ebook img

Drug Delivery Applications of Starch Biopolymer Derivatives PDF

147 Pages·2019·3.353 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Drug Delivery Applications of Starch Biopolymer Derivatives

Jin Chen · Ling Chen · Fengwei Xie · Xiaoxi Li Drug Delivery Applications of Starch Biopolymer Derivatives Drug Delivery Applications of Starch Biopolymer Derivatives Jin Chen Ling Chen Fengwei Xie (cid:129) (cid:129) (cid:129) Xiaoxi Li Drug Delivery Applications of Starch Biopolymer Derivatives 123 Jin Chen LingChen GuangdongProvinceKey Laboratory GuangdongProvinceKey Laboratory for Green Processingof NaturalProducts for Green Processingof NaturalProducts andProductSafety,SchoolofFoodScience andProductSafety,SchoolofFoodScience andEngineering, Ministry ofEducation andEngineering, Ministry ofEducation Engineering Research Centerof Starch Engineering Research Centerof Starch andProtein Processing andProtein Processing SouthChinaUniversity ofTechnology SouthChinaUniversity ofTechnology Guangzhou, Guangdong,China Guangzhou, Guangdong,China Fengwei Xie XiaoxiLi International Institute for Nanocomposites GuangdongProvinceKey Laboratory Manufacturing (IINM), WMG for Green Processingof NaturalProducts University of Warwick andProductSafety,SchoolofFoodScience Coventry, UK andEngineering, Ministry ofEducation Engineering Research Centerof Starch andProtein Processing SouthChinaUniversity ofTechnology Guangzhou, Guangdong,China ISBN978-981-13-3656-0 ISBN978-981-13-3657-7 (eBook) https://doi.org/10.1007/978-981-13-3657-7 LibraryofCongressControlNumber:2018964237 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Acknowledgements This book has been financially supported by the National Key R&D Program of China (No. 2016YFD0400203), the NSFC (31871751), the Key Project of Guangzhou Science and Technology Program (No. 201804020036) and YangFan Innovative and Entrepreneurial Research Team Project (2014YT02S029). v Contents 1 Physiological and Pathological Bases for Designing High Performance Drug Delivery Carriers. . . . . . . . . . . . . . . . . . . . 1 1.1 Concepts for Designing Stimulus-Responsive Carriers . . . . . . . . . 1 1.1.1 Biological Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Physical Stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Interactions Between Carriers and Physiological Structures . . . . . . 6 1.2.1 Interactions with Mucosa . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Interactions with Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 Interactions with Biomacromolecules . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Material Nature and Physicochemical Properties for High Performance of Carriers. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Material that Endows Stimulus Responsiveness . . . . . . . . . . . . . . 19 2.1.1 Material Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Physicochemical Properties . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Physicochemical Properties that Affect Interactions with Physiological Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Basic Characteristics of Starch . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Gelatinization and Retrogradation . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Digestion of Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Starch Derivatives (Modified Starch) . . . . . . . . . . . . . . . . . . . . . . 32 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Starch-Based DDSs with Stimulus Responsiveness . . . . . . . . . . . . . . 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 pH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vii viii Contents 4.2.1 pH Shifts in the GIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Pathological Conditions and Cellular Compartment- Specific pH Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Enzymes in the GIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.2 Human Serum Endoamylase. . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 Cellular Compartment Enzymes . . . . . . . . . . . . . . . . . . . . 77 4.4 Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Redox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.6 Magnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Dual and Multi-stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Starch-Based DDSs with Physiological Interactions . . . . . . . . . . . . . 101 5.1 Transmucosal Starch-Based DDSs. . . . . . . . . . . . . . . . . . . . . . . . 101 5.1.1 Bioadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.1.2 The Widening Tight Junction Effect . . . . . . . . . . . . . . . . . 110 5.2 Starch-Based Target-Specific DDSs . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.1 Plasma Hematocompatibility . . . . . . . . . . . . . . . . . . . . . . 112 5.2.2 Macrophage-Evading Target-Specific System . . . . . . . . . . 115 5.2.3 DDSs That Target the Immune System. . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6 Toxicology of Starch-Based DDSs. . . . . . . . . . . . . . . . . . . . . . . . . . . 133 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7 Conclusion and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 139 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Nomenclature 10-HCPT 10-hydroxy camptothecin AA Acrylic acid Apo Apolipoprotein BMP-4 Bone morphogenetic protein-4 BSA Bovine serum albumin CMC Critical micelle concentration CMS Carboxymethyl starch Con A Concanavalin A DC Dendritic cell DDS Drug delivery system DMAAm N,N-dimethylacrylamide DOX Doxorubicin DS Degree of substitution DSM Degradable starch microspheres EMF External magnetic field EPR Enhanced permeability and retention FA Folic acid GIT Gastrointestinal tract GSH Glutathione HA Hyaluronic acid HAase Hyaluronidase HACS High-amylose corn starch HAS Human serum albumin HEMA Hydroxyethyl methacrylate HES Hydroxyethyl starch HPS Hydroxypropyl starch IC Half maximal inhibitory concentration 50 IL Interleukin IPN Interpenetrating polymer network KC Kupffer cell ix x Nomenclature LCST Low critical solution temperature LPC Lysophosphatidylcholine M Membranous M Molecular weight MMT Montmorillonite MNP Magnetic nanoparticle MP Microparticle mPEG Methoxypolyoxy-ethylene amine MS Molar degree of substitution N/P Nitrogen/phosphate atom NIR Near-infrared region NP Nanoparticle PAA Polyacrylic acid PAN Polyacrylonitrile PDMAEM Poly(N,N-dimethylaminoethyl methacrylate) PEC Polyelectrolyte complex PEG Poly(ethylene glycol) PEI Poly(ethyleneimine) PMAA Polymethacrylic acid PMMA Poly(methyl methacrylate) PNIPAM Poly(N-isopropylacrylamide) PS80 Polysorbate 80 RES Reticuloendothelial system ROS Reactive oxygen species RS Resistant starch SA Starch acetate SCF Simulated colon fluid SGF Simulated gastric fluid SIF Simulated intestinal fluid TNF Tumor necrosis factor UCST Upper critical solution temperature VPTT Volume phase transition temperature ZO Zonula occluden Overview Being cheap, renewable, biodegradable, and biocompatible, starch has attracted huge interests from drug delivery scientists. Recently, the application of starch in drug delivery systems (DDSs) has made significant advances, whereby the molecular structure and characteristics of starch are exploited for creating smart materials for drug delivery purposes. With a better understanding of the physio- logical conditions, the difference between normal and pathological cells, and the various biological interactions between materials and physiological structures, starch-based DDSs with stimulus responsiveness (e.g., pH, temperature, or redox potential), target specificity, and bioadhesiveness can be constructed. These new DDSs would be capable of addressing some of the systemic and intracellular barriers in drug delivery and thus enhancing the bioavailability of therapeutics at thediseasesites.Thismonographhighlightsrecentemergingareasinthedesignof starch-based materials with advanced drug delivery behaviors. Key design princi- ples, challenges, and prospects of these starch-based DDSs are also discussed. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.