SS symmetry Article DSmT Decision-Making Algorithms for Finding Grasping Configurations of Robot Dexterous Hands Ionel-AlexandruGal,DanutBucurandLuigeVladareanu* InstituteofSolidMechanicsoftheRomanianAcademy,010141BucharestS1,Romania; [email protected](I.-A.G.);[email protected](D.B.) * Correspondence:[email protected];Tel.:+40-744-756-005 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:14May2018;Accepted:29May2018;Published:1June2018 Abstract: Inthispaper,wepresentadecidingtechniqueforroboticdexteroushandconfigurations. This algorithm can be used to decide on how to configure a robotic hand so it can grasp objects indifferentscenarios. Receivingasinput, severalsensorsignalsthatprovideinformationonthe object’sshape,theDSmTdecision-makingalgorithmpassestheinformationthroughseveralsteps beforedecidingwhathandconfigurationshouldbeusedforacertainobjectandtask. Theproposed decision-makingmethodforrealtimecontrolwilldecreasethefeedbacktimebetweenthecommand andgraspedobject,andcanbesuccessfullyappliedonrobotdexteroushands. Forthis,wehave used the Dezert–Smarandache theory which can provide information even on contradictory or uncertainsystems. Keywords: neutrosophy; DSmT; decision-making algorithms; robotic dexterous hands; grasping configurations;grasptype 1. Introduction The purpose of autonomous robotics is to build systems that can fulfill all kinds of tasks without human intervention, in different environments which were not specially build for robot interaction. Amajorchallengeforthisautonomousroboticsfieldcomesfromhighuncertaintywithin real environments. This is because the robot designer cannot know all the details regarding the environment. Mostoftheenvironmentparametersareunknown,thepositionofhumansandobjects cannotbepreviouslyanticipatedandthemotionpathmightbeblocked. Besidethese,theaccumulated sensorinformationcanbeuncertainanderrorprone. Thequalityofthisinformationisinfluencedby noise,visualfieldlimitations,observationconditions,andthecomplexityofinterpretationtechnique. Theartificialintelligenceandtheheuristictechniqueswereusedbymanyscientistsinthefieldof robotcontrol[1]andmotionplanning.Regardinggraspingandobjectmanipulations,themainresearch activitiesweretodesignamechanismforhand[2–4]anddexterousfingermotion[5],whichareahigh complexityresearchtasksincontrollingrobotichands. Currently, in the research area of robotics, there is a desire to develop robotic systems with applications in dynamic and unknown environments, in which human lives would be at risk, likenaturalornucleardisasterareas,andalsoindifferentfieldsofwork,rangingfromhousechores oragriculturetomilitaryapplications. Inanyoftheseresearchareas,theroboticsystemmustfulfill aseriesoftaskswhichimpliesobjectmanipulationandtransportation,orusingequipmentandtools. Fromherearisesthenecessityofdevelopmentgraspingsystems[6]toreproduce,aswellaspossible humanhandmotion[7–9]. Toachieveanaccurategraspingsystem,agrasptaxonomyofthehumanhandwasanalyzedby Feixetal.[10]whofound33differentgrasptypes,sortedbyoppositiontype,virtualfingerassignments; type in terms of power, precision, or intermediate grasp; and the position of the thumb. While Symmetry2018,10,198;doi:10.3390/sym10060198 www.mdpi.com/journal/symmetry Symmetry2018,10,198 2of26 Alvarezetal.[11]researchedhumangraspstrategieswithingrasptypes,Fermulleretal.[12]focused onmanipulationactionforhumanhandondifferentobjecttypesincludinghandpre-configuration. Tsai et al. [13] found that classifying objects into primitive shapes can provide a way to select the best grasping posture, but a general approach can also be used for hand–object geometry fitting[14].Thisclassificationworkswellforgraspingproblemsinconstrainedworkspaceusingvisual datacombinedwithforcesensors[15]andalsoforunder-actuatedgraspingwhichusesrotational stiffness[16]. However,forunknownobjects,scientistsfounddifferentapproachestosolvethehand graspingproblem.Choietal.[17]usedtwodifferentneuralnetworksanddatafusiontoclassifyobjects, Seredynskietal.[18]achievedfastgrasplearningwithprobabilisticmodels,whileSongetal.[19]used atactile-basedblindgraspingalongwithadiscrete-timecontroller. Thesameapproachisusedby Guetal.[20]whichproposedablindhapticexplorationofunknownobjectsforgraspplanningof dexterousrobotichand. Usinggraspingmethods,Yamakawaetal.[21]developedarobotichandfor knotmanipulation,whileNacyetal.[22]usedartificialneuralnetworkalgorithmsforslipprevention andZaidietal.[23]usedamulti-fingeredrobothandtograsp3Ddeformableobjects,applyingthe methodonspheresandcubes. While other scientists developed grasping strategies for different robotic hands [21–23], ananthropomorphicrobotichandhasthepotentialtograspregularobjectsofdifferentshapesand sizes[24,25],butselectingthegraspingmethodforacertainobjectisadifficultproblem. Aseriesof papershaveapproachedthisproblembydevelopingalgorithmsforclassifyingthegraspingbythe contactpoints[26,27].Thesealgorithmsarefocusedonfindingafixnumberofcontactareaswithout takingintoconsiderationthehandgeometry. Othermethodsdevelopedgraspingsystemsforacertain robotic hand architecture, scaling down the problem to finding a grasping method with the tip of thefingers[27]. Thesemethodsareusefulincertainobjectmanipulation,butcannotbeappliedfor a wide range of objects because it does not provide a stable grasping due to the face that it is not used,thefinger’sinteriorsurfaceorthepalmofthehand. Amethodforfilteringthehighnumber ofhandconfigurationsistousepredefinedgraspinghandconfigurations. Beforegraspinganobject, humans,unconsciouslysimplifythegraspingaction,choosingoneofthefewhandpositionswhich matchtheobject’sshapeandthetasktoaccomplish. Inthescientificliteraturetherearepaperswhich havetriedtologinthepositioningforgraspingandtaxonomy,andoneofthemostknownpapers is[28]. CutkoskyandWeight[29]haveextendedNapier’s[28]classificationbyaddingtherequired taxonomyintheproductionenvironment,bystudyingthewayinwhichtheweightandgeometry oftheobjectaffectschoosingthegraspingpositioning. Iberall[30]hasanalyzeddifferentgrasping taxonomies and generalized them by using the virtual finger concept. Stransfield [31] has chosen asimplerclassificationandbuiltasystembasedonruleswhichprovidedagraspingpositioningset, startingfromasimplifieddescriptionoftheobjectgainedfromavideosystem. The developed algorithm presented in this paper has the purpose to determine the grasping positionaccordingtotheobject’sshape. Toprovethealgorithm’sefficiencywehavechosenthreetypes ofobjectsforgrasping: cylindrical,spherical,andprismatic. Forthis,westartfromthehypothesis thattheenvironmentdataarecapturedthroughastereovisionsystem[32]andaKinectsensor[33]. Onthisdata,whichthetwosystemobserversprovide,weapplyatemplatematchingalgorithm[34]. Thisalgorithmwillprovideamatchingpercentageoftheobjectthatneedstobegraspedwithatemplate object. Thus,eachofthetwosourceswillprovidethreematchingvalues,foreachofthethreegrasping types. Thesevaluesrepresenttheinputforourdetectionalgorithm,basedofDezert–Smarandache Theory(DSmT)[35]fordatafusion. Thisalgorithmhasasinputdatafromtwoormultipleobservers andinthefirstphasetheyareprocessedthroughaprocessofneutrosoficationwhichissimilarwith thefuzzificationprocess. Then,theneutrosophicobservers’dataarepassedthroughanalgorithm whichappliestheclassicDSmtheory[35]inordertoobtainasingledatasetonthesystem’sstates, bycombiningtheobservers’neutrosophicvalues. Onthisobtaineddataset,weapplythedeveloped DSmTdecision-makingalgorithmthatdecidesonthecategoryfromwhichthetargetobjectispartof. Symmetry2018,10,198 3of26 Thisdecisionfacilitatesthedetection–recognition–graspingprocesswhicharobotichandmustfollow, obtainingintheendareal-timedecisionthatdoesnotstopordelaytherobot’stask. Inrecentyears,usingmoresensorsforacertainapplicationsandthenusingdatafusionisbecoming morecommoninthemilitaryandnonmilitaryresearchfields.Thedatafusiontechniquescombine theinformationreceivedfromdifferentsensorswiththepurposeofeliminatingdisturbancesandto improveprecisioncomparedtothesituationswhenasinglesensorisused[36,37].Thistechniqueworks onthesameprincipleusedbyhumanstofeeltheenvironment.Forexample,ahumanbeingcannot see over the corner or through vegetation, but with his hearing he can detect certain surrounding dangers. Besidethestatisticaladvantagebuildfromcombiningthedetailsforacertainobject(through redundantobservations),usingmoretypesofsensorsincreasestheprecisionwithwhichanobjectcan beobservedandcharacterized. Forexample,anultrasonicsensorcandetectthedistancetoanobject, butavideosensorcanestimateitsshape,andcombiningthesetwoinformationsourceswillprovide twodistinctdataonthesameobject. The evolution on the new sensors, the hardware’s processing techniques and capacity improvementsfacilitatemoreandmoretherealtimedatafusion. Thelatestprogressweremadeinthe areaofcomputationalanddetectionsystems,andprovidetheabilitytoreproduce,inhardwareand software,thedatafusioncapacityofhumansandanimals. Thedatafusionsystemsareusedfortarget tracking[38],automatictargetidentification[39],andautomatedreasoningapplications[40]. Thedata fusionapplicationsarewidespread,rangingfromthemilitary[41]applications(targetrecognition, autonomousmovingvehicles,distancedetection,battlefieldsurveillance,automaticdangerdetection) tocivilianapplication(monitoringtheproductionprocesses,complextoolsmaintenancebasedon certainconditions,robotics[42],andmedicalapplications[43]). Thedatafusiontechniquesundertake classicelementslikedigitalsignalprocessing,statisticalestimation,controltheory,artificialintelligence, andnumericmethods[44]. Combineddatainterpretationrequiresautomatedreasoningtechniquestakenfromtheareaof artificialintelligence.Thepurposeofdevelopingtherecognitionbasedsystems,wastoanalyzeissues likethedatagatheringcontext, therelationshipbetweenobservedentities, hierarchicalgroupingof targets or objects and to predict future actions of these targets or entities. This kind of reasoning is encountered in humans, but the automated reasoning techniques can only closely reproduce it. Regardlessoftheusedtechnique,foraknowledgebasedsystem,threeelementsarerequired:oneormore reasoningdiagrams,anautomatedevaluationprocessandacontroldiagram.Thereasoningdiagramsare techniquesoffactsrepresentation,logicalrelations,proceduralknowledge,anduncertainty. Forthese techniques, uncertainty from the observed data and from the logical relations can be represented usingprobabilities,fuzzytheory[45,46],Dempster–Shafer[47]evidenceintervalsorothermethods. Dezert–Smarandachetheory[35]comestoextendthesemethods,providingadvancedtechniquesof uncertaintymanipulation. Theautomatedreasoningsystem’sdevelopingpurposeistoreproducethe humancapabilityofreasoninganddecisionmaking,byspecifyingrulesandframesthatdefinethe studiedsituation. Havingathandaninformationdatabase,anevaluationprocessisrequiredsothis informationcanbeused. Forthis,thereareformaldiagramsdevelopedontheformallogic,fuzzylogic, probabilisticreasoning,templatebasedmethods,casebasedreasoning,andmanyothers. Eachofthese reasoningdiagramshasaconsistentinternalformalismwhichdescribeshowtousetheknowledge databaseforobtainingthefinalconclusion.Anautomatedreasoningsystemneedsacontroldiagramto fulfillthethinkingprocess. Theusedtechniquesincludesearchingmethods,systemsformaintaining the truth based on assumptions and justifications, hierarchical decomposition, control theory, etc. Eachofthesemethodshasthepurposeofcontrollingthereasoningevolutionprocess. Theresultspresentedinthispaper,wereobtainedusingtheclassicDezert–Smarandachetheory (DSmT)tocombineinputsfromtwodifferentobserversthatwanttoclassifyobjectsintothreecategories: sphere,parallelepiped,andcylinder. Thesecategorieswerechosentoincludemostoftheobjectsthat amanipulatorcangrasp. Thealgorithm’sinputsweretransformedintobeliefvaluesofcertainty,falsity, uncertainty,andcontradictionvalues. Usingthesefourvaluesandtheircombinationsaccordingto Symmetry2018,10,198 4of26 DSmT,weappliedPetrinetdiagramlogicfortakingdecisionsontheshapetypeoftheanalyzedobjects. Thistypeofalgorithmhasneverbeenusedbeforeforrealtimedecisiononhandgraspingtaxonomy. Comparedtootheralgorithms[13–15]andmethods[16–18],ourshastheadvantagetodetecthigh uncertaintiesandcontradictionswhichinpracticehasaverylowencounterratebutcanhavedrastic effectsonthedecisiontypeorrobot,becauseiftheobject’sshapeisnotdetectedproperly,thenthe robot might not be able to grasp it, which can lead to serious consequences. In deciding how to graspobjects,researchershaveuseddifferentmethodstochoosethegraspingtaxonomyusingablind hapticexploration[20]orindifferentapplicationsfortyingknots[21]orgraspdeformableobjects[23]. Becausetheproposedalgorithmcandetectanomaliesofcontradictinganduncertaininputvalues, wecansaythattheproposedmethodtransformsthedecidingprocessintoalessdifficultproblemof graspingmethod[24,25]. 2. ObjectsGraspingandItsClassification Mechanicalhandshavebeendevelopedtoprovidetherobotswiththeabilityofgraspingobjects with different geometrical and physical properties [48]. To make an anthropomorphic hand seem natural,itsmovementandthegraspingtypemustmatchthehumanhand. Inthisregard,graspingpositiontaxonomyforhumanhandshasbeenlongstudiedandapplied forrobotichands. Seventeendifferentcategoriesofhumanhandsgraspingpositionswerestudied. However,wemustconsidertwoimportantthings: thefirstthingisthatthesecategoriesarederived fromhumanhandstudies,whichprovesthattheyaremoreflexibleandabletoperformamultitude ofmovementsthananyotherrobotichand, sothatthegraspingtaxonomyforrobothandscanbe onlyasimplesubsetofthehumanhand. Thesecondisthatthehumanbehaviorstudiesofrealobject graspinghaveshownsomedifferencesbetweentherealobservationsandtheclassifiedproperties[49]. In conclusion, any proposed taxonomy is only a reference point which the robot hand must attain. Belowthemostusedgraspingpositionsaredescribed(extractedfrom[50]),whichshouldbe consideredwhendevelopinganablerobotichand: 1. Powergrasping: Thecontactwiththeobjectsismadeonlargesurfacesofthehand,including handphalangesandthepalmofthehand. Forthiskindofgrasping,highforcescanbeexerted ontheobject. • Sphericalgrasping: usedtograspsphericalobjects; • Cylindricalgrasping: usedtograsplongobjectswhichcannotbecompletelysurroundedby thehand; • Lateralgrasping: thethumbexertsaforcetowardsthelateralsideoftheindexfinger. 2. Precisiongrasping: thecontactismadeonlywiththetipofthefingers. • Prismaticgrasping(pinch): usedtograsplongobjects(withsmalldiameter)orverysmall. Canbeachievedwithtwotofivefingers. • Circulargrasping(tripod): usedingraspingcircularorroundobjects. Canbeachievedwith three,four,orfivefingers. 3. Nograsping: • Hook: thehandformsahookontheobjectandthehandforceisexertedagainstanexternal force,usuallygravity. • Buttonpressingorpointing • Pushingwithopenhand. IntheTable1,manipulationactivitiesthattherobotichandcanachieveareshown,correlated withtherequiredactivitygraspingpositions[51]. Symmetry2018,10,198 5of26 Table1.Graspingpositionforcertaintasks. Object Activity GraspingPosition Bottles,cups,andmugs Transport,pouring/filling Force:Cylindricalgrasping(fromthesideorthetop) Force:Lateralgrasping Cups(usinghandles) Pouring/filling Precision:Prismaticgrasping Power:Lateralgrasping Transport Plates/trays Precision:Prismaticgrasping Receivingfromhumans Nograsp:pushing(openhand) Pens,cutlery Transport Precision:Prismaticgrasping Force:Cylindricalgrasping Doorhandle Open/Close Nograsp:Hook Power:Sphericalgrasping Smallobjects Transport Precision:Circulargrasping(tripod) Switches,buttons Pushing Nograsp:Buttonpressing Force:Lateralgrasping Roundswitches,bottlecaps Rotation Precision:Circulargrasping(tripod) 3. ObjectDetectionUsingStereo-VisionandKinectSensor Objectrecognitioninartificialsightrepresentsthetaskofsearchingacertainobjectinapicture oravideosequence. Thisproblemcanbeapproachedasalearningproblem. Atfirst,thesystemis trainedwithsampleimageswhichbelongtothetargetgroup,thesystembeingtaughttospotthese amongotherpictures. Thus,whenthesystemreceivesnewimages,itcan‘feel’thepresenceofthe searchedobject/sample/template. Template matching is a techniques used to sort objects in an image. A model is an image region, and the goal is to find instances of this model in a larger picture. The template matching techniquesrepresentaclassicapproachforlocalizationproblemsandobjectrecognitioninapicture. Thesemethodsareusedinapplicationslikeobjecttracking,imagecompression,stereograms,image segmentation[52],andotherspecificproblemsofartificialvision[53]. Objectrecognitionisveryimportantforarobotthatmustfulfillacertaintask.Tocompleteitstask, therobotmustavoidobstacles,obtainthesizeoftheobject,manipulateit,etc. Forthecaseofdetected objectmanipulation,therobotmustdetecttheobject’sshape,size,andpositionintheenvironment. The main methods for achieving the depth information use stereoscopic cameras, laser scanners, anddepthcameras. To achieve the proposed decision-making algorithm, we assumed that the environment informationiscapturedwithastereoscopicsystemandaKinectsensor. Stereovision systems [32] represents a passive technique of achieving a virtual 3D image of the environment in which the robot moves, by matching the common features of an image set of the same scene. Because this method works with images, it needs a high computational power. Thedepthinformationcanbenoisyincertaincases,becausethemethoddependsonthetextureofthe environmentobjectsandontheambientlight. Kinect[33]isafairlyeasytoobtainplatform,whichmakesitwidespread. Itusesadepthsensor basedonstructuredlight. ByusinganASICboard,theKinectsensorgeneratesadepthmapon11bits witharesolutionof640×480pixels,at30Hz. Giventhepriceofthedevice,theinformationqualityis prettygood,butithasbothadvantagesanddisadvantages,meaningthatthedepthimagescontain areaswherethedepthreadingcouldnotbeachieved. Thisproblemappearsfromthefactthatsome materialsdonotreflectinfraredlight. Whenthedeviceismovedreallyfast,likeanyothercamera, itrecordsblurrypictures,whichalsoleadstomissinginformationfromtheacquiredpicture. Symmetry2018,10,198 6of26 4. NeutrosophicLogicandDSmTheory 4.1. NeutrosophicLogic The neutrosophic triplet (truth, falsity, and uncertainty) idea appeared in 1764 when J.H. Lambert investigates a witness credibility which was affected by the testimony of another person. HegeneralizedHooper’sruleofsamplecombination(1680),whichwasanon-Bayesianapproachfor findingaprobabilisticmodel. Koopmanin1940introducesthelowandhighprobability,followedby GoodandDempster(1967)whogaveacombinationruleoftwoarguments. Shafer(1976)extended thisruletoDempster–ShaferTheoryfortrustfunctionsbydefiningthetrustandplausibilityfunctions and using the inference rules of Dempster for combining two samples from two different sources. The trust function is a connection between the fuzzy reasoning and probability. Dempster–Shafer theoryfortrustfunctionsisageneralizationofBayesianprobability(Bayes1760,Laplace1780). Ituses themathematicalprobabilityinamoregeneralwayanditisbasedontheprobabilisticcombinationof artificialintelligencesamples. Lambertonesaidthat“thereisachancepthatthewitnesscanbetrustworthyandfair,achanceq thathewillbedeceivingandachance1-p-qthathewillbeindifferent”. ThisideawastakenbyShafer in1986andlater,usedbySmarandachetofurtherdeveloptheneutrosophiclogic[54,55]. 4.1.1. NeutrosophicLogicDefinition A logic in which each proposition has its percentage of truth in a subset T, its percentage of uncertaintyinasubsetI,anditspercentageoffalsityinasubsetFiscalledneutrosophiclogic[54,55]. Thispaperextendsthegeneralstructureoftheneutrophicrobotcontrol(RNC),knownasthe Vladareanu–Smarandache method [55–57] for the robot hybrid force-position control in a virtual platform[58,59],whichappliesneutrosophicsciencetoroboticsusingtheneutrosophiclogicandset operators. Thus,usingtwoobservers,astereovisionsystemandaKinectsensor,willprovidethree matchingvaluesforDSmTdecision-makingalgorithms. Asubsetoftruth,uncertaintyandfalsityis usedinsteadofasinglenumberbecauseinmanycasesonecannotknowwithprecisionthepercentage oftruthorfalsity,butthesecanbeapproximated. Forexample,asuppositioncanbe30%to40%true and60%to70%false[60]. 4.1.2. NeutrosophicComponentsDefinition LetT,I,Fbethreestandardornon-standardsubsetsof]−0,1+[with supT = t infT = t sup inf supI =i infI =i sup inf supF = f infF = f sup inf and n = t +i + f sup sup sup sup n = t +i + f inf inf inf inf TheT,I,andFsetsarenotalwaysintervals,butcanbesubsets:discreteorcontinuum;withasingle element;finiteorinfinite(theelementsarecountableoruncountable);subsetsunionorintersection. Also,thesesubsetscanoverlap,andtherealsubsetsrepresenttherelativeerrorsinfindingthet,i, andf values(whentheT,I,andFsubsetsarereducedtosinglepoints). T,I,andFarecalledtheneutrosophiccomponentsandrepresentthetruth,uncertainty,andfalsity values,whenreferringtoneutrosophy,neutrosophiclogic,neutrosophicsets,neutrosophicprobability, orneutrosophicstatistics. This representation is closer to the human reasoning and defines knowledge imprecision or linguisticinaccuracyreceivedfromdifferentobservers(thisiswhyT,I,andFaresubsetsandcanbe Symmetry2018,10,198 7of26 morethatasetofpoints),theuncertaintygivenbyincompleteknowledgeordataacquisitionerrors (forthiswehavethesetI)andthevaguenesscausedbymissingedgesorlimits. Afterdefiningthesets,weneedtospecifytheirsuperior(x )andinferior(x )limitsbecause sup inf inmostofthecasestheywillbeneeded[61,62]. 4.2. Dezert–SmarandacheTheory(DSmT) Todevelopartificialcognitivesystemsagoodmanagementofsensorinformationisrequired. Whentheinputdataaregatheredbydifferentsensors,accordingtotheenvironmentcertainsituations mayappearwhenoneofthesensorscannotgivecorrectinformationortheinformationiscontradictory betweensensors. Toresolvethisissueastrongmathematicalmodelisrequired,especiallywhenthe informationisinaccurateoruncertain. The Dezert–Smarandache Theory (DSmT) [53,54,60] can be considered an extension of Dempster–Shafertheory(DST)[46]. DSmTallowsinformationcombining,gatheredfromdifferent andindependentsourcesastrustfunctions. DSmTcanbeusedforsolvinginformationfusiononstatic ordynamiccomplexproblems,especiallywhentheinformationdifferencesbetweentheobserversare veryhigh. DSmTstartsbydefiningthenotionofaDSmfreemodel,denotedbyMf(Θ)andsaysthatΘis asetofexhaustiveelementsθ,i =1,...,nwhichcannotoverlap. Thismodelisfreebecausethereare i noothersuppositionsoverthehypothesis. AslongastheDSmfreemodelisfulfilled,wecanapply theassociativeandcommutativeDSmruleofcombination. DSm theory [62] is based on defining the Dedekind lattice, known as the hyper power set of frame Θ. In DSmT, Θ is considered a set {θ ,...,θ } of n exhaustive elements, without adding 1 n otherconstraints. DSmTcantackleinformationsamples,gatheredfromdifferentinformationsourceswhichdonot allowthesameinterpretationofthesetΘelements. LetΘ = θ ,θ bethesimplecase,madeoftwo 1 2 assumption,then[54]: • theprobabilitytheoryworks(assumingexclusivityandcompletenessassumptions)withbasic probabilityassignments(bpa)m(.) ∈ [0,1]suchthat m(θ )+m(θ ) =1 1 2 • theDempster–Shafertheoryworks,(assumingexclusivityandcompletenessassumptions)with basicbeliefassignments(bba)m(.) ∈ [0,1]suchthat m(θ )+m(θ )+m(θ ∪θ ) =1 1 2 1 2 • theDSmtheoryworks(assumingexclusivityandcompletenessassumptions)withbasicbelief assignment(bba)m(.) ∈ [0,1]suchthat m(θ )+m(θ )+m(θ ∪θ )+m(θ ∩θ ) =1 1 2 1 2 1 2 Θ 4.2.1. TheD HyperpowerSetNotion OneofthebaseelementsofDSmtheoryisthenotionofhyperpowerset. LetΘ = {θ ,...,θ }be 1 n Θ afiniteset(calledframe)withnexhaustiveelements. TheDedekindlattice,calledhyperpowersetD withinDSmTframe,isdefinedasthesetofallbuiltstatementsfromtheelementsofsetΘwiththe∪ and∩operatorssuchthat: 1. ∅,θ ,...,θ ∈ DΘ 1 n 2. If A, B ∈ DΘ,then A∩B ∈ DΘ and A∪B ∈ DΘ. Θ 3. NootherelementisincludedinD withtheexceptionofthosementionedat1and2. Symmetry2018,10,198 8of26 DΘ duals(obtainedbychangingwithinexpressionstheoperator∩withtheoperator∪)isDΘ. InDΘ thereareelementsthataredualwiththemselves. ThecardinalityofDΘ increaseswith2nwhen thecardinalityofΘisn. GeneratingtheDΘ hyperpowersetiscloseconnectedwiththeDedekind[54, 55]knownproblemofisotoneBooleanfunctionset. BecauseforanyfinitesetΘ, |DΘ| ≥ |2Θ|,wecall DΘ thehyperpowersetofΘ. Theθ,i =1,...,nelementsfromΘformthefinitesetofsuppositions/conceptsthatcharacterize i thefusionproblem. DΘ representsthefreemodelofDSmMf(Θ)andallowsworkingwithfuzzy conceptsthatdescribetheintrinsicandrelativecharacter. Thiskindofconceptcannotbeaccurately distinguishedwithinanabsoluteinterpretationbecauseoftheunapproachableuniversaltruth. Withallofthis,therearecertainparticularfusionproblemsthatimplydiscreteconcepts,wherethe θ elementsareexclusivelytrue. Inthiscase,alltheexclusivityconstraintsofθ,i =1,...,nmustbe i i includedinthepreviousmodeltoproperlycharacterizethetruthinesscharacterofthefusionproblem Θ Θ andtomatchreality. Forthis,thehyperpowersetD isdecreasedtotheclassicpowerset2 ,forming thesmallesthybridDSmmodel,notedwithM0(Θ),andcoincideswithShafer’smodel. Besides the problem types that correspond with the Shaffer’s model M0(Θ) and those that correspond with the DSm free model Mf(Θ), there is an extensive class of fusion problems that includeinΘstates,continuousfuzzyconceptsanddiscretehypothesis. Inthiscasewemusttakeinto considerationcertainexclusivityconstraintsandsomenon-existentialconstraints. Eachfusionhybrid problemisdescribedbyaDSmhybridmodelM(Θ)withM(Θ) (cid:54)= Mf(Θ)andM(Θ) (cid:54)= M0(Θ). 4.2.2. GeneralizedBeliefFunctions Starting from a general frame Θ, we define a DΘ → [0,1] transformation associated with aninformationsourceBlike[54] m(∅) =0and∑ m(A) =1. (1) A∈DΘ Them(A)valueiscalledgeneralizedbasicbeliefassignmentofA. ThegeneralizedtrustandplausibilityaredefinedinthesamewayasinDempster–Shafertheory[47] ∑ Bel(A) = m(B), (2) B ⊆ A B ∈ DΘ ∑ Pl(A) = B∩A (cid:54)=∅ m(B). (3) B ∈ DΘ These definitions are compatible with the classic trust function definition from the Θ Θ Dempster–Shafer theory when D is reduced to 2 for fusion problems where the Shafer model M0(Θ)canbeapplied. Westillhave∀ A ∈ DΘ, Bel(A) ≤Pl(A). Tonoticethatwhenweworkwith thefreeDSmMf(Θ)model,wewillalwayshavePl(A) =1, ∀ A (cid:54)=∅∈ DΘ,whichisnormal[54]. 4.2.3. DSmClassicRuleofCombination When the DSm free model Mf(Θ) can be applied, the combination rule mMf(Θ) ≡ m(.) (cid:44) [m ⊗m ](.)oftwoindependentsourcesB andB thatprovideinformationonthesameframeΘ 1 2 1 2 with the belief functions Bel (.) and Bel (.) associated to gbba m (.) and m (.) correspond to the 1 2 1 2 conjunctiveconsensusofsources. Datacombinationsaredonebyusingtheformula[54] Θ ∑ ∀C ∈ D , mMf(Θ)(C) ≡ m(C) = A,B ∈ DΘ m1(A)m2(B). (4) A∩B =C Symmetry2018,10,198 9of26 BecauseDΘ isclosedunder∩and∪operators,thisnewcombinationruleguaranteesthatm(.)Is ageneralizedtrustvalue,meaningthat m(.) : DΘ → [0,1]. Thisruleofcombinationiscommutative andassociativeandcanbeusedallthetimeforsourcesfusionwhichimpliesfuzzyconcepts. Thisrule canbeextendedwitheaseforcombiningk>2independentinformationsources[55,56]. BecauseofthehighnumberofelementsinDΘ,whenthecardinalityofΘincreases,theneedof computationalresourcesalsoincreasesforprocessingtheDSmcombinationrule. Thisobservationis trueonlyifthecore(thesetofgeneralizedbasicbeliefassignmentfortheneededelements)K (m ) 1 1 andK (m )coincidewithDΘ,meaningthatwhenm (A) >0andm (A) >0forany A (cid:54)=∅∈ DΘ. 2 2 1 2 For most practical applications, the K1(m1) and K2(m2) dimensions are much smaller than (cid:12)(cid:12)DΘ(cid:12)(cid:12) becausSeymtmheetryi n20f1o8r, m10,a xt FioOnR PsEoEuRr RcEeVsIEpWro videmostofthetimethegeneralizedbasicbeliefassi9g nofm 26e ntfor onlyonesubsetofhyperpowerset. ThisfacilitatestheDSmclassicruleimplementation. assignment for only one subset of hyper power set. This facilitates the DSm classic rule Figure 1 presents the DSm combination rule architecture. The first layer is formed by all the implementation. generalizedbasicbeliefassignmentvaluesoftheneededelementsA, i =1,...,nofm (.). Thesecond Figure 1 presents the DSm combination rule architecture. The ifirst layer is formed1 by all the layer gisenmeraadlizeedo ubtasoifc ablellitehf easgseignnemraelnitz evdalubeass iocf btheeli enfeeadsesdig nelmemeennttsv a(cid:1827)l(cid:3036)u,(cid:1861)e=s 1B,i…, ,i(cid:1866) =of 1(cid:1865),(cid:2869).(...),. kTohfe m2(.). Eachnseocdoendfr olamyert hies fimrasdtel aoyuetr oifs aclol ntnhee cgteendewraliitzhede abcahsinc obdeleieof fatshsiegnsemceonnt dvalaluyeesr .(cid:1828)T,h(cid:1861)e=o1u,…tp,u(cid:1863) tolfa yeris (cid:3036) create(cid:1865)db(y.).c oEmachb innoindge ftrhoemg tehnee friraslti zlaeyderb aiss icconbneelicetefda swsiitghn emacehn ntovdael uoef sthoef saelclotnhde lpaoyesrs.i bTlheei onutetprsuet ctions (cid:2870) A ∩Bla,yeir= is1 c,r.e.a.t,edn bayn dcojm=bin1i,n.g. .t,hek .gIefnwerealwizeodu lbdashica vbeelaieft haisrsdigsnomuerncte vtaoluperso vofi daell gthene eproaslsiizbelde basic i j beliefianstseirgsnecmtioennst v(cid:1827)a(cid:3036)l∩ue(cid:1828)s(cid:3037),m(cid:1861)=(.1),,…th,i(cid:1866)s wanodu ld(cid:1862)=ha1v,…e,b(cid:1863)e.e nIf cowme bwinoeudldb yhapvlea cain tghiirtdb estowureceen ttoh eporouvtipduet layer 3 generalized basic belief assignment values (cid:1865) (.), this would have been combined by placing it andthesecondonethatprovidesthegeneraliz(cid:2871)edbasicbeliefassignmentvaluesm (.). Duetothe 2 between the output layer and the second one that provides the generalized basic belief assignment commutativeandassociativepropertiesofDSmclassicruleofcombination,indevelopingtheDSm values (cid:1865) (.). Due to the commutative and associative properties of DSm classic rule of (cid:2870) network,aparticularorderoflayersisnotrequired[54]. combination, in developing the DSm network, a particular order of layers is not required [54]. Figure 1. Graphical representation of DSm classic rule of combination for ℳ(cid:3033)(Θ) [35] Figure1.GraphicalrepresentationofDSmclassicruleofcombinationforMf(Θ)[35]. 5. Decision-Making Algorithm 5. Decision-MakingAlgorithm As observed in this paper, according to the object shape and assigned task, grasping is divided Ainstoob esiegrhvte cdatiengtohriisesp [a6p3e]:r ,sapchceorricdailn ggratosptihneg,o bcyjelicntdsrhicaapl egaransdpiansgs,i glanteerdalt agsrka,spg,r apsrpisimngatiisc dgirvaisdpe, dinto eightccairtceuglaorr igersas[p6i3n]g:,s hpohoekr gicraaslpginrags, pbuinttgo,nc pyrleinssdinrgic, aalngdr paussphiinngg,. lFartoemra tlhgesrea sgpra,spprinisgm tyaptiecs,g trhaes mpo,scti rcular used ones are cylindrical and prismatic grasping (see Table 1). These can be used in almost any grasping,hookgrasping,buttonpressing,andpushing. Fromthesegraspingtypes,themostused situation and we can say that spherical grasping is a particular grasping of these two. The spherical onesarecylindricalandprismaticgrasping(seeTable1). Thesecanbeusedinalmostanysituation grasp is used for power grasping, when the contact with the object is achieved with all the fingers’ andwecansaythatsphericalgraspingisaparticulargraspingofthesetwo. Thesphericalgraspis phalanges and the hand’s palm. This is why a requirement for classification by the shape of the usedforpowergrasping,whenthecontactwiththeobjectisachievedwithallthefingers’phalanges object is needed. Due to the fact that these types are more often encountered, they were taken into andthceonhsaindedr’astipoanl fmor. tThhe isstuisdiwedh yfuasiorenq puriorbelmemesn. tforclassificationbytheshapeoftheobjectisneeded. DuetotheTfhaec tfuthsiaotnt hperosbeletymp eaismasr etom aochreievoeft ea ncleanssciofiucanttioenre, db,yt shheaypew oefr eobtjaekctesn toin gtroascpo,n ssoi dthearat ttihoensef orthe studiecdanfu msiaotcnhp wroitbh ltehme so.ther three types of grasping studied. The target objects are classified into three Tchaetefguosriieosn: spprhoebrel,e pmaraalilmelesptiopeadc,h ainedv ecyalincdlaesrs. iFfiocra etaicohn c,abteygsohrya,p ae gorafsopibnjge cttyspeto isg arsassigpn,esdo [5th6]a. tthese Following the presented theory in Section 4, the information is provided by two independent canmatchwiththeotherthreetypesofgraspingstudied. Thetargetobjectsareclassifiedintothree sources (observers): a stereovision system and a Kinect sensor. The observers are presented in categories: sphere,parallelepiped,andcylinder. Foreachcategory,agraspingtypeisassigned[56]. Section 3, and are used to scan the robot’s work environment. By using the information provided by FollowingthepresentedtheoryinSection4,theinformationisprovidedbytwoindependent the two observers, a 3D virtual image of the environment is achieved, from which the human sourceosp(eorbatsoerr vcheross)e:s athsete orbejoevcti stioo nbes gyrsatespmeda,n tdhuas Kdienfiencitnsge tnhseo gr.raTshpeinogb tsaesrkv tehrast amreusptr bees eanctheideviend Sbeyc tion3, andarteheu sreodbotto. sTchaen 3thDe rimobaoget’ sowf othrke eonbvjeicrto, nimsoelantet.d Bfyroumsi ntghet hseceinnef,o rims actoimonpaprerdo viwdiethd bthyreteh etwo templates—formed by similar methods—which represent a sphere, a parallelepiped, and a cylinder. Afterwards, a template matching algorithm is applied to place the object in one of the three categories, with a certain matching percentage. This percentage can vary according to the conditions in which the images are obtained (weak light, object from which the light is reflected, etc.). The data taken from each sensor are then individual processed with a neutrosophication algorithm, with the purpose of obtaining the generalized basic belief assignment values for each hypothesis that can characterize the system. In the next step, having the basic belief assignment values, we combine the Symmetry2018,10,198 10of26 observers,a3Dvirtualimageoftheenvironmentisachieved,fromwhichthehumanoperatorchoses theobjecttobegrasped,thusdefiningthegraspingtaskthatmustbeachievedbytherobot. The3D imageoftheobject,isolatedfromthescene,iscomparedwiththreetemplates—formedbysimilar methods—whichrepresentasphere,aparallelepiped,andacylinder. Afterwards,atemplatematching algorithmisappliedtoplacetheobjectinoneofthethreecategories,withacertainmatchingpercentage. Thispercentagecanvaryaccordingtotheconditionsinwhichtheimagesareobtained(weaklight, objectfromwhichthelightisreflected, etc.). Thedatatakenfromeachsensorarethenindividual processedwithaneutrosophicationalgorithm,withthepurposeofobtainingthegeneralizedbasic beliefassignmentvaluesforeachhypothesisthatcancharacterizethesystem. Inthenextstep,having thebasicbSeymlimeeftray 2s0s1i8g, 1n0,m x FeOnRt PvEEaRl uREeVsI,EWw ecombinethedataprovidedbythetwoobserve1r0 sofb 2y6 usingthe classicDSdmatar uplreovoidfecdo bmy tbhien tawtoio onb.seTrvheers nbye xutsisntge tphei sclatossiac pDpSmly rauled oefn ceoumtbrionsaotiopnh. iTchaet nioexnt satlegpo isr ittoh monthe obtainedvaaplpuleys a, dtoenaecuhtrioesvoephthiceatdioenc ailsgioornithomn othn ethseh oabptaeinoefdt vhaeluoebs,j etoc tacbhyiepvela tchien dgeciitsiionnt oont htheet shhraepee categories mentionedofa tbhoe voebj.ecTt hbey epnlatciirneg pitr ionctoe sthsei sthvreise ucaatlelgyorrieeps rmeesnetniotneedd ianboFvieg. uTrhee 2e.ntire process is visually represented in Figure 2. Figure 2. Diagram of the proposed algorithm. Figure2.Diagramoftheproposedalgorithm. 5.1. Data Neutrosophication 5.1. DataNeutrEoascohp ohbisceartvieorn provides a truth percentage for each system’s state. The state set Θ=(cid:4668)(cid:2016) ,(cid:2016) ,(cid:2016) (cid:4669) (cid:2869) (cid:2870) (cid:2871) that characterizes the fusion problem is Eachobserverprovidesatruthpercentageforeachsystem’sstate. ThestatesetΘ = {θ ,θ ,θ } 1 2 3 Θ=(cid:4668)(cid:1845)(cid:1868),(cid:1842)(cid:1853),(cid:1829)(cid:1877)(cid:4669), (5) thatcharacterizesthefusionproblemis where Sp = sphere, Pa = parallelepiped, and Cy = cylinder. To compute the belief values for thΘe h=yp{erS ppo,wPear, sCety }(cid:1830),(cid:2944) elements we developed an algorithm (5) based on the neutrosophic logic. The hyper power set (cid:1830)(cid:2944) is formed by using the method presented in Section 4.2.1 and has the form whereSp=sphere,Pa=parallelepiped,andCy=cylinder. (cid:1830)(cid:3061)=(cid:4668)∅,(cid:1845)(cid:1868),(cid:1842)(cid:1853),(cid:1829)(cid:1877),(cid:1845)(cid:1868)∪(cid:1842)(cid:1853),(cid:1845)(cid:1868)∪(cid:1829)(cid:1877),(cid:1829)(cid:1877)∪(cid:1842)(cid:1853),(cid:1845)(cid:1868)∩Θ(cid:1842)(cid:1853),(cid:1845)(cid:1868)∩(cid:1829)(cid:1877),(cid:1829)(cid:1877)∩(cid:1842)(cid:1853),(cid:1845)(cid:1868)∩ TocomputethebeliefvaluesforthehyperpowersetD elementswedevelopeda(n6)a lgorithm ((cid:1829)(cid:1877)∪(cid:1842)(cid:1853)),(cid:1829)(cid:1877)∩((cid:1845)(cid:1868)∪(cid:1842)(cid:1853)),(cid:1842)(cid:1853)∩((cid:1829)(cid:1877)∪(cid:1845)(cid:1868)),(cid:1845)(cid:1868)∪(cid:1829)(cid:1877)∪(cid:1842)(cid:1853),(cid:1845)(cid:1868)∩(cid:1829)(cid:1877)∩(cid:1842)(cid:1853)(cid:4669) . Θ basedontheneutrosophiclogic. ThehyperpowersetD isformedbyusingthemethodpresentedin The statements of each observer are handled in ways of truth (T), uncertainty (I), and falsity (F), Section4.2.1andhastheform specific to the neutrosophic logic. Due to the fact that (cid:1832)=1−(cid:1846)−(cid:1835), the statements of falsity are not tDakΘen =int(cid:8)o ∅co,nSsipd,erPataio,nC. y,Sp∪Pa,Sp∪Cy,Cy∪Pa,Sp∩Pa,Sp∩Cy,Cy∩Pa,Sp∩ The neutrosophic algorithm has as input the certainty probabilities (truth) provided(cid:9) by the (6) observ(eCrsy o∪n tPhae )s,yCstyem∩’s( sStapte∪s. TPhae)s,eP paro∩ba(bCiliytie∪s aSrpe )th,Senp p∪roCceyss∪edP uasi,nSgp th∩e dCeysc∩ribPeda ru.les in Figure 3. If the difference between the certainties probabilities used at a certain point by the processing algorithm is larger than a certain threshold found by trial and error, then we will consider that the uncertainty percentage between the compared states is null, and the probability