ETH Library Liposome-mediated delivery of vincristine to rhabdomyosarcoma Doctoral Thesis Author(s): Roveri, Maurizio Publication date: 2017 Permanent link: https://doi.org/10.3929/ethz-a-010871360 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 24189 Liposome-mediated delivery of vincristine to rhabdomyosarcoma A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) Presented by Maurizio Roveri MSc in Pharmaceutical Sciences, ETH Zurich Born on 18.09.1987 Citizen of Lugano, TI, Switzerland Accepted on the recommendation of Prof. Jean-Christophe Leroux, examiner Prof. Stefanie-Dorothea Krämer, co-examiner Prof. Paola Luciani, co-examiner PD Dr. Michele Bernasconi, co-examiner 2017 Le terre emerse Là, dove nidificheranno molti uccelli. Insisti nello scrutare a lungo il mare diffidando del tuo sguardo disabile. No, niente di maestoso, per fortuna. Piuttosto una nuova calma, una diversa geometria della spuma. Si vorrebbe raggiungerle proprio nei giorni peggiori, quando le onde sembrano ghiaccio azzurro, il cielo pesa più grigio, e unico scampo rimane l’improbabile. Se ci sono, se brillano sotto il pelo dell’acqua, inconosciute eppure attese, fuori vista, saranno lastre verdi di sasso, lievemente inclinate. L’emersione si addebita alle forze e alle frizioni che sconvolgono in assenza di ogni altra possibilità. Un lunghissimo periodo di mestizia si può considerare inevitabile. Avranno freddo anche loro, intirizzite, e forse pioverà, ci sarà il vento. dovremo accoglierle bene, riconoscerle, scostare adagio il buio dai loro brividi, convincerle dolcemente a rimanere. La geografia e tutte le coordinate cambieranno da sole, senza fretta; ci vorrà un po’ di tempo per capire. E poi non devi illuderti: vedremo al massimo l’inizio, la timida colonia dei molluschi, un po’ di bava d’alga bagnata nelle scanalature, la sosta di un gabbiano, un grido roco che sembra senza senso o troppo fragile, eppure si propaga si moltiplica. I fiori, l’erba e le altre cose bellissime verranno forse dopo, ma ci basta. Fabio Pusterla Summary .............................................................................................................. 1 Riassunto .............................................................................................................. 3 Chapter 1 - Background and purpose ............................................................... 5 1.1. Cancer and chemotherapy .............................................................................................. 5 1.2. Cancer in children ........................................................................................................... 7 1.3. Sarcomas and rhabdomyosarcoma ................................................................................. 7 1.4. Proprotein convertases – Furin ....................................................................................... 8 1.5. Cancer nanomedicine ................................................................................................... 10 1.6. Scope of the thesis ........................................................................................................ 15 Chapter 2 - Peptides for tumor-specific drug targeting: state of the art and beyond ................................................................................................................. 17 2.1. Introduction .................................................................................................................. 18 2.2. Screening of peptidic ligands ....................................................................................... 19 2.3. Stability- and exposure-enhancing strategies for peptides ........................................... 22 2.4. Cancer receptors and peptide-decorated NCs for tumor-targeted drug delivery .......... 27 2.5. Summary and future perspectives ................................................................................. 36 Chapter 3 - In vitro characterization of RMS-specific peptides ................... 39 3.1. Introduction .................................................................................................................. 40 3.2. Materials and methods .................................................................................................. 41 3.3. Results and discussion .................................................................................................. 45 3.4. Conclusion .................................................................................................................... 53 Chapter 4 - Formulation of liposomes for the RMS-targeted delivery of VCR .................................................................................................................... 55 4.1. Introduction .................................................................................................................. 56 4.2. Materials and methods .................................................................................................. 57 4.3. Results and discussion .................................................................................................. 63 4.4. Conclusion .................................................................................................................... 75 Chapter 5 - General conclusion and outlook .................................................. 77 Appendix ............................................................................................................ 83 References .......................................................................................................... 91 List of Abbreviations ....................................................................................... 117 Curriculum Vitae ............................................................................................ 121 Scientific contributions ................................................................................... 123 Acknowledgements .......................................................................................... 125 Nano-sized drug carriers (NCs) hold the potential to increase antitumor efficacy of chemotherapeutics and to decrease their side effects. This is in part due to the presence of fenestrations in the new angiogenic tumor blood vessels, which allow extravasation of the NCs. Additionally, one approach to improve NCs’ cellular uptake is the use of ligands on their surface that recognize specific receptors over-expressed on the surface of tumor cells or tumor endothelial cells. Ligand-decorated NCs recognize and bind target cells through ligand-receptor interactions, and are subsequently internalized into cells where the drug is released. Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, is currently treated with a combination of cytotoxic agents (i.e., vincristine (VCR), actinomycin D and cyclophosphamide) followed by radiotherapy or surgery. However, because of the rapid clearance of VCR and its consequent low accumulation in tumors, as well as the long-term side- effects caused by chemo- and radiotherapy (e.g., hearing loss and secondary malignancies), novel approaches are required to improve current RMS treatment options. RMS-P3 is a cyclic peptide which was previously selected by phage display for its specificity towards RMS cells, and has been proposed as a mechanism for targeting furin, a proprotein convertase (PC), consistently expressed in RMS. In this context, the goal of this Ph.D. thesis was to explore the possible advantage of using a peptide-mediated furin targeting system for improved VCR delivery. Chapter 1 provides information about the incidence of cancers, with special attention to pediatric tumors and RMS, as well as about the current status of conventional cancer therapies. In Chapter 2, the concept of anticancer nanomedicines is introduced, with focus on peptide- targeted systems. Furthermore, tumor receptors for which targeting peptides have been identified are presented, and their targeting potential is considered. Various chemical modifications of peptides are thoroughly described, and the performance of targeting peptides as well as peptide-functionalized NCs is critically discussed. The limitations of active targeting NCs are evaluated in detail, and an outlook on the potential of tumor-targeting peptides and their clinical applications is provided. Chapter 3 reports the in vitro characterization of RMS-specific peptides. The previously identified peptide was modified to ensure water solubility, and its interaction with furin (i.e., binding affinity and furin activity inhibition) was characterized with the intent to understand if the chosen peptide could be used as an active targeting system for RMS. The modification did not affect the 1 Summary interaction with furin and made the peptide hydrosoluble at the tested concentrations. Studies with PEGylated peptides proved that the presence of poly(ethylene glycol) (PEG) did not affect the interaction with furin. The localization of furin on the surface of RMS cells under normoxic and hypoxic conditions was investigated to evaluate the function of furin as a RMS target protein. No clear relocalization of furin at the cell surface of Rh30 cells was detectable under the tested conditions. Chapter 4 describes the formulation of (targeted) PEGylated sphingomyelin-based liposomes. The uptake of these liposomal formulations was assessed in vitro on RMS cells and was shown to be moderate for the liposomes decorated with the peptide. Furthermore, the model drug VCR was encapsulated in PEGylated liposomes with an efficiency of 90%, either in the presence or absence of the RMS-specific peptide on the surface. The pharmacokinetic and biodistribution profiles of these liposomes were characterized in RMS-bearing mice. Intravenous injection of liposomal VCR in RMS- bearing mice guaranteed a high drug concentration in plasma over 24 h and provided higher drug accumulation in RMS tumors compared to free VCR. The presence of the peptide had no effect on the tumor accumulation. Chapter 5 provides a discussion of the key findings of this doctoral thesis and covers the perspectives of liposome-based RMS targeting. 2 Le nanoparticelle per il trasporto di farmaci hanno la capacità di aumentare l’efficacia delle molecole chemoterapeutiche e di diminuire i loro effetti secondari. Ciò è dovuto all’irregolare architettura dei vasi sanguigni tumorali che presentano un endotelio discontinuo che permette l’extravasazione dei nanovettori. Un metodo per aumentare ulteriormente la quantità di farmaco nelle cellule tumorali consiste nel decorare le particelle con ligandi che riconoscono recettori sovraespressi unicamente sulla superficie dei tumori o dalle cellule endoteliali tumorali. Di conseguenza, le particelle riconoscono le cellule cancerose, possono essere internalizzate e rilasciare il farmaco che trasportano. Il rabdomiosarcoma (RMS) è il più comune dei sarcomi dei tessuti molli ed è attualmente trattato con una combinazione di agenti citotossici (vincristina (VCR), actinomicina D e ciclofosfamide) seguita da sessioni di radioterapia o rimozione chirurgica. La rapida eliminazione della VCR dal sangue comporta però una bassa concentrazione del farmaco nel tumore. Inoltre, gli effetti secondari causati dalla chemio- e radioterapia (come ad esempio la perdita dell’udito), rendono necessarie nuove e migliori terapie per il RMS. RMS-P3 è un peptide ciclico precedentemente identificato mediante “phage display” e con specificità per le cellule di RMS. Ricerche precedenti hanno identificato la furina, una proproteina convertasi espressa in RMS, come possibile target del peptide. In questo contesto, lo scopo di questa tesi di dottorato era di esplorare i possibili vantaggi dell’utilizzo di peptidi per il riconoscimento specifico della furina e di generare un sistema per migliorare il trasporto della VCR al tumore. Il Capitolo 1 fornisce informazioni sull’incidenza dei tumori, con una particolare attenzione ai tumori pediatrici e all’RMS. Lo stato attuale delle terapie antitumorali convenzionali è descritto. Nel Capitolo 2 vengono introdotti il concetto di nanomedicina e i modelli di target peptidici. Vengono quindi descritti i ricettori tumorali per i quali sono stati identificati specifici peptidi e il loro potenziale come target per terapie viene brevemente discusso. Segue una descrizione approfondita di diverse modifiche chimiche per peptidi e un’analisi critica dei nanovettori funzionalizzati con peptidi specifici per ricettori tumorali. I limiti del targeting attivo sono illustrati in dettaglio e, infine, le prospettive dei peptidi specifici per tumori e le loro applicazioni cliniche sono riportati. Il Capitolo 3 spiega le caratterizzazioni in vitro dei peptidi specifici per il RMS. Il peptide identificato in uno studio precedente è stato modificato per garantirne la solubilità acquosa e le sue interazioni con la furina (affinità di legame e inibizione dell’attività di furina) sono state caratterizzate 3
Description: