ebook img

dspace cover page PDF

223 Pages·2015·6.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview dspace cover page

ETH Library Multiscale Plasmonics for Energy and Environment Doctoral Thesis Author(s): Altun, Ali Ö. Publication date: 2015 Permanent link: https://doi.org/10.3929/ethz-a-010553970 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Multiscale Plasmonics for Energy and Environment A dissertation submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH Dissertation number: 23026 presented by ALI ÖZHAN ALTUN M. Sc. Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon Born on May 5th 1981, citizen of Turkey accepted on the recommendation of Prof. Dr. Hyung Gyu Park, examiner Prof. Dr. David J. Norris, co-examiner Dr. Tiziana C. Bond, co-examiner Zurich, 2015 Copyright © Ali Özhan Altun, Zurich 2015 i Acknowledgements First of all, I would like to thank Prof. Dr. Hyung Gyu Park for giving me the opportunity to work under his supervision, I really appreciate the free research environment he provided in his group. I am also grateful to him for his constant support, encouragement and many life lessons he taught to me. I would like to express my sincere gratitude to Dr. Tiziana Bond for her warm hosting, enlightening suggestions and guidance during my two-years-long stay in Lawrence Livermore National Laboratory (LLNL). I would like to extend my gratitude to: Dr. Emanuela Felley-Bosco, for her collaboration in preparation of microRNA solutions as well as the qPCR detection. Dr. Wouter Pronk for his comments and discussions on micropollutant detection. Dr. Seul Ki Youn and Ning Yang for their support in CNT growth. And the experienced personnel of the cleanroom in BRNC as well as LLNL for their valuable support in realizing the experiments. Furthermore, my sincere thanks to the past and present members of NETS group, Jakob Buchheim, Amir Droudian, Mengmeng Deng, Roman Wyss, Meng Li, Lokesh Mahesh, Karl- Philipp Schlichting, Dr. Kemal Celebi, Dr. Jeongwon Choi, Eunjeong Gross, Ji Hyun Lee for their helpful comments, helps as well as the positive working environment that they provided. Without the patience and the support of my wife and our families, probably I would not have been able to complete this thesis. Thank you very much. I love you all. iii Abstract Plasmonics is one of the cutting-edge fields of science to which nanotechnology has been making an evident contribution. Discovery of an interaction of collective oscillations of electrons on a metal surface with electromagnetic radiation has opened up new perspectives in a variety of areas where the outcome of the interaction, such as electromagnetic field enhancement, acts importantly. Two representative fields which benefit from strong field enhancement are surface enhanced Raman spectroscopy (SERS) and broadband light absorption. The light absorption and the SERS enhancement are correlated in theory with the second and fourth powers of the electric-field enhancement, respectively. Therefore, a plasmonic platform that could embody strong field enhancements has been of great demand in both areas. The field of plasmonics has seen a fascinating progress in the last two decades. The advent of nanomanufacturing technologies as well as the development of strong computational techniques has enabled the engineering of complex plasmonic architectures. Numerous studies have unveiled the mechanism of surface- plasmon mediated field enhancement and the effects of geometry, material and dielectric environment. In spite of the level of physical understanding, active commercialization of the plasmonic substrates has not been realized. The challenges lie in the fabrication of low-cost and high-performance substrates. The main goal of this Ph.D. thesis is to design and manufacture such plasmonic substrates to bring the field closer to real-world applications. Our main strategy to accomplish this task is to avoid expensive nanolithographic techniques. Therefore, we would not design a structure composed of a periodic array of a well-defined nanometer-scale geometry. Conversely, we make use of the random geometries. Randomness in plasmonic structure does not only reduce the cost, but also broadens the resonance bandwidth effectively. Obviously, the broadband resonance is necessary for the light absorption purposes. SERS also benefits from the broad resonance bandwidth because it can effectively enhance both incident and scattered fields. It should be noted that the broadband absorption phenomenon can stem from several factors. Overlapping multiple resonances can lead to a broad, single resonance peak. Similarly, non- resonant coupling of light to geometric singularities does not depend significantly on the excitation frequency. Regardless of the mechanism, we name such substrates showing the broadband light interaction as non-resonant. For either of the applications, we design and fabricate non-resonant substrates. In this thesis, femtomolar sensitivity is demonstrated using a non-resonant SERS substrate. The SERS substrate is a composite structure built at the top of a forest of vertically aligned carbon nanotubes (VA-CNT) by coating individual CNTs with a few-nm- thick dielectric material conformally and then depositing a few nanometers of metal at the canopy of the forest. The resultant useful structure is a canopy of densely intertwined nanowires (NW). The intermediate dielectric layer has a critical role in accomplishing great chemical-detection sensitivity because it helps eliminate possible surface plasmon quenching by CNTs. It is this sensitive SERS substrate that allows potential sensor applications of SERS in two areas: environmental monitoring and biodetection. Using the substrate out of concentric metal-dielectric-CNT nanowires, we detect characteristic micropollutants found in freshwater resources: e.g., Ibuprofen (Ibu) and Benzotriazole (BTAH). The femtomolar detection sensitivity is once again demonstrated for BTAH having a strong affinity to the NW metal surface. We can also achieve picomolar detection of the weakly binding Ibu if adopting a proper surface-functionalization v technique. We draw a relation of the binding-energy-dependent surface adsorption of molecules with concentration-dependent SERS signal. In addition, the multiplex detection capability of SERS is discussed. The second application of our SERS substrate is the biological detection. We can detect microRNAs as low as subfemtomolar in concentration. This biodetection part of the SERS performance investigation begins with comparing synthetic microRNA with ones extracted from a human blood sample. The selectivity of SERS on three different solutions comprising distinct blends of microRNAs is then determined. We show that both SERS and the state-of-the-art RT-qPCR methods achieve similar sensitivities. Immediacy in biodetection is a key feature of SERS, which bears great potential in clinic applications. Following, we provide a mechanistic understanding of field enhancement of our SERS substrate based on a simplified model: a NW dimer. By use of the finite element method, we find out multiple resonant and non-resonant enhancement modes that our SERS substrate poses. Enormous field enhancement can take place for “kissing nanowire” configurations in which one of the NWs is obliquely oriented against a horizontal one. For the broadband light absorption, we design a novel architecture that places a nanoporous-spacer in between random islands of plasmonic absorber atop a perfect reflector. The nanoporous spacer is formed by using a block copolymer (BCP) self-assembly technique. Here again, based on the mechanistic understanding and prediction, the tunability and angular dependence of an absorption spectrum is verified experimentally. Finally, we demonstrate the nanoporous polymer film coated on a flat metal surface. This porosity design is achieved by use of energetic ion beams through pores of a BCP etch mask. By producing an ultradense array (50 nm in pitch) of metallic nanopores over a 10-cm-diameter wafer via simple minimization of the roughness of the underlying metal thin film, this technique embodies the concept of manufacturing over many length scales. Zusammenfassung Plasmonik ist eines der cutting-edge Forschungsgebiete zu dem Nanotechnologie spürbare Beiträge geleistet hat. Die Entdeckung der Interaktion zwischen kollektiver Oszillation von Elektronen auf einer Metalloberfläche und elektromagnetischer Strahlung hat neue Möglichkeiten in einer Vielzahl von Gebieten, in denen der Einfluss dieser Interaktion, wie zum Beispiel elektromagnetische Feldverstärkung, von Bedeutung ist, eröffnet. Zwei repräsentative Gebiete, die von dieser starken Feldverstärkung profitieren, sind oberflächenverstärkte Ramanspektroskopie (SERS) und Breitbandlichtabsorption. Die Lichtabsorption und die SERS-Verbesserung sind theoretisch jeweils durch die zweite und vierte Potenz der elektrischen Feldverstärkung miteinander korreliert. Daher war eine plasmonische Basis, welche starke Feldverstärkung bereitstellen kann, in beiden Gebieten besonders nachgefragt. Das Gebiet der Plasmonik durchlief faszinierenden Fortschritt in den letzten zwei Jahrzehnten. Der Beginn von sowohl Nanofabrikationstechnologien als auch die Entwicklung von starken rechnergestützen Techniken ermöglichten die Entwicklung von komplexen plasmonischen Strukturen. Verschiedene Studien haben den Mechanismus der Feldverstärkung durch Oberflächenplasmonen und die Einflüsse von Geometrie, Material, und dielektrischer Umgebung enthüllt. Trotz dem Niveau des physikalischen Verständnisses ist es noch nicht gelungen plasmonische Substrate zu kommerzialisieren. Die Herausforderungen liegen bei der Herstellung preisgünstiger und leistungsfähiger Substrate. Das Ziel dieser Dissertation ist es solche plasmonischen Substrate zu entwickeln und zu fertigen, vii um dieses Forschungsgebiet näher in Richtung kommerzieller Anwendungen zu führen. Die Hauptstrategie um diese Aufgabe zu erfüllen ist es teure Nanolithographietechnik zu vermeiden. Daher wird keine periodische Struktur mit genau definierter, nanometergrosser Geometrie entwickelt. Stattdessen werden zufällig entstehende Geometrien strategisch genutzt. Zufälligkeit in plasmonischen Strukturen verringert nicht nur die Kosten, es verbreitet die Resonanzbandbreite auch effektiv. Dieses verbreiterte Resonanzband ist offensichtlich notwendig für Breitbandlichtabsorption. SERS profitiert ebenfalls von einem verbreiterten Resonanzband, weil es sowohl das eintreffende als auch das gestreute Feld effektiv verstärken kann. Das Phänomen der Breitbandabsorption kann von verschiedenen Faktoren herrühren. Überlappen von verschiedenen Resonanzfrequenzen kann zu einem breiten, einzelnen Resonanzmaximum führen. Ebenso hängt nichtresonante Lichtkopplung an geometrischen Singularitäten nur schwach von der Anregungsfrequenz ab. Wir entwickeln und fertigen nichtresonante Substrate für beide Anwendungen. In dieser Dissertation wird femtomolare Sensitivität durch ein nichtresonantes SERS-Substrat demonstriert. Das SERS- Substrat ist eine Verbundstruktur, welche auf der Oberfläche eines Waldes aus vertikal ausgerichteten Kohlenstoffnanoröhrchen (VA-CNT) hergestellt wird indem das Baumkronendach der individuellen Kohlenstffnanoröhrchen konform mit einer weniger Nanometer dicken Schicht dielektrischen Materials und anschliessend einer wenigen Nanometer dicken Schicht Metall beschichtet wird. Die daraus entstehende nützliche Struktur ist ein Baumkronendach aus eng verwobenen Nanodrähten (NW). Die zwischengelagerte dielektrische Schicht ist besonders wichtig um hohe chemische Detektionssensitivität zu erreichen, da sie hilft mögliche Oberflachenplasmonenlöschung durch die CNTs zu

Description:
Mengmeng Deng, Roman Wyss, Meng Li, Lokesh Mahesh, Karl-. Philipp Schlichting and application of plasmonic substrates for SERS and broadband absorption. Stefan, A. M., Plasmonics: Fundamentals and. Applications.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.