticularbias(cid:8) inPDF(cid:19)DVareinvestigated(cid:3) ThenumericalaccuracyandconvergenceofPDFmethodshavebeendiscussed byPope(cid:15)(cid:21)(cid:17) andWeltonet(cid:3)al(cid:3) (cid:15)(cid:4)(cid:17)(cid:3) Usually(cid:8)weakconvergence(cid:8) i(cid:3)e(cid:3)(cid:8)theconvergence ofexpectationsinstead of the PDF(cid:8) is sought for PDF methods(cid:3) Four di(cid:12)erent types of numerical errors have been identi(cid:9)ed by considering estimating a mean quantity(cid:22) statistical error(cid:8) spatial discretization error(cid:8) temporal discretization error and bias(cid:3) The convergence of numerical solutions to the modeledequations(cid:8) whicharestochasticdi(cid:12)erential equations(cid:13)SDE(cid:14)(cid:8)requiresthatnumerical errors vanish as the particle number per cell N tends to in(cid:9)nity(cid:8) and as the time step (cid:23)t and (cid:0)(cid:0)(cid:2) grid size h approach to zero(cid:3) It has been shown that statistical error (cid:13)SE(cid:14) scales as (cid:7)(cid:2)N (cid:15)(cid:21)(cid:17)(cid:3) It is reasonable to postulate that temporal error and spatial error(cid:8) behave as that in (cid:9)nite di(cid:12)erence method(cid:8) i(cid:3)e(cid:3)(cid:8) both vanish as (cid:23)t and h tend to zero for (cid:9)xed N(cid:3) However(cid:8) in early experiences with the PDF(cid:19)DV code it has been observed that there appeared to be relatively large bias(cid:3) The bias is the deterministic error resulting from using a (cid:9)nite number of particles(cid:3) Its features in the PDF methods are not very clear yet(cid:3) This study is devoted to understanding the behavior and the sources of bias in PDF(cid:19)DV(cid:8) which will provide one of the guidelines for improving the accuracy of the code(cid:3) The description of bias in PDF(cid:19)DV is presented in the next section(cid:8) and then the strate(cid:2) gies for pinpointing the sources of bias is described in the following section(cid:3) Two test cases are used to search for the sources of bias(cid:22) stationary homogeneous turbulence and Couette (cid:10)ow(cid:3) Results for these cases are discussed(cid:3) Conclusions are drawn in the (cid:9)nal section(cid:3) (cid:19) DESCRIPTION OF BIAS IN PDF(cid:2)DV Before presenting the behavior of bias in PDF(cid:19)DV(cid:8) the model equations and some numerical techniques are introduced(cid:3) A Lagrangian approach is taken both in the modeling and in the numerical methodwhich isaMonte(cid:2)Carloparticle(cid:2)meshmethod(cid:3) The(cid:10)uid(cid:2)particlepossesses (cid:3) (cid:3) properties(cid:22) velocity u (cid:13)t(cid:14) and turbulence relaxation rate (cid:13)turbulence frequency(cid:14) (cid:3) (cid:13)t(cid:14) (cid:3) (cid:0) These properties are then modelled by the corresponding stochastic processes u (cid:13)t(cid:14) and (cid:0) (cid:3) (cid:13)t(cid:14) based on the idea of the stochastic Lagrangian modeling approach (cid:15)(cid:5)(cid:17)(cid:3) (cid:13)If combustion (cid:0) is considered(cid:8) the stochastic models for scalar (cid:9)elds are needed(cid:3)(cid:14) In PDF(cid:19)DV(cid:8) u (cid:13)t(cid:14) evolves according to the simpli(cid:9)ed Langevin equation (cid:13)SLM(cid:8) (cid:15)(cid:5)(cid:17)(cid:14) (cid:0) (cid:7) (cid:26) (cid:0) (cid:0)(cid:0)(cid:2) du (cid:13)t(cid:14) (cid:24) (cid:0)rhpidt(cid:0) (cid:25) C(cid:4) (cid:27)(cid:13)u (cid:13)t(cid:14)(cid:0)hUi(cid:14)dt(cid:25)(cid:13)C(cid:4)k(cid:27)(cid:14) dW(cid:4) (cid:13)(cid:7)(cid:14) (cid:19) (cid:16) (cid:0) (cid:2) (cid:0) where W is Wiener process(cid:8) (cid:3) (cid:13)t(cid:14) is solved by the Ito stochastic di(cid:12)erential equation (cid:15)(cid:19)(cid:17) (cid:0) (cid:0) (cid:0) (cid:2) (cid:0) (cid:0)(cid:0)(cid:2) d(cid:3) (cid:24) (cid:0)C(cid:5)(cid:13)(cid:3) (cid:0)h(cid:3)i(cid:14)(cid:27)dt(cid:0)h(cid:3)i(cid:3) S(cid:2)dt(cid:25) (cid:19)C(cid:5)(cid:5) (cid:27)(cid:3) h(cid:3)i dW(cid:6) (cid:13)(cid:19)(cid:14) (cid:3) (cid:4) The non(cid:2)dimensional source term S(cid:2) is de(cid:9)ned as(cid:22) (cid:2) S(cid:2) (cid:24) C(cid:2) (cid:0)C(cid:0)SijSij(cid:2)h(cid:3)i (cid:4) (cid:13)(cid:26)(cid:14) where Sij is the mean rate of strain(cid:3) For all other terms(cid:8) model constants and the de(cid:9)nition for conditional mean of turbulence frequency (cid:27) in (cid:13)(cid:7)(cid:14) and (cid:13)(cid:19)(cid:14)(cid:8) refer to (cid:15)(cid:19)(cid:17) (cid:15)(cid:5)(cid:17)(cid:3) In PDF(cid:19)DV(cid:8) the expectation of a random variable(cid:8) e(cid:3)g(cid:3) hUi(cid:8) is approximated by an ensemble mean estimated by the cloud(cid:2)in(cid:2)cell method(cid:3) Because the number of samples(cid:8) i(cid:3)e(cid:3)(cid:8) the number of particles per cell N is (cid:9)nite(cid:8) the ensemble mean itself is a random variable(cid:3) Of course(cid:8) it also depends on time step (cid:23)t and grid size h(cid:3) Several numerical techniques(cid:8) e(cid:3)g(cid:3)(cid:8) variance reduction (cid:13)VR(cid:14) and time averaging (cid:13)TAV(cid:14)(cid:8) are adopted to reduce the statistical (cid:10)uctuations in the mean (cid:9)elds (cid:15)(cid:20)(cid:17)(cid:3) The bias BQ of a statistics hQi(cid:8) e(cid:3)g(cid:3) hUi(cid:8) is the deterministic error caused by N being (cid:9)nite(cid:3) Using hQiN(cid:3)(cid:6)t(cid:3)h to represent the ensemble(cid:2)average of Q calculated by (cid:9)nite N(cid:8) (cid:23)t and h(cid:8) BQ can be written as(cid:8) BQ (cid:24) hhQiN(cid:3)(cid:6)t(cid:3)hi(cid:0)hQi(cid:2)(cid:3)(cid:6)t(cid:3)h(cid:6) (cid:13)(cid:16)(cid:14) (cid:26) 1.00 1.30 (a) (b) 0.95 1.25 T T 〉N 〉N 〉U ω〉 〈〈 〈〈 0.90 1.20 0.85 1.15 0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010 1/N 1/N Figure (cid:7)(cid:22) Time(cid:2)averaged mean values vs(cid:3) N in Couette (cid:10)ow(cid:22) (cid:13)a(cid:14) Mean Velocity(cid:28) (cid:13)b(cid:14) Mean h(cid:3)i(cid:3) Grids in y direction Ng (cid:24) (cid:19)(cid:7)(cid:8) both VR and TAV are o(cid:12)(cid:8) y(cid:2)H (cid:24) (cid:6)(cid:6)(cid:6)(cid:26)(cid:26)(cid:3) (cid:3)(cid:0) A simple analysis by Pope (cid:15)(cid:21)(cid:17) suggests that bias BQ scales as N (cid:8) so BQ can be expressed as(cid:22) b BQ (cid:24) (cid:4) (cid:13)(cid:18)(cid:14) N where b may be a function of other factors a(cid:12)ecting bias(cid:8) e(cid:3)g(cid:3)(cid:8) grid size and other numerical techniques in the code(cid:3) As an example(cid:8) Couette (cid:10)ow (cid:13)for (cid:10)ow descriptions refer to appendix A(cid:14) is calculated using PDF(cid:19)DV(cid:3) With the same grid size(cid:8) time step and numerical techniques(cid:8) the time averages hhUiNiT and hh(cid:3)iNiT of one point(cid:8) which are equivalent with the ensemble mean of hUiN and h(cid:3)iN respectively according to the ergodic assumption(cid:8) are shown in Figure (cid:7) as a function of the number of particles per cell(cid:3) Since temporal error and spatial error are independent of particle number(cid:8) the linear relationship in the (cid:9)gure implies that bias scales as (cid:13)(cid:18)(cid:14)(cid:3) This behavior of bias is common in PDF(cid:19)DV(cid:3) The scale of bias as (cid:13)(cid:18)(cid:14) ensures that bias approaches zero as N goes to in(cid:9)nity and thus leads to convergence of the scheme with respect to particle number per cell(cid:3) On the other hand(cid:8) the slopes of the lines in Figure (cid:7) provide the value of b in (cid:13)(cid:18)(cid:14) which determines the magnitude of bias(cid:3) For speci(cid:9)c (cid:23)t and h (cid:13)and for all other aspects of the (cid:16) 102 102 (a) (b) 〉U 101 ω〉 101 b〈 b〈 100 100 10-2 10-1 10-2 10-1 1/Ng 1/Ng Figure (cid:19)(cid:22) Bias vs(cid:3) grid size in Couette (cid:10)ow(cid:22) (cid:13)a(cid:14) Mean Velocity(cid:8) the slope is (cid:0)(cid:6)(cid:6)(cid:18)(cid:18)(cid:28) (cid:13)b(cid:14) Mean h(cid:3)i(cid:8) the slope is (cid:0)(cid:6)(cid:6)(cid:20)(cid:6)(cid:3) Both VR and TAV are o(cid:12)(cid:8) y(cid:2)H (cid:24) (cid:6)(cid:6)(cid:6)(cid:26)(cid:26)(cid:3) numerical method (cid:9)xed(cid:14)(cid:8) we have (cid:7) (cid:7) hQiN(cid:0)(cid:3)(cid:6)t(cid:3)h(cid:0)hQiN(cid:2)(cid:3)(cid:6)t(cid:3)h (cid:24) BQN(cid:0) (cid:0)BQN(cid:2) (cid:24) b (cid:0) (cid:4) (cid:13)(cid:21)(cid:14) N(cid:0) N(cid:2) (cid:0) (cid:2) A formula for b is thus obtained N(cid:2)N(cid:0) b(cid:13)(cid:23)t(cid:4)h(cid:14) (cid:24) (cid:13)hQiN(cid:0)(cid:3)(cid:6)t(cid:3)h (cid:0)hQiN(cid:2)(cid:3)(cid:6)t(cid:3)h(cid:14)(cid:6) (cid:13)(cid:5)(cid:14) N(cid:2) (cid:0)N(cid:0) Consequently(cid:8) using two di(cid:12)erent particle numbers per cell(cid:8) b and BQ can be calculated for a speci(cid:9)c grid size(cid:3) By (cid:9)xing the time step and the numerical techniques(cid:8) b for di(cid:12)erent grid sizes in Couette (cid:10)ow is obtained by (cid:13)(cid:5)(cid:14) and is plotted against (cid:7)(cid:2)Ng in Figure (cid:19)(cid:8) where Ng is the number of cells or grids in the domain(cid:3) Since nonuniform grids are used in this calculation(cid:8) (cid:7)(cid:2)Ng is used here to represent the averaged grid size(cid:3) Figure (cid:19) shows that b increases with grid size(cid:3) This behavior is observed in homogeneous stationary turbulence (cid:13)described in appendix A(cid:14) as well(cid:3) In this case(cid:8) bias is the deviation of turbulence energy and turbulence frequency from the stationary solutions(cid:3) As shown in Figure (cid:26)(cid:8) increasing the number of cells results in larger bias(cid:3) The fact that the bias increases with grid size is of great concern to PDF(cid:19)DV(cid:3) If b explodes faster with grid size than the convergence of bias due to increasing N(cid:8) bias will not (cid:18) 1.50 0.02 (a) (b) 1.40 k 1.30 ω〉 as of 〈s of 0.01 Bi 1.20 Bia 1.10 1.00 0.00 0 2 4 6 0 2 4 6 Δy Δy Figure (cid:26)(cid:22) Bias vs(cid:3) grid size in Homogeneous Stationary Turbulence(cid:22) (cid:13)a(cid:14) Turbulence Energy k(cid:28) (cid:13)b(cid:14) Mean h(cid:3)i(cid:3) Time step (cid:23)t (cid:24) (cid:6)(cid:6)(cid:7)s(cid:8) for (cid:16)(cid:6)(cid:6)(cid:6) steps(cid:3) vanish as h approaches zero and N goes to in(cid:9)nity(cid:3) In the view of numerical computations(cid:8) to minimize the total numerical error(cid:8) one might want to increase Ng to reduce the spatial discretization error(cid:8) which unfortunately causes larger bias(cid:3) Therefore(cid:8) N must increase as Ng increases in order to prevent the bias from exploding and to get the total error converged(cid:8) which thus leads to unacceptably high computational cost(cid:3) STRATEGIES FOR EXPLORING BIAS Theoretically(cid:8) the statistical (cid:10)uctuations in the coe(cid:11)cients of thestochastic di(cid:12)erential equa(cid:2) tions(cid:8) e(cid:3)g(cid:3)(cid:8) the Langevin equation(cid:8) are the major sources of bias(cid:3) The numerical solutions to (cid:13)(cid:7)(cid:14) and (cid:13)(cid:19)(cid:14) are essentially di(cid:12)erent from the following standard problem(cid:22) given coe(cid:11)cients a(cid:13)x(cid:4)t(cid:14) and b(cid:13)x(cid:4)t(cid:14)(cid:8) an initial condition X(cid:13)(cid:6)(cid:14) (cid:24) x(cid:4)(cid:8) and a stopping time T (cid:7) (cid:6)(cid:8) integrate the stochastic di(cid:12)erential equation dX(cid:13)t(cid:14) (cid:24) a(cid:13)X(cid:13)t(cid:14)(cid:4)t(cid:14)dt(cid:25)b(cid:13)X(cid:13)t(cid:14)(cid:4)t(cid:14)dW(cid:13)t(cid:14)(cid:4) (cid:13)(cid:20)(cid:14) which has been well studied (cid:15)(cid:26)(cid:17)(cid:3) This is because in (cid:13)(cid:7)(cid:14) and (cid:13)(cid:19)(cid:14)(cid:8) the coe(cid:11)cients depend on the mean of a function of the process(cid:8) e(cid:3)g(cid:3)(cid:8) hUi(cid:8) which needs to be estimated in numerical (cid:21) Sources of Bias Fixed 〈U〉 〈ω〉 k Randomness of Mean Fields SDE’s: Coefficients Numerical Techniques Fixed Fixed Fixed Fixed 〈U〉 〈ω〉 〈U〉 〈U〉 〈ω〉 k Vel. Cor. Drift Term Sω Diffusion Terms Estimate VR, TAV Position Cor. 〈U〉 〈ω〉 〈ω〉 〈uu〉 etc, k 2nd Moments Pres. Algo. ... ∂〈U〉 i Fixed ∂x j Grid Size Dependence of Bias Figure (cid:16)(cid:22) Strategies for exploring bias in PDF(cid:19)DV computation and inevitably carries numerical (cid:10)uctuations(cid:3) The mean (cid:9)elds in PDF(cid:19)DV are calculated by cloud(cid:2)in(cid:2)cell method and fed back into the coe(cid:11)cients(cid:3) This feedback causes bias(cid:3) The two questions to be addressed are(cid:22) (cid:7)(cid:3) Which coe(cid:11)cients associated with mean (cid:9)elds yield bias (cid:29) (cid:19)(cid:3) Why does bias increase with (cid:9)ner grids (cid:29) For the PDF(cid:19)DV code(cid:8) all mean (cid:9)elds(cid:8) terms in the SDE(cid:30)s and numerical techniques which may be related to the above two issues are sketched in Figure (cid:16)(cid:3) If(cid:8) instead(cid:8) the coe(cid:11)cients were non(cid:2)random(cid:8) independent of particle properties(cid:8) the computed particle properties at any time would be independent(cid:8) identically distributed(cid:8) (cid:5) and independent of N(cid:3) It follows then there would be no bias(cid:3) Therefore(cid:8) if the estimate of mean (cid:9)eld is replaced by a non(cid:2)random input (cid:13)say (cid:9)xed or frozen hUi(cid:14)(cid:8) there is no correspondingstatistical(cid:10)uctuationinthatmean(cid:9)eldandrelatedtermsinthe SDE(cid:30)ssothat the contribution of statistical errors in the mean (cid:9)eld to bias will be prevented(cid:3) According to this Frozen Coe(cid:2)cient approach(cid:8) a mean (cid:9)eld or a term in the SDE(cid:30)s is justi(cid:9)ed as a source of bias if freezing it results in no bias(cid:3) The things to be tested(cid:8) which are possibly the sources of bias(cid:8) and associated methods(cid:8) are also shown in Figure (cid:16)(cid:3) NUMERICAL TESTS AND RESULTS The approach of Frozen Coe(cid:2)cient is accomplished step by step through numerical tests(cid:3) Because the (cid:10)uctuations in the mean (cid:9)elds are suspected to be the major sources of bias(cid:8) (cid:9)rst of all the calculations are made by (cid:9)xing mean (cid:9)elds in all coe(cid:11)cients of the SDE(cid:30)s to check the behavior of bias(cid:3) If it disappears(cid:8) then we can conclude that bias arises entirely from the (cid:10)uctuations in the coe(cid:11)cients and no more calculations are needed to search for other sources of bias due to the numerical techniques(cid:3) Several cases are calculated and compared to the base case(cid:28) namely(cid:8) the result from the original code without VR and TAV(cid:3) The conditions for di(cid:12)erent cases are presented in Table I(cid:3) (cid:0) Sources of Bias(cid:2) General Views Inthecalculationofcase (cid:7)(cid:8)itis nottheestimatesfromcloud(cid:2)in(cid:2)cellmethodthatareusedbut constant values for mean (cid:9)elds(cid:3) No bias is expected if bias is only related to the statistical (cid:10)uctuations in the mean (cid:9)elds(cid:3) The result compared to the base case (cid:13)case (cid:6)(cid:14) is shown in Table I(cid:3) Obviously(cid:8) bias of velocity and h(cid:3)i are much smaller than case (cid:6) and almost zero after (cid:9)xing mean (cid:9)elds globally(cid:3) Therefore bias of these two variables is because of the (cid:10)uctuations in the estimates of mean (cid:9)elds(cid:3) However(cid:8) because the ensemble mean of velocity is used to estimate second moments(cid:8) bias of turbulent energy is increased instead(cid:8) which implies that the (cid:10)uctuations in the (cid:9)rst moments are the source of bias for the second moments(cid:3) This will be discussed further in other cases(cid:3) (cid:20) (cid:3) Source of Bias for Velocity Fixing Mean Fields for Coe(cid:2)cients in Eq(cid:3)(cid:4)(cid:5)(cid:6) To clarify further that bias of velocity comes from Eq(cid:3)(cid:13)(cid:7)(cid:14)(cid:8) case (cid:19) is calculated by (cid:9)xing all mean (cid:9)elds in this equation(cid:3) As in Table I(cid:8) this case shows that the bias of the mean velocity is in the same order as case (cid:7)(cid:8) which indicates that the bias of velocity is due to the (cid:10)uctuations in the mean (cid:9)elds fed back into the coe(cid:11)cients of Eq(cid:3)(cid:13)(cid:7)(cid:14)(cid:3) This is consistent with the analysis in the previous section(cid:3) To distinguish the in(cid:10)uence on bias of drift term from di(cid:12)usion term in Eq(cid:3)(cid:13)(cid:7)(cid:14)(cid:8) the following cases are designed(cid:3) Fixing Mean Velocity for Drift Term The mean velocity is a critical variable in Eq(cid:3)(cid:13)(cid:7)(cid:14) because the particle velocity is forced to relax to it(cid:8) and the particle velocity(cid:8) in turn(cid:8) is used to estimate the mean velocity(cid:3) This means that there must be a very strong interaction between them(cid:3) As shown in Table I (cid:13)case (cid:26)(cid:14)(cid:8) the bias of velocity resulting from (cid:9)xing the mean velocity for the drift term in Eq(cid:3)(cid:13)(cid:7)(cid:14) is very small(cid:3) Hence(cid:8) the (cid:10)uctuation in mean velocity is a major source for bias of velocity(cid:3) One more interesting observation is that the bias of h(cid:3)i becomes very small in this case as well(cid:3) It seems that the behavior of the bias of h(cid:3)i is dominated by the mean velocity although Eq(cid:3)(cid:13)(cid:19)(cid:14) is the same in the form as Eq(cid:3)(cid:13)(cid:7)(cid:14)(cid:3) This will be further discussed later(cid:3) It may be noticed that in case (cid:26) there is a huge bias of k(cid:3) However(cid:8) this phenomenon should not be paid too much attention(cid:3) When the drift term is frozen while the di(cid:12)usion (cid:5) (cid:0) term is not(cid:8) in the equation for k derived from Eq(cid:3)(cid:13)(cid:7)(cid:14)(cid:8) (cid:0)(cid:7)C(cid:4)(cid:27)(cid:13)u (cid:0)hUi(cid:14)dt in the drift term will not still balance with the di(cid:12)usion term(cid:8) which may cause a large bias of k(cid:3) Fixing (cid:27) and k In order to determine the e(cid:12)ect of (cid:10)uctuations in the di(cid:12)usion coe(cid:11)cients(cid:8) a calculation was attempted in which (cid:27) and k were (cid:9)xed only in the di(cid:12)usion term in Eq(cid:3)(cid:13)(cid:7)(cid:14)(cid:3) It turns out that the solution is not stable(cid:3) The explanation could be that di(cid:12)erent values of (cid:27) in the drift and di(cid:12)usion terms give rise to an instability of numerical solutions to the equation(cid:3) This case is then modi(cid:9)ed to let (cid:27) take (cid:9)xed values both for the drift term and the di(cid:12)usion term

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.