ebook img

Drosophila Responses in Immunity and Virus-Specific Inducible Mediated Antiviral PDF

27 Pages·2012·1.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Drosophila Responses in Immunity and Virus-Specific Inducible Mediated Antiviral

- Broad RNA Interference Mediated Antiviral Immunity and Virus-Specific Inducible Responses in Drosophila Cordula Kemp, Stefanie Mueller, Akira Goto, Vincent This information is current as Barbier, Simona Paro, François Bonnay, Catherine Dostert, of April 11, 2019. Laurent Troxler, Charles Hetru, Carine Meignin, Sébastien Pfeffer, Jules A. Hoffmann and Jean-Luc Imler J Immunol 2013; 190:650-658; Prepublished online 19 December 2012; doi: 10.4049/jimmunol.1102486 DDDDDDDDDDDDDDDDDDD http://www.jimmunol.org/content/190/2/650 ooooooooooooooooooo wwwwwwwwwwwwwwwwwww nnnnnnnnnnnnnnnnnnn lololololololololololololololololololo aaaaaaaaaaaaaaaaaaa ddddddddddddddddddd eeeeeeeeeeeeeeeeeee ddddddddddddddddddd Supplementary http://www.jimmunol.org/content/suppl/2012/12/19/jimmunol.110248 from from from from from from from from from from from from from from from from from from from Material 6.DC1 h h h h h h h h h h h h h h h h h h h ttpttpttpttpttpttpttpttpttpttpttpttpttpttpttpttpttpttpttp References This article cites 57 articles, 16 of which you can access for free at: ://w://w://w://w://w://w://w://w://w://w://w://w://w://w://w://w://w://w://w wwwwwwwwwwwwwwwwwww http://www.jimmunol.org/content/190/2/650.full#ref-list-1 wwwwwwwwwwwwwwwwwww .jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim mmmmmmmmmmmmmmmmmmm uuuuuuuuuuuuuuuuuuu nnnnnnnnnnnnnnnnnnn Why The JI? Submit online. ooooooooooooooooooo l.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.orgl.org • Rapid Reviews! 30 days* from submission to initial decision b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ yyyyyyyyyyyyyyyyyyy g g g g g g g g g g g g g g g g g g g • No Triage! Every submission reviewed by practicing scientists ueueueueueueueueueueueueueueueueueueue sssssssssssssssssss t ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot o nnnnnnnnnnnnnnnnnnn • Fast Publication! 4 weeks from acceptance to publication A A A A A A A A A A A A A A A A A A A *average pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1pril 1 1111111111111111111 , 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 0000000000000000000 Subscription Information about subscribing to The Journal of Immunology is online at: 1111111111111111111 9999999999999999999 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The JournalofImmunology Broad RNA Interference–Mediated Antiviral Immunity and Virus-Specific Inducible Responses in Drosophila Cordula Kemp,*,1 Stefanie Mueller,*,1,2 Akira Goto,* Vincent Barbier,* Simona Paro,* Franc¸ois Bonnay,* Catherine Dostert,* Laurent Troxler,* Charles Hetru,* Carine Meignin,* Se´bastien Pfeffer,† Jules A. Hoffmann,* and Jean-Luc Imler*,‡ The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms ofinnate immunity and has led to someimportantdiscoveriesaboutthesensingandsignalingofmicrobialinfections.TheresponseofDrosophilatovirusinfections remainspoorlycharacterizedandappearstoinvolvetwofacets.Ontheonehand,RNAinterferenceinvolvestherecognitionand processing of dsRNA into small interfering RNAs by the host RNase Dicer-2 (Dcr-2), whereas, on the other hand, an inducible responsecontrolledbytheevolutionarilyconservedJAK-STATpathwaycontributestotheantiviralhostdefense.Toclarifythe contribution of the small interfering RNA and JAK-STAT pathways to the control of viral infections, we have compared the resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch to infections by seven RNA or DNAviruses D o belongingtodifferentfamilies.OurresultsrevealauniquesusceptibilityofhopmutantfliestoinfectionbyDrosophilaCvirusand w n cricketparalysisvirus,twomembersoftheDicistroviridaefamily,whichcontrastswiththesusceptibilityofDcr-2mutantfliesto lo a manyviruses,includingtheDNAvirusinvertebrateiridescentvirus6.Genome-widemicroarrayanalysisconfirmedthatdifferent de d sets of genes were induced following infection by Drosophila C virus or by two unrelated RNAviruses, Flock House virus and fro Sindbisvirus.Overall,ourdatarevealthatRNAinterferenceisanefficientantiviralmechanism,operating againstalarge m rangeofviruses,includingaDNAvirus.Bycontrast,theantiviralcontributionoftheJAK-STATpathwayappearstobevirus http specific. The Journal of Immunology, 2013, 190: 650–658. ://w w V w isreursioesusrecpornecseenrntafnorimhupmoratannthecalaltshs,oafspwatehlolgaesnsim,cpaourstianngt rdeestiesctatendcebyhapvaettbeerennredceoscgrniibteiodn.Irnecmeapmtomrsaolsf,tvhieraTloinllf-ecatnidonRiIsGfi-rIs–t .jim m economic losses in crops and animals. Because they like families that sense the viral nucleic acid and trigger the in- u n replicate inside cells, and rely for the most part onhost cell mo- duction of IFNs and other cytokines (1). These factors activate o lecular machineries for their replication, viruses pose specific the production of antiviral molecules, such as protein kinase R l.org challengestotheimmunesystem.Twomajorstrategiesofantiviral oroligo-29,59-adenylatesynthetase,thatcontaintheinfectionand b/ contributetothe activation of the adaptive immune response (2). y g In plants, viral nucleic acids are recognized by enzymes of the ue s *CNRS-UPR9022,InstitutdeBiologieMole´culaireetCellulaire,67084Strasbourg Dicerfamily,whichproducesmallinterferingRNAs(siRNAs)of t o C67e0d8e4x,SFtrraasnbcoeu;rg†CCNeRdSex-U,PFRra9n0c0e2;,anIndst‡iFtuatcudlete´BdieosloSgcieienMceosle´dcuelalaireVieet,CUenlilvuelarsiriete´; 21–24nucleotides.ThesesiRNAsarethenloadedontomolecules n A 1dCe.SKt.raasnbdouSr.gM;.6c7o0n8t3ribSutrtaesdbeoquurgalClyedtoexth,iFsrwanocrek. owfitthhecAomrgpolneamuetent(aAryGOse)qfuaemniclyesa;ntdarwgeiltlegduiRdNeAthsemarteowthaerndReiNthAesr pril 1 1 2Currentaddress:Bernhard-Nocht-InstitutforTropicalMedicine,MolecularEnto- sliced by AGO, or their translation is inhibited. This RNA in- , 2 mology,Hamburg,Germany terference(RNAi)mechanismprovidesefficientandsequence- 01 ReceivedforpublicationAugust29,2011.AcceptedforpublicationNovember5, specificprotection against viralinfections(3). 9 2012. RNAi also plays an important role in the control of viral in- ThisworkwassupportedbytheNationalInstitutesofHealth(PO1AI070167),the fections in insects, as shown by the production of virus-derived AgenceNationaledelaRecherche(ANR-09-MIEN-006-01),theBalzanFoundation siRNAs in infected flies, and the increased susceptibility to viral (toJ.A.H.),theEuropeanResearchCouncil(ERCStartingGrantncRNAVIR260767 to S.P.),the Investissement d’AvenirProgram Laboratoire d’Excellence (NetRNA infection of Drosophila mutants for the genes Dcr-2 and AGO2 ANR-10-LABX-36),andtheCentreNationaldelaRechercheScientifique. (3–6). In addition, several reports indicate that an inducible re- ThesequencespresentedinthisarticlehavebeensubmittedtotheGeneExpression sponse also contributes to the control of viral infections (7–15). Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE31542 We previously showed that infection with Drosophila C virus andtotheNationalCenterforBiotechnologyInformationSmallReadArchive (http://www.ncbi.nlm.nih.gov/sra)underaccessionnumberGSE41007. (DCV),amemberoftheDicistroviridaefamily,leadstoinduction ofsome130genes(11).Analysisoftheregulationofoneofthese AddresscorrespondenceandreprintrequeststoProf.Jean-LucImler,IBMC-CNRS/ Universite´ deStrasbourg,RueReneDescartes,Strasbourg,Alsace67084,France. genes, vir-1, revealed the presence of functionally important E-mailaddress:[email protected] bindingsitesforthetranscriptionfactorSTATinitspromoter.The Theonlineversionofthisarticlecontainssupplementalmaterial. induction of vir-1, as well as several other DCV-induced genes, Abbreviationsusedinthisarticle:AGO,Argonaute;CrPV,cricketparalysisvirus; was found to be dependent on the gene hopscotch (hop), which Dcr-2,Dicer-2;DCV,DrosophilaCvirus;dpi,daypostinfection;DXV,DrosophilaX encodes the only JAK kinase in Drosophila. Furthermore,hop virus; FHV, Flock House virus; IIV-6, invertebrate iridescent virus type 6; Imd, immunedeficiency;MEKK1,MEKkinase1;RNAi,RNAinterference;SINV,Sind- mutant flies succumb more rapidly than do wild-type controls, bisvirus;siRNA,smallinterferingRNA;TotM,TurandotM;Upd,unpaired;VSV, with a higher viral load, to DCV infection (11). The Toll and vesicularstomatitisvirus. immune deficiency (Imd) pathways, initially characterized for Copyright(cid:1)2013byTheAmericanAssociationofImmunologists,Inc.0022-1767/13/$16.00 their role in the control of bacterial and fungal infections, were www.jimmunol.org/cgi/doi/10.4049/jimmunol.1102486 TheJournal ofImmunology 651 also thought to play a part in the control of viral infections. cells. DCV, CrPV, FHV, and IIV-6 were titrated on Kc167 (DCV, CrPV, Whereas the Toll pathway was associated with resistance to the and FHV) or S2 (IIV-6) cells by the Reed–Muench method to calculate 50%tissueculture–infectivedoseandconvertedtoPFUwithaconversion DrosophilaXvirus(DXV)(15),theImdpathwaywasimplicated factorof0.7. in the control of Sindbis virus (SINV) (7) and cricket paralysis virus(CrPV)(9). RNAanalysis Altogether, the data in the present literature point to the in- Total RNA from infected flies was isolated using TRI Reagent RT bro- volvement of both RNAi and an inducible expression of effector moanisolesolution(MRC),accordingtothemanufacturer’sinstructions. molecules tocounter viralinfectionsin insects(5,16).However, TotalRNA,1mg,wasreversetranscribedusingiScriptcDNASynthesis Kit (Bio-Rad). The reverse transcription was run in the T3000 Thermo- whereas RNAi was shown to contribute to resistance to several cycler (Biometra), with the following PCR program: step 1: 65˚C for 5 RNAviruses (with either single-stranded genomes of both polar- min,step2:4˚Cfor5min,step3:25˚Cfor10min,step4:42˚Cfor60 ities or double-stranded genomes), most studies on the inducible min,andstep5:70˚Cfor15min.Atotalof100ngcDNAwasusedfor response have so far focused on a single virus. As a result, the quantitativereal-timePCR,usingtheiQCustomSYBRGreenSupermix global significance of the inducible response for the control of Kit (Bio-Rad). The PCR was performed using the CFX384 Real-Time System (Bio-Rad) with the following program: step 1: 95˚C for 3 min, viral infections remains poorly understood. In particular, it is step2:95˚Cfor10s,step3:55˚Cfor30s,repeated39timesfromstep2. unclear at present if the JAK-STAT pathway is involved in a PrimersusedforqPCRwereasfollows:RpL32(forward59-GACGCTTC- generalantiviralresponse,providingbroadantiviralimmunity,or AAGGGACAGTATCTG-39;reverse59-AAACGCGGTTCTGCATGAG-39), ifitactsspecificallyonacriticalstepinthereplicationcycleofa vir-1(forward59-GATCCCAATTTTCCCATCAA-39;reverse59-GATTAC- AGCTGGGTGCACAA-39), drosomycin (forward 59-CGTGAGAACCTT- specificvirusorvirusfamily.Toaddressthisimportantquestion, TTCCAATATGATG-39;reverse59-TCCCAGGACCACCAGCAT-39),and we have compared the resistance of a mutant for the JAK-STAT diptericin (forward 59-GCTGCGCAATCGCTTCTACT-39; reverse 59- pathwaytoinfectionbysevenRNAorDNAviruses.Wefindthat TGGTGGAGTGGGCTTCATG-39). Turandot M (TotM), upd, upd2, and D hop mutant flies are more susceptible than wild-type controls to upd3 expression levels were quantified using the Brilliant II QRT-PCR o w infectionsbytheDicistroviridaeDCVandCrPV,butexhibiteither CoreReagentKit,1-step(Stratagene).Thereactiontookplaceinatotal n volume of 20 ml, using the Taqman Gene Expression Assay [TotM lo no or a weak phenotype for other viruses, suggesting that the a (Dm02362087s1),upd(os)(Dm01843792_g1),upd2(Dm01844134g1), d e JAK-STAT pathway–dependent inducible response is virus spe- upd3(custom-designedupd3exon2-ANY),andRpL32(Dm02151827g1), d cific. Genome-wide transcript profiling shows that infection by all from Applied Biosystems]. We used the 7500 Fast Real-Time PCR fro two other RNA viruses, Flock House virus (FHV; Nodaviridae) System(AppliedBiosystems)withfollowingPCRprogram:step1:45˚Cfor m and SINV (Alphaviridae), leads to upregulation of $400 genes, 310mminin,,restpeepat2e:d9359˚Ctimfoers1f0rommins,tesptep3.3I:n9a5l˚lCcafsoers,15gesn,esteexppr4e:ss6i0o˚nCwfoasr http whichonlypartiallyoverlapwiththoseinducedbyDCV.Overall, normalizedtotheribosomalproteingeneRpL32. ://w our data indicate that the siRNA pathway exerts broad antiviral ForIIV-6,theexpressionoftheannotatedgenes206R,224L,244L,and w w aspceticviifityc ianndducaibffleectrsesbpootnhseRsNcoAntarinbdutiDngNAtovtihreusceos,ntrwoilthofvviriuras-l 2R6e1vRersweaTsraasnssecsrsipedtasbeyssptercainfidc-aslpleyciafidcapRteTd-PfCoRr.geWnee-supseecdifiScupperirmScinrigptaInIdI .jim followed the manufacturer’s protocol (Invitrogen). Briefly, primer pairs m infections inDrosophila. were designedto amplify regionsofthe IIV-6genomeexhibitingornot un Materials and Methods ferxohmibiitninfegctaedhiSgh2dceelnlssitwyaosfrsemvearlsleRtNraAnsrceraibdesd.Twoittahl2RNpmA,o1lmofg,eietxhterracftoerd- ol.org Flystraincultureandinfection wTraarndsc(rFip)taosre.reTvheersreea(cRti)onprwimaserthaenndin2c0u0baUtedoffoSru1pheraStc5ri5p˚tCI.ITIhRenev1ermsel by/ Oregon-R(OR)andywwereusedaswild-typecontrolflies.ThehopM38/msv1, oftheresultingcDNAwasusedtoperform25cyclesofPCR,usingTaq gu Dcr-2L811fsX,andDcr-2R416Xmutantflieswerepreviouslydescribed(17– DNApolymerase(Invitrogen)andbothFandRprimers.Theprimerpairs es 19).AgenomicrescueoftheDcr-2genewasestablishedwiththeFosmid wereasfollows:206R(forward:59-AAGGAAAGTGGCGAGTACGA-39, t o FatltyPF4o0s0(21L7)0,74an(dtrtahnesgterannesogmenei.cmcphi-rcobmgo.dsoem) ienswearstedrecaotmthbeinleadndwinitghstihtee rAeTveCrAseC5A9T-ATAGCAACACTATCGC-C3G9,TrTevTeTrsCeT:T5C9-CAATA-3A9)G;C22G4ALA(CfoCrwCaGrdA:A5A9-TCCCAA-C3C9)-; n Ap edxepfiecriiemnceyntDs,f(D2Rcr)-B2SCm4u5t,anwtshicwheurenccorvoesrssedthewDitchr-t2helocduesfi.cFieonrctyheDref(s2cRue) 2A4C4CLT(CfoCrCwGarGd:A5A9G-TAGTGTAT-A3A9);A2G6A1RGT(GfoGrwTaCrdC:C5A9-TCTATG-3C9,CrCevCeArsTeC:C5G9-ATGATT-- ril 11 BSC45ortheDf(2R)BSC45–Dcr-2rescueline.Flieswerefedonstandard TACTA-39,reverse:59-CTGCAACTGCAGAAATTTGA-39).ThePCRbands , 2 cornmeal–agar medium at 25˚C. All fly lines were tested for Wolbachia weresequencedtoverifytheirviralorigin. 01 9 infectionandcuredwhenevernecessary.Viralstockswerepreparedin10 Statisticalanalysis mM Tris-HCl, pH 7.5, with the exception of vesicular stomatitis virus (VSV),whichwasuseddirectlyfromVerocellculturesupernatant[VSV Anunpairedtwo-tailedStudentttestwasusedforstatisticalanalysisof 43109PFU/ml;DCV531010PFU/ml;CrPV13109PFU/ml;FHV datawithGraphPadPrism(GraphPadSoftware).Thepvalues,0.05were 5.53109PFU/ml;DXV4.43107PFU/ml,invertebrateiridescentvirus consideredstatisticallysignificant.Survivalcurveswereplottedandana- type6(IIV-6)4.431011PFU/ml;andSINV53108PFU/ml].Infections lyzedbylog-rankanalysis(Kaplan–Meiermethod)usingGraphPadPrism were performed with 4- to 6-d-old adult flies by intrathoracic injection (GraphPadSoftware). (Nanoject II apparatus; Drummond Scientific) with viral particles, indi- catedinthefigurelegends.Injectionofthesamevolume(4.6nL)of10 DNAmicroarrayanalysis mMTris-HCl,pH7.5,wasusedasacontrol.Forbacterialinfection,flies Foreachsample,Tris-injected,DCV-infected(11),andFHV-andSINV- were pricked with a thin needle previously dipped in a concentrated infected, three biologically independent samples comprising 45 male overnight culture of Escherichia coli and Micrococcus luteus in Luria– Oregon-Rflieswereused.RNAextraction,biotinylation,andhybridization Bertanimedium.Infectedflieswerethenincubatedatroomtemperature, to Affymetrix Drosophila GeneChip microarrays (Affymetrix) were per- orat29˚CinthecaseofhopM38/msv1andthecorrespondingcontrolflies, formed as described (20). The Affymetrix Microarray Suite 5.0 (Affy- and monitored daily for survival, or frozen for RNA isolation and virus metrix)orExcel(Microsoft)withacombinationofbuilt-infunctionsand titrationattheindicatedtimepoints. customformulaewasusedfordataanalysis.Rawdataweresortedwiththe Cell cultureandvirustitration “absent-marginal-present flags” generated by the Microarray Suite func- tions.AlthoughanabsentflagmightindicatethatnomRNAofaparticular VeroRcellsweregrowninDMEM(Invitrogen)supplementedwith10% typewaspresentinasample,marginalflagsandabsentflagsmayindicate FCS (Biowest), penicillin/streptomycin (Invitrogen), nonessential amino problems with the hybridization; therefore, only data points marked as acidmix(Invitrogen),10mMpyruvate(LifeTechnologies),and200mML- presentin at least onereplicatewereretained.Theremainingdatamass glutamine (Invitrogen). Kc167 and S2 cells were grown in Schneider’s foreachmicroarraywasthennormalizedtoitself,making1themedian medium(Biowest)supplementedwith10%FCS,GlutaMAX(Invitrogen), ofallthemeasurements.Agenewasconsideredinducedifpresentinat andpenicillin/streptomycin(1003mix,10mg/ml/10,000U;Invitrogen). leastonereplicate,withavirus/Trisratiohigherthan2foratleastoneof VSVandSINVweretitratedfrominfectedfliesbyplaqueassayonVeroR the time points. Classification of gene functions was analyzed by David 652 VIRUS-SPECIFICINDUCIBLE RESPONSEINDROSOPHILA BioinformaticsResources6.7(21).ThedatasetforFHVandSINVwas which is characteristic of the accumulation of iridescent viral submitted to the Gene Expression Omnibus database (http://www.ncbi. particles,thaninwild-typecontrols(Fig.1A).Dcr-22/2flieswere nlm.nih.gov/geo/)withtheaccessionnumberGSE31542. significantly more susceptible to IIV-6 infection than were the Assembly,sequencing,andanalysisofsmallRNAlibraries corresponding wild-type (Fig. 1B). A fraction of Dcr-22/2 flies injected with buffer also died in the course of the experiment, The small RNA library of S2 cells and whole flies was constructed as confirming the increased sensitivity to stress associated with described (22)and sequenced by the Illumina2GAnalyzer. Reads were thenalignedtoareferenceconsistingoftheIIV-6genomefromtheNa- mutations of the siRNA pathway (31). The decreased survival tionalCenterforBiotechnologyInformation(accessioncodeNC_003038) timecorrelatedwitha20-foldincreasedviralloadinDcr-2mutant usingtheBowtieprogramwithstandardparametersingenomeassembly. flies at 10 d postinfection (dpi) (Fig. 1C). Similar results were ReadsaligningtotheIIV-6genomewithamaximumofonemismatchwere obtained when a different null allele of Dcr-2 was used, and the retainedandanalyzedusingin-housePerlscriptsandExcel.Sequenceswere submittedtotheNationalCenterforBiotechnologyInformationSmallRead IIV-6 susceptibility phenotype was rescued by a wild-type geno- Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?) under the acces- mic Dcr-2 transgene (Fig. 1D). The r2d22/2 and AGO22/2 null sionnumberGSE41007. mutant flies also exhibited increased sensitivity to IIV-6 (Fig. 1E).AGO22/2fliescontainedmoreviralDNAthandidwild-type Results controls, confirming that this gene participates in the control of RNAiprovidesbroadantiviralprotectioninDrosophila infection (Fig. 1F). Severalindependent studies, includingour own,have established We next sequenced small RNA libraries prepared from IIV-6– that RNAi, and more precisely the siRNA pathway, serves as an infected S2 cells or adult flies. We observed several hundreds of efficienthostdefenseagainstRNAviruses.Theseincludeviruses thousandsofreadsmatchingtheIIV-6genomeinbothinfectedS2 with a single-stranded genome of both (+) and (2) polarity and cells and wild-type flies, but not in control noninfected S2 cells D dsRNA viruses (23–30), and we confirmed that flies mutant for (Supplemental Table I). The large majority of these reads had a o w Dcr-2died more rapidly thanwild-type controls when theywere size of 21 nucleotides, which is characteristic for processing by n lo infectedwithDCV,CrPV,FHV,SINV,VSV(Rhabdoviridae),and theRNaseDicer-2(Dcr-2).Thispeakwasabsentfromthelibrary a d DXV (Birnaviridae) (data not shown). Next, we addressed the prepared from infected Dcr-22/2 mutant flies (Fig. 2A). These ed question whether the siRNA pathway also participated in the data indicate that Dcr-2 generates 21-nucleotide IIV-6–derived fro m controlofaDNAvirusinfection,andinfectedwild-typeandRNAi siRNAsininfectedflies,andraisethequestionofthenatureofthe h mutant flies with IIV-6 (Iridoviridae). Infection of Dcr-2 mutant substrate used by Dcr-2 in the context of this infection. As pre- ttp flies led to a more rapid and intense appearance of blue color, viously reported for RNAviruses, the number of reads matching ://w w w .jim m u n o l.o rg b/ y g u e s t o n A p ril 1 1 , 2 0 1 9 FIGURE1. Dcr-2isinvolvedinhostdefenseagainsttheDNAvirusIIV-6.(A)UponinjectionofIIV-6(5000PFU)inwild-type(yw)andDcr-2R416X mutantflies,typicalblueparacrystallinestructuresappearedearlierintheabdomen(arrowhead)ofthemutantflies.Representativeindividuals10dpiare shown.(B)Groupsof20wild-type(yw)orDcr-2R416XmutantflieswereinjectedwithIIV-6orTris,andsurvivalwasmonitoreddaily.Thedifference betweenthewild-typeandDcr-2mutantfliesisstatisticallysignificant.(C)Viraltiteringroupsoffivewild-type(yw)orDcr-2R416Xmutantflieswas monitored 10 dpi. (D) Rescue of the hemizygous Dcr-2L811fsX for the IIV-6 susceptibility phenotype by a transposon expressing a wild-type Dcr-2 transgene.Dcr-2L811fsXhemizygousflies(Dcr-2L811fsX/Df)aresignificantlymoresusceptiblethanDcr-2L811fsXhemizygousfliescomplementedbyawild- typeDcr-2transgene(Dcr-2L811fsX/Dfrescue).DfisDf(2R)BSC45,adeficiencythatfullyuncoverstheDcr-2locus.Allcontrolandgenomicrescuedflies areinCantonSbackground.(E)Survivalrateofwild-type(yw),R2D21,andAGO2414mutantfliesuponIIV-6orTrisinjection.(F)IIV-6DNAloadwas determinedbyquantitativePCRinfourgroupsofsixfliesoftheindicatedgenotypeat10dpi.Forallpanels,thedatarepresentthemeanandSDofatleast threeindependentexperiments,andthedifferencebetweencontrolsandmutantfliesisstatisticallysignificant.*p,0.05,***p,0.001.Allexperiments areperformedat22˚C(A,C,F)or25˚C(B,D,E). TheJournal ofImmunology 653 D o w n lo a d e d fro m h ttp ://w w w .jim FIGURE2. Virus-derivedsiRNAsinS2cellsandDrosophilaadultfliesinfectedbytheDNAvirusIIV-6.RNAwasextracted5dpifromS2cellsinfected m u byIIV-6(MOI0.01)andadultwild-type(yw)ormutant(Dcr-2R416X)fliesinjectedwithIIV-6(5000PFUperfly).(A)SizedistributionofthesmallRNAs n o matchingtheviralgenomeinS2cellsandadultfliesoftheindicatedgenotype.(BandC)Distributionofthe21-nucleotidesiRNAsfromtheS2cell(B)and l.o ywadultfly(C)librariesalongtheIIV-6genome.EachIIV-6–derivedsmallRNAisrepresentedbythepositionofitsfirstnucleotide.TheIIV-6–derived rg smallRNAsmatchingtheupperandlowerstrandoftheDNAgenomearerespectivelyshownabove(positivereadsnumber)andbelow(negativereads b/ y number)thehorizontalaxis,whichrepresentsthe212482bpgenome.In(B),thenumberofreadsforfourpeaksgoingoff-scaleisindicatednexttothem,in g u italics.(D)Strand-specificRT-PCRwithprimerscorrespondingtotheannotatedviralgenes206R,224L,244L,and261R.Theexperimentwasperformedin e s thepresence(+)orabsence(2)ofRT.NI,Noninfected;FandR,forwardandreversestrandprimerusedforreversetranscription. t o n A p each strand of the viral genome was very similar (Supplemental mutantfliesdiemorerapidlythandowild-typecontrolsfollowing ril 1 TableI).However,unlikeRNAviruses,thevirus-derivedsiRNAs DCV infection, and contain ∼10-fold more virus (Fig. 3A). By 1, 2 were not uniformly distributed along the viral genome. Rather, contrast, we did not observe significant differences in survival 0 1 several hotspots were observed,revealing that specificregionsof between wild-type and hopM38/msv1 mutant flies upon infection 9 theviralgenomegeneratethesiRNAs(Fig.2B,2C).Thesepeaks withthealphavirusSINV(Fig.4A),andtheviraltiters2dpiwere do not correlate with the intensity of transcription of the viral not significantly different in wild-type and hopM38/msv1 mutant genome,andsomehighlytranscribedregionsarelocatedinareas flies(datanotshown),indicatingthattheJAK-STATpathwaydoes not generating significant levels of siRNAs (32). The strong not contribute to resistance to this virus. The hopM38/msv1 mutant symmetry of the peaks observed in S2 cells and wild-type flies flies, as well as wild-type flies, also resisted infections by the suggests that these regions are transcribed on both strands and rhabdovirus VSV and by the nodavirus FHV (Fig. 4B, 4C). A generate dsRNA.Indeed, we coulddetect bidirectional transcrip- slightreductioninsurvivalwasobservedinthecaseofthedsRNA tion in the areas of the viral genome covered by the peaks (Fig. virusDXV(Birnaviridae)andtheDNAvirusIIV-6(Fig.4D,4E). 2D). By contrast, transcription of only one strand of the DNA However,thedifferencebetweenwild-typeandhopM38/msv1mutant genome was detected for the locus 261R, which is located in flieswasonlystatisticallysignificantinthecaseofDXVinfection. a region that does not produce significant amounts of siRNAs. Furthermore,wedidnotobservestatisticallysignificantdifferences Overall, these results indicate that the siRNA pathway in Dro- in the DXVand IIV-6 viral titersin wild-type andhopM38/msv1 sophila can alsoprotectagainsta DNAvirusinfection. mutantfliesin theformat ofour assays(data notshown). Overall,ourdataindicatethattheJAK-STATpathwayiscriticalfor The JAKkinase Hopscotchdoesnotconferbroadantiviral hostdefenseagainstDCV,butplaysaminorroleforDXVandIIV-6 immunity andisessentiallydispensableinthecaseofFHV,SINV,andVSV.We To test the contribution of the JAK-STAT pathway in antiviral thereforetestedCrPV,anothermemberoftheDicistroviridaefamily immunity in Drosophila, we injected loss-of-function mutants of knowntoinfectDrosophila.Weobservedadecreaseinsurvival the JAK kinase Hopscotch (hopM38/msv1) with different ssRNA, andasignificantincreaseinviraltitersinCrPV-infectedhopM38/msv1 dsRNA, and DNA viruses. As previously described, hopM38/msv1 mutantfliescomparedwithwild-typeflies(Fig.3B).Inconclusion, 654 VIRUS-SPECIFICINDUCIBLE RESPONSEINDROSOPHILA D o w n lo a FIGURE3. TheJAKkinaseHopscotchisinvolvedinhostdefenseagainstDCVandCrPV.(AandB)Groupsof20wild-type(OR)orhopscotch(hopM38/msv1) de d dmautatanretpflrieessenwtetrheeinmjeecatnedanwditShDD.CInVt(h5e00rigPhFtUp)a(nAe)lso,rvCirraPlVtit(e5rPwFaUs)d(eBte)r,manindesduirnvigvraoluwpassomffiovneitoflrieeds2dadilpyi.fTohreDeCxVpe(rAim)eanntdw1adspriepfoeratCedrPtVhre(Be)t.imThees,daantda from representthemeanandSDofthreeindependentexperiments,andthedifferencebetweenwild-typeandhopmutantfliesisstatisticallysignificant.*p, h 0.05,**p,0.01,***p,0.001.(C)DCVandCrPVinfectiontriggersinductionofthegenesupd2and upd3,whichencodecytokines activatingthe ttp JAK/STATpathway.FlieswereinfectedwithDCVorCrPV,andexpressionofupd,upd2,andupd3wasmonitoredingroupsof10fliesattheindicated ://w timepointsbyTaqmanquantitativePCR.Theresultsofatleasttwoindependentexperimentsareshown. w w .jim m ourdataindicatethattheJAK-STATpathwayinDrosophilaconfers expressioninfliesinfectedbyFHV(2and3dpi)orSINV(4and8 un o protectionagainstsomeviruses—inparticular,theDicistroviridae— dpi),andcomparedthedatawiththoseobtainedforDCVinfection l.o butdoesnotprovidebroadantiviralimmunity. (1and2dpi).Thetimepointsforthisanalysiswerechosentotake rg intoaccount thedifferentkineticsofreplication andcolonization b/ Induciblegeneexpression inFHV-andSINV-infectedflies ofDrosophilabythedifferentviruses(11,24).Foreachvirus,we y g u The above results raised the question of whether an inducible observedalargeoverlapbetweenthegenesinducedatthefirstand es response contributes to host defense against viruses other than secondtimepoints.Wethenpursuedouranalysis,focusingonthe t o n DCVand CrPV. We therefore conducted a genome-wide micro- genes induced either at the first or at the second time point. The A p arrayanalysisusingAffymetrixDNAmicroarraystomonitorgene microarraydatarevealedthat487and201geneswereinducedor ril 1 1 , 2 0 1 9 FIGURE4. SusceptibilityoffliesmutantfortheJAK kinaseHopscotchtoinfectionbySINV,VSV,FHV,DXV,andIIV-6.Groupsof20wild-type (OR)orhopmutantflieswereinjectedwithSINV(A),VSV(B),FHV(C),DXV(D),orIIV-6(E),andsurvivalwasmonitored.ForVSVandSINV,theTris buffercontrolinjectionisalsoshown,becausehopmutantfliesexhibiteddecreasedsurvivalat29˚Cafterday16uponbothbufferandvirusinjection. Kaplan–Meieranalysisoftheresultsofatleasttwoindependentexperimentsrevealastatisticallysignificantdifferenceinsurvivalbetweenwild-typeand hopmutantfliesonlyinthecaseofDXV.*p,0.05. TheJournal ofImmunology 655 D o w n lo a d e d FIGURE5. MicroarrayanalysisofgeneinductionfollowinginfectionbyDCV,FHV,orSINV.(A)Venndiagramshowingthenumberofupregulated fro genes(byafactorofatleast2)followinginfectionbythethreeviruses.Thetotalnumberofgenesregulatedbyeachvirusisindicatedinparentheses.(B) hm FHVandSINVinducemembersofthesamegenefamilies,butFHVtriggersastrongerresponse.Thenumbersofgenesbelongingtosevengeneontology ttp functionalcategoriesinducedbybothFHVandSINVorbyFHVonlyareshown.(C)Expressionofvir-1andTotMbyquantitativePCRnormalizedforthe ://w expressionofthehousekeepinggeneRpL32.Groupsof10wild-type(OR)flieswereinjectedwithTrisbufferorthevirusesDCV,CrPV,FHV,SINV,VSV, w DXV,orIIV-6orprickedwithaneedledippedinaconcentratedpelletoftheGram-positivebacteriumM.luteusandtheGram-negativebacteriumE.coli. w RNAwasextractedat6h,1d,2d,3d,and4dafterchallenge.ThedatarepresentthemeanandSEsofatleasttwoindependentexperiments.Thepvalues .jim werecalculatedforeachtimepointindividuallyversustheTris-injectedcontrol.*p,0.05,**p,0.01,***p,0.001. m u n o upregulated by a factor of at least 2 upon infection by FHVand FHVarealsoinducedbySINV(Fig.5A).Itisintriguing,though, l.org SINV, respectively. When analyzed with the same criteria, 166 thatmanyofthegenesinducedsolelybyFHV,butnotbySINV, b/ genes wereinducedbyDCV (Fig. 5A,Supplemental Table II). aremembersofthesamegenefamiliesasthegenescoinducedby y g Thedataofthistranscriptomicanalysiscallfortwocomments. both FHVand SINV. This peculiarity underlines the basic simi- ue s First, we note that 42 genes were induced by all three viruses laritiesbetweenthetranscriptionalresponsetothetwoviruses.In t o (Fig.5A).Wecomparedthissetofgeneswithmicroarraystudies addition, several genes associated with cell death are induced by n A performedonfliesinfectedbyfungiandbacteria(bothextra-and FHV, but not SINV, which may reflect the higher virulence of p intracellular) to identify a potential signature specific for viral FHV(Fig.5B,SupplementalTablesII,III).Only22%and16%of ril 1 1 infections(SupplementalTableIII).Weobservedthatanumberof the genes induced by SINVand FHV, respectively, are also in- , 2 genes, such as Frost, are upregulated similarly by all types of duced by DCV, indicating that DCV, on one hand, and FHVand 0 1 infections, suggesting that they are induced by the stress of the SINV, on the other hand, trigger different inducible responses 9 infection, rather than by recognition of specific characteristics (Fig.5A).Wedidnotdetectinourmicroarraysexpressionofthe of the infecting microorganism. Of interest, other genes, such as genes encoding the unpaired (Upd) cytokines, which activate the Vago, Obp99b, Mal-B1, Nmda1, CG8147, CG1572, l(2)gd1, JAK-STATpathwayinDrosophila.However,quantitativeRT-PCR CG14906, CG10911, and Tsp42EI, appear to be induced only in analysisrevealedthatupd2andupd3,butnotupd,areinducedor response to viral infections, and may represent the core of an upregulated followingDCVand CrPVinfection (Fig. 3C). inducibleantiviralgeneexpressionprogram.ThecaseofObp99b Virus-specificpattern ofgeneinduction is particularly striking, as this gene is strongly upregulated by FHV, SINV, and DCV, but inhibited following other types of in- To further characterize the transcriptional response triggered by fection. Clearly, the regulation and function of this molecule different viruses, wild-type flies were injected with DCV, CrPV, deserves further investigation. The genes CG4680, Eip75B, Sp7, FHV, SINV, VSV, DXV, and IIV-6, and gene induction was and CG10916 are induced both by the viruses and by the intra- measured at 6 h postinfection and 1, 2, 3, and 4 dpi. Gene ex- cellular bacterium Listeria (33), suggesting that theymay partic- pression was monitored by quantitative RT-PCR, which provides ipate in the defense against intracellular intruders (Supplemental a more accurate quantification of gene expression than does hy- Table III). bridizationtoshortoligonucleotideprobesonmicroarrays(34).We Asecondcommentisthatthemajorityofupregulatedgenesare monitoredexpressionoftheDCV-inducedgenevir-1(11)andof inducedbyonlyoneortwooftheviruses,revealingvirus-specific TotM,which,accordingtothemicroarrays,isinducedbyFHVand responses. Of interest, 84% of the genes upregulated by SINV SINVinfection.Weconfirmedtheinductionofvir-1byDCVand arealsoinducedbyFHV,pointingtoastrongsimilaritybetween FHV (11) and detected a milder but significant induction of this theresponsestothetwoviruses.FHVinducedahighernumberof gene by CrPV infection. By contrast, no induction of vir-1 by genesthandidSindbisvirus,andonly34%ofthegenesinducedby SINV, VSV, DXV, and IIV-6 was observed (Fig. 5C). For TotM, 656 VIRUS-SPECIFICINDUCIBLE RESPONSEINDROSOPHILA we confirmed the induction by FHVat different time points. In cells, as demonstrated by the critical role played by the dsRNA addition, we observed that TotM expression was significantly in- receptorTLR3inthesensingofherpesvirusinfectioninmammals ducedbyDCVatlatetimepointsofinfection(4dpi).Wenotethat (39, 40). Our data are consistent with a model whereby dsRNA induction of TotM by SINV, VSV, and DXV was 10–20 times generated from convergent transcription of the IIV-6 genome is strongerthantheinductionbyFHV(Fig.5C).TheDNAvirusIIV- processed by Dcr-2 and triggers RNAi. Thus, we conclude that 6 did not induce TotM at any measured time point. Interestingly, RNAi provides an efficient and highly specific RNA-based de- we observed different profiles for vir-1 and TotM induction after fense against many types of viruses in Drosophila and probably viralchallenge.Overall,thevirusesthatkillwild-typefliesrapidly other insects. This conclusion parallels the situation described (within10d),suchasDCV,CrPV,andFHV,werepotentinducers in plants. Thevertebrates, which largelyrely on the induction of ofvir-1,whereaslesspathogenicviruses,suchasSINV,VSV,and IFNstocounterviralinfections,appeartobetheexceptionamong DXV, did not induce vir-1. The opposite trend was observed for multicellular organisms (1).Ofinterest,however,theDExD/H TotM,whichwasmostpotentlyinducedbySINV,VSV,andDXV. box helicase domains found in Dcr enzymes and RIG-I–like Thedifferentpatternofinductionofvir-1andTotMsuggeststhat receptors,whichsensethepresenceofviralRNAsincellsinfected thetwogenesmayberegulateddifferently,eventhoughbothwere byRNAandDNAviruses,arephylogeneticallyrelated(10).This previouslyshowntoberegulatedbytheJAK-STATpathway(11, findingsuggeststhatanessentialdomainofacoremoleculefrom 17). Indeed, the MAP3K MEK kinase 1 (MEKK1) and the Imd theancestralantiviralresponse,RNAsilencing,wasatsomepoint pathways are also known to contribute to the induction of TotM recruited to sense viral RNAs invertebrates and to subsequently induction insomecontexts(17,35). activate a signalingpathwayleading toproduction ofIFNs. Some antimicrobial peptide genes were also upregulated ac- Virus-specificinducedgeneexpression inDrosophila cordingtothemicroarrays,suggestinganoverlapbetweenantiviral D immunity and antibacterial–antifungal defenses. We observed an Microarraysarepowerfultoolstomonitortheglobaltranscriptome o w enrichment for genes regulated by the Toll pathway [e.g., the ofinfectedcellsandcomparetheresponsetodifferentinfections. n lo cytokineSpaetzle(Spz)andtheantifungalpeptidesDrosomycine Despiteitslimitationsforaccuratemeasurementsofthemagnitude a d e (Drs)andMetchnikowine(Mtk)]intheDCV-specificsetofgenes ofexpressionchanges,thistechnologyprovidesusefulinformation d (Supplemental Table II). We also noted an enrichment of Imd on changes in gene expression (34). In this article, using whole- fro m pathway–regulatedgenes,suchastheantibacterialpeptidesAttacin- genome Affymetrix microarrays to analyze the transcriptome of h Aand -C, Diptericin-B, and the transcription factor Relish, in fliesinfectedbyDCV,FHV,orSINV,wereporttheexistenceofvirus- ttp thegenesupregulatedbybothDCVandFHV.However,whenex- specific responses to infection. These results are in keeping with ://w pressionofdiptericinanddrosomycin—twomarkersofactivation a previous study pointing to autophagy as an antiviral defense w w oqfuatnhteitaItmivdeaRnTd-PTCoRll,pnaothnweaoyfs,threesvpieructsievseltyri—ggweraesdmaonniintodruecdtiobny mvierucsheasniwsme uasgeadinbsetloVnSgVt,obduitffneoretnDtCfaVm,iilniefsecatniodnp(r1e4se).ntTdhiefftehrerenet .jim m comparabletothatofbacterialandfungalinfections,althoughthe characteristics that make them valuable for the current study. For u n wounding associated with the injection procedure clearly led to example, 1) DCVand FHV replicate rapidly and kill Drosophila o someexpressionof thegenes (SupplementalFig.1). uponinjection,whereasSINVdoesnotatthedoseused(11,24);2) l.org DCVisanaturalpathogenofDrosophila,whereasFHVandSINV b/ Discussion havenotbeenfoundinwildDrosophilapopulations(41);3)FHV y g We have investigated the involvement of RNAi and the evolu- and DCV possess, respectively, a strong and moderate viral sup- ue s tionarilyconservedJAK-STATsignalingpathwayintheresistance pressorofRNAi,whereasSINVpresumablydoesnot(28,42,43). t o toapanelofsevenvirusesrepresentingseveralimportantfamilies, The three viruses also have different tissue tropism and may be n A icnocnlturdasintigngthpeicaturbreo:voirnustehseSoInNeVhaanndd, aVbSrVo.adOaunrtidvairtaalpimromviudneitya athsesoicnifaetcetdedwhitohstt.isFsuoer-esxpeacmifipcle,mFoHdiVficwataisonrseciennttlhyesphhoywsinoltoogbyeoaf pril 1 1 basedonRNAicontributingtothedefenseagainstbothRNAand cardiotropicvirus,affectedbypotassiumchannelsregulatingheart , 2 DNAviruses,andontheotherhand,avirus-specifictranscriptional function(44),whereasDCVinfectioncausesintestinalobstruction 01 response involving the JAK-STAT pathway but playing a critical (S.ChtarbanovaandJ.-L.Imler,manuscriptinpreparation). 9 role onlyin thecase ofDicistroviridaeinfection. Comparison of the transcriptomes of the flies infected by the three viruses revealed more similarities between FHVand SINV RNAiprotectsagainstaDNAvirus infection than between each of these and DCV. This may reflect the co- Thepresentstudyextendsworkfromseveralgroups,includingour evolutionofDCVwithitshost,andthefactthatthisvirusmayhave own, showing that flies mutant for the siRNA pathway are more learnedtowardofftheantiviralarsenalofitshost. Indeed,DCV sensitivethanwild-typefliestoalargepanelofRNAviruses,and inducesfewergenesthandoesFHV,eventhoughthetwoviruses revealsthatDcr-2isalsorequiredforthecontroloftheDNAvirus replicate with similar kinetics and lead to the rapid death of the IIV-6.Wenote,however,thattheincreaseofviraltiterinsiRNA flies. The genes induced by FHVand SINVencode chaperonins pathway–mutantfliesisnotasstrongasinthecaseofsomeRNA (Tcp or Hsp), glutathione transferases, cytochrome P450s, stress viruses [e.g., VSV (25)]. This finding could reflect either the ex- markers (Tot family), thioester-containing proteins, and cyto- pression of a viral suppressor of RNAi by IIV-6 or the fact that skeletal regulators, suggesting an involvement of oxidative stress onlyaportionoftheviralgenomeistargetedbysiRNAs.Indeed, andphagocytosisintheresponsetotheseviruses.Thetwoviruses this virus encodes an RNaseIII enzyme, which could cleave alsoupregulatethegeneegghead(egh),whichencodesamolecule siRNA duplexes, as previously reported in plants infected by the involved in the uptake of dsRNA and antiviral immunity (27). sweet potato chlorotic stunt virus (36). The involvement of Dcr- DespitethelargeoverlapbetweenthegenesupregulatedbyFHV mediated immune responses against DNA virus infections was and SINV, the former induce a more intense transcriptional re- previously noted in plants, in which secondary structures in the sponse than the latter. This observation may reflect the more ag- transcribed viral RNAs, or dsRNAs formed from overlapping bi- gressive replication of FHV in Drosophila. Indeed, the genes directional transcripts, can be processed into siRNAs (37, 38). specificallyinducedbyFHVincludenotonlyadditionalmembers Production of dsRNA from DNA viruses also occurs in animal ofthefamiliesmentionedabove(Hsp,Tcp,Gst,cytP450,thioester- TheJournal ofImmunology 657 containingproteins),supportingtheideaofamoreintenseresponse, as flies mutant for either RNAi or the inducible JAK-STAT but also genes associated with cell death. In addition, FHVupre- pathway succumb toinfection 2–3 d before the controls, with an gulatesseveralmoleculespreviouslyconnectedtoinnateimmunity ∼10-foldincrease inviral titer. inDrosophila,suchasHel89B(45),POSH(46),orMEKK1(35), Interestingly, even though hop mutant flies appear to be spe- ormoleculesthatmay downmodulatethestrong responsetovirus cifically sensitive to Dicistroviridae, other viruses activate the infection (e.g., the genes CG9311 and Pez, encoding tyrosine JAK-STATpathway.Indeed,weobservedaslightincreaseinthe phosphatases). Finally, we note that FHVinduced eight genes lethality of hop mutant flies postinfection with DXVand IIV-6. encoding factors with RNA binding domains, including four In Aedes mosquitoes, the JAK/STAT pathway was also shown to DExD/Hboxhelicases,whichmayparticipateinthesensingand activate a defense against Dengue, a member of the Flaviviridae neutralization of viral nucleic acids. This specificity may reflect family (54). Wealso notethat theJAK-STATpathway–regulated aresponseofthehosttocountertheeffectofthestrongsuppressor genevir-1(11)isinducedbyDCVandCrPV,butalsoFHV,even of RNAi B2,a dsRNA-bindingprotein (47). thoughhopmutantfliesresistFHVinfectionmuchasdowild-type Anintriguingaspectofthetranscriptomeofvirus-infectedflies flies.Onehypothesistoexplainthisapparentparadoxisthatsome istheupregulationofgenesregulatedbytheTollandImdpathways. genesmaybeinducedinaJAK-STAT–independentmannerinthe WeobservedanenrichmentofTollpathwaytargetgenesinduced contextofviralinfections.Forexample,thegeneTotM,whichis infliesinfectedbyDCV,butnotFHVorSINV,suggestingthat inducedbyseveralvirusesnormallyresistedbyhopmutantflies, DCVinfectiontriggersthispathway.Amongthegenesinducedby can be induced by theMEKK1 pathway, in addition to the JAK- DCV,butnotbythetwootherviruses,wealsonotethepresenceof STATpathway(35).Indeed,weobservedthatTotMremainsfully Ect4,whichencodesaTIRdomaincytoplasmicmolecule.The induced by FHVand SINV in hop mutant flies (C. Dostert and mammalian ortholog of this gene, SARM, was proposed to par- J.-L. Imler, unpublished observations). However, this hypothesis D ticipateasanegativeregulatorofTLRsignalinginsomeantiviral cannot account for the induction of vir-1 by FHV, because it is o w defenses(48).TwoothergenesregulatedbyDCVandpossibly strongly reduced in hop mutant flies (C. Dostert and J.-L. Imler, n lo establishingaconnectionbetweenRNAsilencingandtheinducible unpublishedobservations).Thisfindingsuggeststhatsomeaspects a d e responseareworthmentioning:headcasewasidentifiedinascreen of the JAK-STAT–induced response may be redundant of other d as a regulator of the siRNA pathway (49), whereas CG9925 en- defenses for FHV, but not for DCV. The fact that FHV triggers fro m codesaproteinwithaTudordomain,acharacteristicofseveral a stronger transcriptional response than does DCV (Fig. 5) is h componentsofthePiwi-interactingRNApathway(50). consistent withthis hypothesis. ttp UnliketheToll-regulatedgenes,severalgenesregulatedbyImd A keyquestion pertains to the nature of thereceptor detecting ://w were induced in flies infected by DCVor FHV, although not by DicistroviridaeinfectionandtriggeringtheJAK-STAT–dependent w w SinINthVe. TrehgeulTaotilolnanodfIbmacdtepraiathlwaanydsfpulnagyaal iwnefellc-tcihoanrsa,cttherroizuegdhrtohlee isnudbusectibolefrgeesnpeosn,sein.cOluudrindgatathpeoiJnAtKto-StThAeTi–nrdeugcutiloatnedofgaensepevciirfi-1c .jim m regulationofgenesencodingantimicrobialpeptides.Thesegenes (11),byfast-killingvirusessuchasDCVandCrPV,butalsoFHV, u n arealsoupregulatedbyviralinfection,althoughnotsignificantly, which replicate rapidly to high titers upon injection in flies. Of o compared withbuffer injection. Thislowlevelofinductionmost note,vir-1inductionisnotaffectedinfliesexpressingthedsRNA- l.org likely explains our inability to detect antimicrobial peptides in binding protein B2, or in Dcr-2 mutant flies, indicating that this b/ thehemolymphofDCV-infectedflies(51).Althoughnotformally geneisnotinducedfollowingsensingofdsRNA(10).Thisfinding y g establishing that the Toll and Imd pathways participate in the suggests that sensing tissue damage and/or cell death could con- ue s antiviral response, these results certainly do not rule out such a tributetothisinducibleresponse,ahypothesiscorroboratedbythe t o role(7,9,15).Alternatively,inductionoftheantimicrobialgenes association of the JAK-STAT pathway with the cellular response n A mayinvolvethetranscriptionfactorFOXO,aknownregulatorof toavariety of stresses (17,55–57). p stressresistance,andmayoccurindependentlyoftheTollandImd Inconclusion,ourdataconfirmthat,beyondRNAi,aninducible ril 1 1 pathways (52). Whatever the mechanism of induction, the bio- response contributes to the control of some viral infections in , 2 logicalsignificanceofthisweakinductionofmoleculesnormally Drosophila. However, this response is complex, and great care 0 1 active in the micromolar range is unclear. One possibility is that should be exercised beforegeneralizing the resultsobtained with 9 theDrosophilaantimicrobialpeptidescarryadditionalfunctions one single virus species. This unexpected complexity probably that do not require high-level expression. For example, some reflectstheintricateassociationofviruseswiththeirhostcellsin mammalianb-defensinsplayadualroleininnateimmunityand, differenttissues,theirdifferentstrategiesofreplicationorprotein in addition to their antibacterial properties, interact with chemo- expression, ortheiracquisition ofsuppressors of hostdefense. kine receptors with affinities in the nanomolar range, thus medi- ating chemoattraction of phagocyticcells (53). Acknowledgments Dicistroviridae-specificcontributionoftheJAK-STATpathway WethankEstelleSantiagoandMiriamYambaforexcellenttechnicalassis- toantiviralimmunity tance, Phil Irving for help with the microarray experiments, Anette An unexpected finding reported in this article is that hop mutant Schneeman(TheScrippsResearchInstitute,LaJolla,CA)forproviding DXVandCrPV,TrevorWilliams(Veracruz,Mexico)forprovidingIIV-6, flies have a clear phenotype for DCVand CrPV, but not for the and Ste´phanie Blandin and Dominique Ferrandon for critical reading of othervirusestested.ThisobservationindicatesthattheJAK-STAT themanuscriptandhelpfulsuggestions.Themicroarrayanalysisandthe pathway,inadditiontoRNAi,participatesinhostdefenseagainst deep sequencing wereperformed at the PlateformeBiopuces et Se´quen- members of the Dicistroviridae family. DCV infection leads to c¸age,InstitutdeGe´ne´tiqueetdeBiologieMole´culaireetCellulaire,Stras- induction of the genes encoding the cytokines Upd2 and Upd3, bourg,France. whichmaysubsequentlyactivatetheJAK-STATpathwayinnon- infectedcells,triggeringanantiviralprogramofgeneexpression. Altogether, our results highlight that the contribution of the in- Disclosures ducibleresponsetothecontrolofDCVissimilartothatofRNAi, Theauthorshavenofinancialconflictsofinterest. 658 VIRUS-SPECIFICINDUCIBLE RESPONSEINDROSOPHILA References 29. Wang,X.H.,R.Aliyari,W.X.Li,H.W.Li,K.Kim,R.Carthew,P.Atkinson, andS.W.Ding.2006.RNAinterferencedirectsinnateimmunityagainstviruses 1. Beutler,B.,C.Eidenschenk,K.Crozat,J.L.Imler,O.Takeuchi,J.A.Hoffmann, inadultDrosophila.Science312:452–454. andS.Akira.2007.Geneticanalysisofresistancetoviralinfection.Nat.Rev. 30. Zambon,R.A.,V.N.Vakharia,andL.P.Wu.2006.RNAiisanantiviralimmune Immunol.7:753–766. responseagainstadsRNAvirusinDrosophilamelanogaster.Cell.Microbiol.8: 2. Kasturi, S. P., I. Skountzou, R. A. Albrecht, D. Koutsonanos, T. Hua, 880–889. H. I. Nakaya, R. Ravindran, S. Stewart, M. Alam, M. Kwissa, et al. 2011. 31. Lim,D.H.,C.T.Oh,L.Lee,J.S.Hong,S.H.Noh,S.Hwang,S.Kim,S.J.Han, Programmingthemagnitudeandpersistenceofantibodyresponseswithinnate andY.S.Lee.2011.TheendogenoussiRNApathwayinDrosophilaimpacts immunity.Nature470:543–547. stressresistanceandlifespanbyregulatingmetabolichomeostasis.FEBSLett. 3. Ding,S.W.2010.RNA-basedantiviralimmunity.Nat.Rev.Immunol.10:632– 585:3079–3085. 644. 32. D’Costa,S.M.,H.J.Yao,andS.L.Bilimoria.2004.Transcriptionalmappingin 4. Kemp,C.,andJ.L.Imler.2009.Antiviralimmunityindrosophila.Curr.Opin. Chiloiridescentvirusinfections.Arch.Virol.149:723–742. Immunol.21:3–9. 33. Goto,A.,T.Yano,J.Terashima,S.Iwashita,Y.Oshima,andS.Kurata.2010. 5. Sabin,L.R.,S.L.Hanna,andS.Cherry.2010.Innateantiviralimmunityin CooperativeregulationoftheinductionofthenovelantibacterialListericinby Drosophila.Curr.Opin.Immunol.22:4–9. peptidoglycan recognition protein LE and the JAK-STAT pathway. J. Biol. 6. vanRij,R.P.,andE.Berezikov.2009.SmallRNAsandthecontroloftrans- Chem.285:15731–15738. posonsandvirusesinDrosophila.TrendsMicrobiol.17:163–171. 34. Draghici,S.,P.Khatri,A.C.Eklund,andZ.Szallasi.2006.Reliabilityandre- 7. Avadhanula,V.,B.P.Weasner,G.G.Hardy,J.P.Kumar,andR.W.Hardy.2009. producibilityissuesinDNAmicroarraymeasurements.TrendsGenet.22:101–109. AnovelsystemforthelaunchofalphavirusRNAsynthesisrevealsaroleforthe 35. Brun, S., S. Vidal, P. Spellman, K. Takahashi, H. Tricoire, and B. Lemaitre. Imdpathwayinarthropodantiviralresponse.PLoSPathog.5:e1000582. 2006.TheMAPKKKMekk1regulatestheexpressionofTurandotstressgenesin 8. Carpenter,J.,S.Hutter,J.F.Baines,J.Roller,S.S.Saminadin-Peter,J.Parsch, responsetosepticinjuryinDrosophila.GenesCells11:397–407. and F. M. Jiggins. 2009. The transcriptional response of Drosophila mela- 36. Cuellar,W.J.,J.F.Kreuze,M.L.Rajama¨ki,K.R.Cruzado,M.Untiveros,and nogaster to infection with the sigma virus (Rhabdoviridae). PLoS ONE 4: J.P.Valkonen.2009.EliminationofantiviraldefensebyviralRNaseIII.Proc. e6838. Natl.Acad.Sci.USA106:10354–10358. 9. Costa,A.,E.Jan,P.Sarnow,andD.Schneider.2009.TheImdpathwayisin- 37. Moissiard, G., and O. Voinnet. 2006. RNA silencing of host transcripts by volvedinantiviralimmuneresponsesinDrosophila.PLoSONE4:e7436. cauliflower mosaic virus requires coordinated action of the four Arabidopsis 10. Deddouche,S.,N.Matt,A.Budd,S.Mueller,C.Kemp,D.Galiana-Arnoux, C.Dostert,C.Antoniewski,J.A.Hoffmann,andJ.L.Imler.2008.TheDExD/H- Dicer-likeproteins.Proc.Natl.Acad.Sci.USA103:19593–19598. D boxhelicaseDicer-2mediatestheinductionofantiviralactivityindrosophila. 38. BHl.eSv.inPsa,rTk,.,FR..VRazaqjeusewz,aDra.nR,Po.bVer.tSsohniv,aFp.rMaseaidn,sD,J.r.B,eTk.nHaozhanri,aanntsd,MA..SMi-.APmoomgoguinr,. ow Nat.Immunol.9:1425–1432. n 11. Dostert,C.,E.Jouanguy,P.Irving,L.Troxler,D.Galiana-Arnoux,C.Hetru, 2006. FourplantDicers mediateviral smallRNAbiogenesisand DNAvirus lo J.A.Hoffmann,andJ.L.Imler.2005.TheJak-STATsignalingpathwayisre- inducedsilencing.NucleicAcidsRes.34:6233–6246. ad quiredbutnotsufficientfortheantiviralresponseofdrosophila.Nat.Immunol.6: 39. Tabeta, K., P. Georgel, E. Janssen, X. Du, K. Hoebe, K. Crozat, S. Mudd, ed 12. H94e6d–g9e5s,3.L.M.,andK.N.Johnson.2008.Inductionofhostdefenceresponsesby Lse.nStihaalmcoelm,pSo.nSeonvtsatho,fJi.nnGaoteodiem,metunale.d2e0f0e4n.seToalgl-aliinksetrmecoeupsteorcsy9toamnedga3loavsireuss- from 13. R5Dm:oruo2xns0seot7rpr–o¨eh2msi1pl-a2oL.nCisnedvqiirnuuiass.dt,uJ.lKtG.D,erOno..soVTpierhoriell.nai8um9s:e,l1aa4nn9do7g–Ia.1s5tFe0ar1y:.ea.g2e0n0o4m.iPcasrtausditye.-EspMecBifiOcRiemp-. 40. ZVwin.hiftSaehncatgnhi,ocehrnSpo..e-PYsSr.h,soiiEcmm..ipNJzloueau,xtlaL.ne.AngLcucoeaypr,deh.Sna.SzlcUioti,i.gsAo.Ul.SiSPncAiiue,e1nAl0c,.e1eS:t3ma31l5a.71h2:6i01,–05G3725..22TE–1Ll1.a5Rin23,7d.P.efiRcoimenecryo,inDp.aSteiegnatls, http://w 14. Shelly,S.,N.Lukinova,S.Bambina,A.Berman,andS.Cherry.2009.Auto- 41. Plus,N.,G.Croizier,F.X.Jousset,andJ.David.1975.Picornavirusesoflab- w phagy is an essential component of Drosophila immunity against vesicular oratoryandwildDrosophilamelanogaster:geographicaldistributionandsero- w 15. Zpstaaotmmhwbaotainyti,siRsv.iimrAups.,.oMrItma.nmNtuafnonirdtyaakn3u0am:na5tir8v,8iVr–a.5lN9r8e..sVpaoknhsaeriian,DanrodsLop.hPi.laW.uP.ro2c0.0N5.aTtl.heAcTaodll. 42. BtVyeiprriarcly,csoBump.,ppSroe.ssiDstoieordsnd.ooAfuncRnh.Ne,MADics.riKolebinricosicln.hgn(Pehar,irniJsd.)eLr1.2eI6xm:ol1ge0ern,7o–au1ns1d7aC.n.dAenntdoongieewnoskuis.2sm00a9ll. .jimmu 1176.. AFS2inc0rgfai0ea.g9ciUks.tisoSoAeuAn,dd.Hiv1sJa0.,.,n2RGcU:.ee,.7snG2M.i5.nV.7Ai–dPrto7itesal2ts.re6ezr92cas0.tedi:nen2,hg0-MYm61a.oz–Bsd2qoi0u,u7iAtt2roo..sAi,n.nBNa.taeMshia,mtJhm.eKyu-n.PeFraerzveaoskpt,eoranlnseedys,Natno.dPaAerbr.roiKmvoiorhunls.. 4434.. LElBReil.Nn,ecfABHtihne.p,eguartWilbtaehy.nrw,oXaasJn.y,.LsaIAn.ii,,ni.mSaHDn.adorlWofvSfsomio.rnpuWa,hsn.Si.nlS.aD,c.CiainPenhgnLdt.acore2JSb.02aO0Ln92No6..v:EIIam1n,43dl:B1eu9rec..5–tSi812oq630nu621ia.11bn..adnA,sTuKPp.-psrOeencsssoiirtoriv,neRo.fpoBRtaoNsdAsmiusemir-, bynol.org/ 2003.SignalingroleofhemocytesinDrosophilaJAK/STAT-dependentresponse channel (K(ATP))-dependent regulation of cardiotropic viral infections. Proc. g tosepticinjury.Dev.Cell5:441–450. Natl.Acad.Sci.USA108:12024–12029. ue 18. LRe.eW,.YC.aSr.t,hKew..N2a0k0a4h.aDrai,stJin.cWt.roPlehsamfo,rKD.roKsiomp,hiZla.DHiec,erE-.1Ja.nSdoDntihceeirm-2eri,natnhde 45. Ymaegdii,atYe.s,aanndanYt.imTi.crIopb.i2a0l0r5es.pHoenlsiecaisne8D9rBosoisphailMa.oEt1MpB/BOTAReFp1.h6o:m10o8lo8g–u1e09th4a.t st on siRNA/miRNAsilencingpathways.Cell117:69–81. 46. Tsuda,M.,C.Langmann,N.Harden,andT.Aigaki.2005.TheRING-finger A 19. Liu,X.,F.Jiang,S.Kalidas,D.Smith,andQ.Liu.2006.Dicer-2andR2D2 scaffoldproteinPlentyofSH3stargetsTAK1tocontrolimmunitysignallingin p 1co2o:r1d5in1a4t–e1ly52b0i.ndsiRNAtopromoteassemblyofthesiRISCcomplexes.RNA 47. CDhroasoo,pJh.ilAa..,EJM.BHO. LReeep,.B6:.1R0.82C–h1a0p8a7d.os, E. W. Debler, A. Schneemann, and ril 11 20. IJr.vAin.g,HPo.,ffLm.aTnrno,xlaenrd,TC..S.HHeteruue.r,2M00.1B.eAlvigne,nCo.mKeo-wpcidzyenasknia,lyJ.siMs.oRfeiimchmhuanrte, JH.oRus.eWviilrluiasmpsrootne.in20B025..NDaut.alStmruocdt.esMoofl.RBNioAl.-s1i2le:n9c5in2g–9s5u7p.pression by Flock , 20 responsesinDrosophila.Proc.Natl.Acad.Sci.USA98:15119–15124. 48. Carty,M.,R.Goodbody,M.Schro¨der,J.Stack,P.N.Moynagh,andA.G.Bowie. 19 21. Huang,daW.,B.T.Sherman,andR.A.Lempicki.2008.Systematicandin- 2006. The human adaptor SARM negatively regulates adaptor protein TRIF- tegrativeanalysisoflargegenelistsusingDAVIDbioinformaticsresources.Nat. dependentToll-likereceptorsignaling.Nat.Immunol.7:1074–1081. Protoc.4:44–57. 49. Dorner,S.,L.Lum,M.Kim,R.Paro,P.A.Beachy,andR.Green.2006.A 22. Pfeffer,S.2007.IdentificationofvirallyencodedmicroRNAs.MethodsEnzy- genomewidescreenforcomponentsoftheRNAipathwayinDrosophilacultured mol.427:51–63. cells.Proc.Natl.Acad.Sci.USA103:11880–11885. 23. Chotkowski,H.L.,A.T.Ciota,Y.Jia,F.Puig-Basagoiti,L.D.Kramer,P.Y.Shi, 50. Arkov,A.L.,andA.Ramos.2010.BuildingRNA-proteingranules:insightfrom andR.L.Glaser.2008.WestNilevirusinfectionofDrosophilamelanogaster thegermline.TrendsCellBiol.20:482–490. inducesaprotectiveRNAiresponse.Virology377:197–206. 51. Sabatier,L.,E.Jouanguy,C.Dostert,D.Zachary,J.L.Dimarcq,P.Bulet,and 24. Galiana-Arnoux, D., C. Dostert, A. Schneemann, J. A. Hoffmann, and J.L.Imler.2003.Pherokine-2and-3.Eur.J.Biochem.270:3398–3407. J.L.Imler.2006.EssentialfunctioninvivoforDicer-2inhostdefenseagainst 52. Becker, T., G. Loch, M. Beyer, I. Zinke, A. C. Aschenbrenner, P. Carrera, RNAvirusesindrosophila.Nat.Immunol.7:590–597. T.Inhester,J.L.Schultze,andM.Hoch.2010.FOXO-dependentregulationof 25. Mueller, S., V. Gausson, N. Vodovar, S. Deddouche, L. Troxler, J. Perot, innateimmunehomeostasis.Nature463:369–373. S. Pfeffer, J. A. Hoffmann, M. C. Saleh, and J. L. Imler. 2010. RNAi- 53. Ganz,T.2003.Defensins:antimicrobialpeptidesofinnateimmunity.Nat.Rev. mediatedimmunityprovidesstrongprotectionagainstthenegative-strand Immunol.3:710–720. RNAvesicularstomatitisvirusinDrosophila.Proc.Natl.Acad.Sci.USA 54. Souza-Neto,J.A.,S.Sim,andG.Dimopoulos.2009.Anevolutionaryconserved 107:19390–19395. functionoftheJAK-STATpathwayinanti-denguedefense.Proc.Natl.Acad. 26. Sabin, L. R., R. Zhou, J. J. Gruber, N. Lukinova, S. Bambina, A. Berman, Sci.USA106:17841–17846. C.K.Lau,C.B.Thompson,andS.Cherry.2009.Ars2regulatesbothmiRNA- 55. Buchon, N., N. A. Broderick, M. Poidevin, S. Pradervand, and B. Lemaitre. and siRNA-dependent silencing and suppresses RNAvirus infection in Dro- 2009. Drosophila intestinal response to bacterial infection: activation of host sophila.Cell138:340–351. defenseandstemcellproliferation.CellHostMicrobe5:200–211. 27. Saleh, M. C., M. Tassetto, R. P. van Rij, B. Goic, V. Gausson, B. Berry, 56. Cronin, S. J., N. T. Nehme, S. Limmer, S. Liegeois, J. A. Pospisilik, C.Jacquier,C.Antoniewski,andR.Andino.2009.AntiviralimmunityinDro- D.Schramek,A.Leibbrandt,Rde.M.Simoes,S.Gruber,U.Puc,etal.2009. sophilarequiressystemicRNAinterferencespread.Nature458:346–350. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic 28. vanRij,R.P.,M.C.Saleh,B.Berry,C.Foo,A.Houk,C.Antoniewski,and bacterialinfection.Science325:340–343. R. Andino. 2006. The RNA silencing endonuclease Argonaute 2 mediates 57. Jiang, H., P. H. Patel, A. Kohlmaier, M. O. Grenley, D. G. McEwen, and specificantiviralimmunityinDrosophilamelanogaster.GenesDev.20:2985– B.A.Edgar.2009.Cytokine/Jak/Statsignalingmediatesregenerationandho- 2995. meostasisintheDrosophilamidgut.Cell137:1343–1355.

Description:
kismet. 2.2. DNA helicase activity. BRK, SNF2 related domain, Helicase, .. tribbles. 6.4. 3.5 protein serine/threonine kinase activity. Protein kinase.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.