ebook img

Drivers and Patterns of Ground-Dwelling Beetle Biodiversity across Northern Canada PDF

16 Pages·2015·0.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Drivers and Patterns of Ground-Dwelling Beetle Biodiversity across Northern Canada

RESEARCHARTICLE Drivers and Patterns of Ground-Dwelling Beetle Biodiversity across Northern Canada CrystalM.Ernst*,ChristopherM.Buddle DepartmentofNaturalResourceSciences,McGillUniversity,Sainte-Anne-de-Bellevue,Quebec,Canada * [email protected] Abstract Manymacroecologicalpatternsofbiodiversity,includingtherelationshipbetweenlatitude andspeciesrichness,arewell-described.Datacollectedinarepeatable,standardized mannercanadvancethedisciplinebeyondthedescriptionofpatternsandbeusedtoeluci- dateunderlyingmechanisms.Usingstandardizedfieldmethodsandahyper-diversefocal taxon,viz.Coleoptera,weaimto(1)describelarge-scalelatitudinalpatternsoftaxonomic OPENACCESS diversity,functionaldiversity,andassemblagestructureacrossnorthernCanada,and Citation:ErnstCM,BuddleCM(2015)Driversand (2)determinewhichclimatic,spatial,andhabitatvariablesbestexplainthesepatterns.We PatternsofGround-DwellingBeetleBiodiversity collectedterrestrialbeetlesattwelvelocationsinthethreenorthernmostecoclimaticzones acrossNorthernCanada.PLoSONE10(4): e0122163.doi:10.1371/journal.pone.0122163 inNorthAmerica:northboreal,subarctic,andhigharctic(51–81°N,60–138°W).Afteridenti- fyingbeetlesandassigningthemtoafunctionalgroup,weassessedlatitudinaltrendsfor AcademicEditor:GregorioMoreno-Rueda, UniversidaddeGranada,SPAIN multiplediversityindicesusinglinearregressionandvisualizedspatialpatternsofassem- blagestructurewithmultivariateordinations.Weusedpathanalysistotestcausalhypothe- Received:October24,2014 sesforspeciesandfunctionalgrouprichness,andweusedapermutationalapproachto Accepted:February5,2015 assessrelationshipsbetweenassemblagestructureand20possibleclimaticandenviron- Published:April22,2015 mentalmechanisms.Morethan9,000beetleswerecollected,representing464species Copyright:©2015Ernst,Buddle.Thisisanopen and18functionalgroups.Speciesandfunctionaldiversityhavesignificantnegativerela- accessarticledistributedunderthetermsofthe tionshipswithlatitude,whicharelikelyexplainedbythemediatingeffectsoftemperature, CreativeCommonsAttributionLicense,whichpermits precipitation,andplantheight.Assemblageswithinthesameecoclimaticzonearesimilar, unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare andthereisasignificantrelationshipbetweenassemblagestructureandlatitude.Species credited. andfunctionalassemblagestructurearesignificantlycorrelatedwithmanyofthesamecli- DataAvailabilityStatement:Weprovidealistofall maticfactors,particularlytemperaturemaximaandminima.Atalargespatialextent,thedi- taxainS1Table,andacompletedatasetofindividual versityandassemblagestructureofnorthernbeetlesshowstronglatitudinalgradientsdue specimenrecordsisavailablethroughCanadensysat tothemediatingeffectsofclimate,particularlytemperature.Northernarthropodassem- http://doi.org/10.5886/5dvj8642.Thedataset blagespresentsignificantopportunitiesforbiodiversityresearchandconservationefforts, associatedwiththismanuscriptisnowpublishedand hasbeenmadepubliclyavailable,thankstothestaff andtheirsensitivitytoclimatemakethemidealtargetsforlong-termterrestrial atCanadensys.Thedatawillsoonbeintegratedinto diversitymonitoring. CBIFandGBIFaswell.Thewebpage,linkedtothe DOIinthemanuscript,ishttp://data.canadensys.net/ ipt/resource.do?r=northern-beetle-specimens. Funding:ThisworkwassupportedbyaNational ScienceandEngineeringResearchCouncilof Canada(NCERC)StrategicProjectGrant(Ecological StructureofNorthernArthropods:Adaptationtoa PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 1/16 BiodiversityofNorthernBeetles ChangingEnvironment)awardedtoC.Buddle,T. Introduction Wheeler,andD.Currie(UniversityofToronto),its Macroecologistshavesuccessfullydescribedlarge-scalespatialpatternsofbiodiversityandspe- supportingpartnersandcollaborators,andaNSERC CGS-DAlexanderGrahamBellCanadaGraduate ciesdistributions.Amongthem,thelatitudinalgradientofspeciesrichness,inwhichfewerspe- ScholarshipawardedtoC.Ernst.Thefundershadno ciesarefoundathighlatitudescomparedtoattheequator,hascaptivatedresearchersformany roleinstudydesign,datacollectionandanalysis, decades[1].Overthepastdecade,therehasbeenincreasedinterestinelucidatingthecausal decisiontopublish,orpreparationofthemanuscript. mechanismsbehindlatitudinaldiversitypatterns[2–5].Thesearchforlikelymechanismshas CompetingInterests:Theauthorshavedeclared beenchallenging,however,andalthoughabroadrangeofclimatic,evolutionary,biotic,and thatnocompetinginterestsexist. spatialhypotheseshavebeenputforth,reviewedby[3],nosinglefactorhasbeenidentifiedasa keymechanism.Itishighlylikelythatthenumberofspeciesfoundatdifferentlatitudes,and thewaythesespeciesassembleoverspaceandtime,istheresultofmultipleinteractingecologi- calandevolutionaryfactors[6,7].Despitethechallengeofteasingaparttherelativecontribu- tionsofdifferentfactorstopatternsofdiversity,climate—inparticular,temperature—hasbeen broadlyrecognizedasakeyelementinbothterrestrialandaquaticsystems[8–10]andisworthy ofadditionaltesting. Recently,someworkershavebegunincludingalternativeorcomplimentarygenetic,mor- phologicalorfunctionalmeasuresofdiversityalongsidethetraditionaltaxonomicmetricof speciesrichness[11].Functionmayplayaparticularlyimportantroleininfluencingspeciesdi- versitypatterns,asspeciesrichnessmaybelimitedbybioticinteractions,differencesinlifehis- torytraits,andenvironmentalgradientsthatinfluencenicheavailability[12].Theinclusionof functionaldiversityinmacroecologicalstudiesmayultimatelyyieldstrongertestsofbiodiversi- tytheories[5,12,13]. Inadditiontoexpandingthelensthroughwhichweexaminediversitypatternsbeyondtax- onomy,wecanalsousetheframeworkestablishedbyearliermacroecologicalstudiesasaplat- formfromwhichtobroadenthescopeoffuturework.Someauthorshaveidentifiedavenuesof researchthatholdgreatpromisefortheadvancementofmacroecologicaltheory,namely,the inclusionof:(1)standardized,repeatablefaunalsampling,(2)broadertaxonomicorfunctional scopes,(3)broaderecologicalscopes(e.g.,multiplehabitatsorbiomes),and/or(4)underrepre- sentedyetecologicallysignificantbiomes(aquaticsystemsandpolarregions)andtaxa(inver- tebrates,non-vascularplantsandfungi)[3,5].Whilesomeoftheseadvancementspresent logisticalchallenges,workingtoovercomethemmaygeneratesufficientquantitativedatato testandsupportgeneralizablestatementsaboutlarge-scalepatternsandprocessesofdiversity [14,15].Understandingtheunderlyingprocessesresponsibleforpatternsofdiversitywillpro- videpowerfulmechanismsforpredictingtheeffectsofclimatechangeandotheranthropogenic disturbancesonbioticcommunitiesandtheircomponentspecies[5]. Testinglarge-scalebiodiversitypatternsandprocessesrequiresusingafocaltaxonthatisdi- verse,easilysampled,representativeofdifferentprocessesandfunctions,taxonomicallywell understood,andsensitivetoenvironmentalorecologicalchanges[16].Beetlesareanideal studytaxon:theyareoneofthemosttaxonomicallyandfunctionallydiversegroupsofanimals [17],andarethemostabundant,diverseandecologicallysignificantepigeic(i.e.,livingpre- dominantlyonthegroundsurface)insecttaxoninnorthernsystems[18,19].Beetlesarealso easilycaughtusingpassivetrappingmethodsthatcanbestandardizedandthuspermitcom- parisonsofassemblagesacrosstimeandspace[20–22],andshowrapidresponsestoenviron- mentalchange[23–25].Thesefactorsmakenorthernbeetlesidealfocaltaxaforconductinga comprehensiveexaminationofterrestrialdiversityandassemblagestructure. Theoverallobjectiveofourresearchwastoconductastandardized,species-levelassess- mentofbothtaxonomicandfunctionalbiodiversitypatternsacrossmultiplebiomes,using beetlesasafocaltaxon.Ourspecificgoalswereto:(1)quantifylatitudinalpatternsindiversity andassemblagestructure(taxonomicandfunctional),and(2)establishtheclimaticand/or PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 2/16 BiodiversityofNorthernBeetles environmentalfactorsassociatedwithtaxonomicand/orfunctionalassemblagestructure acrossalargegeographicextent,whichwastwelvelocationsinthethreenorthernmostecocli- maticzonesofNorthAmerica(Table1).Wehypothesizedthat:(1)beetleswillconformto classicallatitudinalgradientsofdiversity,withgreaterspeciesandfunctionalrichnessatlower latitudes;(2)speciesrichnessisdirectlyinfluencedbyclimaticvariables,whichareinfluenced bylatitude;(3)speciesandfunctionalassemblagestructureswilldisplaylatitudinalgradients ofsimilarity;(4)variationsinassemblagestructurewillbebestexplainedbyclimatic,rather thanspatialorbiotic,variables. MaterialsandMethods Studyregionandsamplinglocations In2010and2011,aspartofalargerresearchproject[26,27]wecollectedterrestrialbeetlesat twelvelocationsinthethreenorthernmostecoclimaticregionsofnorthernCanada[28]:four locationswereinthenorthborealregion,fourinthesubarcticandfourinthehigharctic (Table1).Theextentofthestudyconsistsofalatitudinalgradientof51–81°Nandalongitudi- nalgradientof60–138°W.Permitsweregrantedbythefollowingagenciestoconductsampling inthenorthernterritories:NunavutResearchInstitute(ScientificResearchLicence),Nunavut DepartmentoftheEnvironment(WildifeResearchPermit),Yukon’sDepartmentofTourism andCulture(ScientistsandExplorersLicence),AuroraResearchInstituteoftheNorthwest Territories(ScientificResearchLicence),ParksCanadaAgency(ResearchandCollectionPer- mit;fortheLakeHazenlocation,whichfallsintheQuttinirpaaqNationalParkofCanada, NU).Innoinstancedidourworkinvolvethecollectionendangeredorprotectedspecies.In lightofthisfact,andsincenoothersamplingwasconductedinprovincialparksorwildlifere- serves,nospecificpermitswererequiredtosampleonpubliclandintheotherlocations. Ateachlocation,weestablishedthreereplicateswithinabout15kmofeachother.Incon- siderationofthefactthathabitatselectionbynorthernarthropodsishighlydependenton moistureandvegetation[29,30],eachreplicatecontainedtwobroadlydelimitedandecolog- icallydistincthabitats.“Mesic”habitatsarecharacterizedbyhigherelevationsandwell-drained soil,while“wet”habitatshavesaturatedorpoorlydrainedsoils,andcanbefoundinadjacent low-lyingregions.Themesicvegetationwasadiscontinuouscoverofdwarfshrubs,perennial forbs,andlichens.Wethabitatscontainedcontinuouscoverofmoss,sphagnum,saxifrages Table1. Names,coordinates,andecoclimaticzonesofsamplinglocations,anddatesofsampling. SamplingLocation Latitude,Longitude EcoclimaticZone SamplingPeriods(dates) SamplingYear 1 2 3 LakeHazen,NU 81.82975,-71.32244 HighArctic 19–23.vii 23–28.vii - 2010 BanksIsland,NWT 73.22412,-119.55255 HighArctic 7–11.vii 11–15.vii 15–19.vii 2011 CambridgeBay,NU 69.12177,-105.41688 HighArctic 7–11.vii 11–15.vii 15–19.vii 2011 Iqaluit,NU 63.76144,-68.57352 HighArctic 17–21.vii 21–25.vii 25–29.vii 2010 Kugluktuk,NU 67.78157,-115.27824 Subarctic 22–26.vi 26–29.vi 29.vi-2.vii 2011 TombstoneMtns.,YT 64.60629,-138.35637 NorthBoreal 21–24.vi 24–27.vi 27.vi-01.vii 2011 Churchill,MB 58.73573,-93.79789 Subarctic 1–5.vii 5–9.vii 9–13.vii 2010 Schefferville,QC 54.75970,-66.71120 Subarctic 30.vi-3.vii 3–6.vii 6–9.vii 2010 NormanWells,NWT 65.29112,-126.62262 Subarctic 7–11.vi 11–14.vi 14–17.vi 2011 Yellowknife,NWT 62.52110,-113.38174 NorthBoreal 7–11.vi 11–15.vi 15–18.vi 2011 GooseBay,NFLD 53.21199,-60.45062 NorthBoreal 15–18.vi 18–21.vi 21–24.vi 2010 Moosonee,ON 51.28034,-80.64252 NorthBoreal 15–19.vi 19–23.vi 23–25.vi 2010 doi:10.1371/journal.pone.0122163.t001 PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 3/16 BiodiversityofNorthernBeetles andsedges.Inordertoensureconsistencyofsamplinginbothhabitatsacrossalllocations,we establishedallreplicatesinopenareaswithnotreecanopycover;weencounteredsomedwarf blackspruceinsomeofthemoresouthernsites. Insectsamplingandspecimenprocessing Inallreplicatedhabitatsateachlocation,wesetninepitfallandnineyellowpantrapsinthree transectsasa30x75mgrid.Wedeployed108trapsperlocation,and1296trapsintheentire samplingdesignandweservicedthemthreetimesovertwoweeks(seeTable1forcollection dates,andforacompletedescriptionoftrappingandcollectionprotocols,see[26]).Toaccount forphenology,wesampledthesouthernmostlocationsfirst,andthenorthernmostlast,sothat insectactivitywouldbeapproximatelyequalatalllocations.Weplacedspecimensin95%etha- nolandreturnedthemtothelaboratoryforsorting,andidentifiedadultbeetlestospeciesor morphospeciesusingtraditionalmorphologicalapproaches. Weassignedeachbeetletoafunctionalgroupbasedonitspredominantfoodsourceand modeoffeeding[14].Sincebiomassintegratesfunctionalcharacteristicsofassemblagessuch asenergyandnutrientflow(Saint-Germainetal.2007;Wangetal.2009),weuseditasthe metrictodescribeassemblagesfunctionally(i.e.,ratherthanabundance).Weestimatedthe biomassofeachbeetleusinglength:biomassregressions[31,32],usingmeasuredbodylength oraknownaveragelengthofcommonspeciescollectedpreviously[26]. Voucherspecimensofallspeciesarenowcontainedinatleastoneofthefollowingcollec- tions:LymanEntomologicalMuseum(Sainte-Anne-de-Bellevue,Québec,Canada),Canadian NationalCollectionofInsects,ArachnidsandNematodes(Ottawa,Ontario,Canada),Canadi- anMuseumofNature(Ottawa,Ontario,Canada). Environmentalvariables Wequantitativelyassessedtheplantcommunityateachlocationbyrandomlyestablishingfive 1m2quadratsinandadjacenttothetrapgridineachhabitatreplicate.Tocharacterizetheveg- etationineachquadratweuseda%coverclassificationsystem,theBraun-Blanquetscale[33]. Weassignedplantstoaclass(forbs,shrubs,graminoids,mosses,lichens),gaveeachclassa Braun-Blanquetscoreof1to6,anddeterminedthemeanscoreforeachclassforeachlocation. Wemeasuredthemaximumheightofthevegetationofanyclass(MaxVegHt)ineachquadrat, anddeterminedanaverageoftheseheightsforeachlocation. Climatedataareavailableonline(CanadianNationalClimateDataandInformationAr- chive(http://climate.weatheroffice.gc.ca).Weusedclimatenormals(calculatedusingatleast 15yearsofdatatakenbetween1981–2010)recordedattheweatherstationclosesttoeachloca- tiontoobtainthefollowing:meanannualtemperature(MeanTemp),meanmaximumtemper- ature(MaxTemp),meanminimumtemperature(MinTemp),meantemperatureofwarmest month(WarmMean),meantemperatureofcoldestmonth(ColdMean),meantotalannual precipitation(TotPrecip),meandegreedaysabovezero(DDA0),meandegreedaysbelowzero (DDB0),meanwindspeed(Wind),meanannualdayswithsunshine(SunDays),meanannual totalsunshinehours(SunHrs),andnumberoffrost-freedays(Frost).Giventheirproximity, weconsideredallreplicatesatthesamelocationtohavethesameclimateconditions. Dataanalyses WeconductedallanalysesusingR,version3.1.1(RCoreTeam,2014).Wedescribedthetotal abundanceofbeetlesateachlocation.Whileoursamplingwasstandardized,theresultingsam- plesizeswereunequalandthereweremanyrarespecies.Therefore,inadditiontocalculating theobservedspeciesrichness,observedfunctionalgrouprichness,Simpson’sdiversity,and PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 4/16 BiodiversityofNorthernBeetles Pielou’sevenness,wealsousedtheChao1index[34],anasymptoticestimator,togenerateun- biasedestimatesofexpectedspeciesrichnessateachlocation.Theanalyseswereperformed usingtheveganpackage[35]. Totestwhetherbeetleswouldconformtopredictedlatitudinalgradientsofdiversity,we usedlinearregressionstotesttherelationshipbetweeneachdiversityindexandlatitude.The indiceswerelog-transformedpriortorunningthemodelstoensuredatametassumptionsof normality.Weremovedextremeoutlierstoimprovemodelfit:IQAforobservedspeciesrich- ness,Chao1andfunctionalrichness,andNORforevennessandSimpson’sindex. Inadditiontoidentifyinglatitudinaldiversitypatterns,wewantedtodetermineiflatitude hasanindirecteffectondiversitythatismediatedbyotherbiotic,climaticorspatialfactors. Confirmatorypathanalysisisonemethodoftestingmultivariatecausalhypothesesthatcannot betestedthroughrandomizedexperiments[36].WeusedShipley’sd-separationtestofcausal hypotheses[36,37]toanalysetherelationshipsbetweenlatitude,diversity,andmechanistic factors.Inthisanalysis,thecausalhypothesesarerepresentedbyasetofstructuralequations thatarevisualizedasapathmodel(ordirectedacyclicgraph;DAG),andthesecausalrelation- shipsimplyindependencerelationsbetweenotherpairsofvariables(abasisset),eitherdirectly orafterconditioningonothervariables.Usingthepackageggm[38]wedevelopedthreealter- nativeDAGswithhypothesisedrelationshipsbetweenlatitude,speciesandfunctionaldiversity, andseveralmechanisticvariables,thengeneratedthebasissetsoftheconditionalindependen- ciesresultingfromthemodels. Theinitiallistofmechanismsconsideredincludedtheclimateandvegetationvariablesde- scribedintheprevioussection.Inordertoavoidissuesassociatedwithautocorrelationandto achievethemostparsimoniousDAG,wereducedthenumberofvariablesinthemodelbycon- sideringthestatisticalandecologicalrelationshipsbetweenthevariables.Firstwevisualized thedatawithscatterplotsofallpairwisecombinationsofvariables.Alltemperatureandsun- relatedvariableswerecorrelated,soMeanTempwasselectedasaproxyforalltemperature measures.ThereweresomemissingWindvaluessothisvariablewasomitted.Precipitation wasmoderatelycorrelatedwithMeanTemp,butsinceitcapturesaverydifferentcomponentof climate,andbecausemoisturecanbeaconstraintfornorthernarthropods[18,30],itwasre- tained.AllvegetationclassBraun-Blanquetscoreswereretained,aswasMaxVegHt.Next,we examinedthevarianceinflationfactorsusingtheviffunctionintheHHpackage[39].Somein- flationfactorswerehighduetorelationshipsbetweendifferentvegetationclasses,suggesting weshouldselectonerepresentativevegetationvariable.Weadditionallyperformedstepwise AICmodelselection,whichselectedMeanTemp,MaxVegHtandTotPrecipasindependent variables.Thesestepsandresultsledustoconcludetheselectionwiththesethreeecologically significant,noncolinear(VIFbetween2.2and3.5)variables. Weconsideredthreeplausiblealternativemodelstotesttherelationshipbetweenlatitude andspeicesrichness(Fig1A–1C).Theseincludedthesimplestmodel(Fig1A),whereonlylati- tudeactsonthemediatingeffects,andtwomodelswhereinteractionsbetweenmediatingfac- torswereconsidered.InmodelB,temperature(T)isdirectlyinfluencedbylatitude,whichin turnaffectsplantheightandprecipitation.InmodelC,precipitationadditionallyinfluences vegetationheight.ForeachDAG,wetestedallhypothesizedindependencesbetweenthesevari- ablesandthenconductedoveralltestsofthemodelsusingFisher’sCtests.Weperformeda separatepathanalysisforfunctionalgrouprichness.Again,wedevelopedthreeplausiblemod- els,usingthebest-fitDAGforspeciesrichnessasastartingpoint(Fig1,Model1),becauseit suggestedthatinteractionsbetweentemperature,vegetationandprecipitationwerenotimpor- tant.Sincefunctionalgrouprichnessislikelytoincreaseasmorespeciesareadded(asshown earlier,thereisapositiverelationshipbetweenspeciesandfunctionalrichness),weincluded speciesrichnessinthemodel.Thethreemodelswedevelopedweredesignedtodetermine PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 5/16 BiodiversityofNorthernBeetles Fig1.Mapofthe12studylocations(NorthPoleAzimuthalprojection),showingthespatial distributionoffunctionalgroups.FGswerepooledintotrophicgroups,andthepiechartsshowthe proportionofthetotalsitebiomassrepresentedbyeachtrophicgroup:carnivore(black),herbivore(white), omnivore(grey)anddetritivore(diagonallines).Piechartsizesaregraduatedaccordingtotheproportionof theentirestudy’sbeetlescollectedatthatsite.Higharcticsites:HAZ(LakeHazen,NU);BAN(BanksIsland, NWT);CAM(CambridgeBay,NU);IQA(Iqaluit,NU).Subarcticsites:KUG(Kugluktuk,NU);TOM (TombstoneMtns.,YT);CHU(Churchill,MB);SCH(Schefferville,QC).Northborealsites:NOR(Norman Wells,NWT);YEL(Yellowknife,NWT);GOB(GooseBay,NFLD);MOO(Moosonee,ON). doi:10.1371/journal.pone.0122163.g001 whether:a)latitudeactsdirectlyonfunctionalrichness,b)theeffectsoflatitudearemediated byspatialorbioticvariables,and/orc)speciesrichnessprovidesasecondlevelofmediation (i.e.,thattheeffectsoftemperature,vegetationandprecipitationonfunctionalrichnessare solelyoradditionallymediatedbyspeciesrichness). Wehypothesizedthatassemblageswoulddemonstratespatial(latitudinal)gradientsofsim- ilarity.Totestthis,wevisualizedspeciesandfunctionalassemblagesateachlocationwithnon- metricmultidimensionalscaling(NMDS)ordinations,usingtherich[40]andvegan[35]pack- ages.Non-metricmultidimensionalscalingisanindirectordinationapproachthatmaximizes therankordercorrelationbetweendistancesinadistancematrix,andthefunctionweused (metamds)usesmultiplerandomstartingconfigurationstofindastableglobalsolutionforthe ordination.Assemblagesthataremoresimilartoeachotherarearrangedmorecloselyinthe ordinationspace.Inthiscase,wegeneratedtheordinationsusingBray-Curtisdistancematri- cesoflog+1transformedabundances(species)orbiomasses(functionalgroups).Becausethe speciesassemblagesatHAZwerecomposedofonlyasinglespecies,weomittedthelocation fromtheNMDSanalyses.Wewerealsointerestedintherelationshipbetweenspeciesand functionalassemblages,sowecomparedthecongruenceofthetwoordinationsusingProcrus- tesrotationanalysis,andassessedthecorrelationbetweenthenusingapermutationalstatistic calculatedbythefunctionprotest[41]. Totesttherelationshipsbetweenassemblagestructureandspatial,climaticandbioticfac- tors,theenvfitfunctionintheveganpackagewasusedtofiteachfactorontheordinationsas PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 6/16 BiodiversityofNorthernBeetles vectors.Thedirectionofeachvectorindicatesthedirectioninwhichthelinearchangeinthe variableisthefastest,andthelengthofthevectorisproportionaltothestrengthofthecorrela- tionbetweenthevariableandthepositionoftheassemblagesinordinationspace.Thisfunc- tionprovidesanobjectiveinterpretationoftheresultsofunconstrainedordinationanalyses andgeneratesameasureoffitaswellasasignificancevaluebasedonapermutationtest(1000 permutations). Results Wecollected9062beetles:2832inthehigharctic,3275inthesubarcticand2955inthenorth borealzone.Abundancesvariedbetweenlocations,rangingfrom14individualscollectedfrom thenorthernmostlocation(LakeHazen,NU),to1696individualsfromCambridgeBay,NU, alsointhehigharctic(Fig1).Therewasnorelationshipbetweenlatitudeandabundance.Thir- ty-fourfamiliesand155generawererepresentedinthecollection.Over80%ofthecollection wascomprisedofthreefamilies:Carabidae(6221individuals,68.8%oftotalnumberofspeci- mens),Staphylinidae(870,9.6%),andCryptophagidae(247,2.7%).Wefoundstaphylinidsat alllocations,carabidsatalllocationswiththeexceptionofLakeHazen,andcryptophagids onlyfromlocationsinthesubarcticandborealzones.WeprovidealistofalltaxainS1Table, andacompletedatasetofindividualspecimenrecordsisavailableathttp://doi.org/10.5886/ 5dvj8642. Species-levelidentificationsweredonewheneverpossible,thoughwefocusedourefforts onidentifyingthemostabundantandwidespreadtaxa(e.g.,Carabidae,Staphylinidae)and thosethataretaxonomicallywellknown.Intotal,weidentified464speciesandmorphospe- cies,andrichnessrangedfromasinglespeciesobservedinLakeHazen,to115inthenorthbo- reallocationMoosonee,ON.Amongthesampleswere15newprovincialand/orterritorial (cid:1) records(denotedbyanasterisk, ,nexttothespeciesnameinS1Table).Mostspecieswere foundatthreeorfewerlocations,butothersweremorewidespread.Forexample,inthehigh andsubarcticzones,Pterostichushaematopus,P.brevicornis,P.caribouandAmaraalpina wereparticularlyabundantandwidelydistributed;together,thesefourspeciesrepresented 44.0%ofthetotalcatch. Eighteenfunctionalgroupswereidentified,representingdiversespecialistandgeneralisther- bivoresandcarnivores,omnivores,andsaprophages,withdifferentfoodsourcesandmodesof feeding(S2Table).Functionalgrouprichnessrangedfrom1inLakeHazento13groupsintwo ofthesubarcticlocations(NormanWellsandYellowknife,NWT)andoneboreallocation, Moosonee.CarnivorescomprisedthemajorityofthebiomassinallsitesexceptGooseBay, NFLD,whichwastheonlylocationwhereherbivoreshadthegreatestproportionofbiomass (Fig1).Strictherbivoreswerelargelyabsentfromthesubarcticandhigharcticlocations,but werewellrepresentedintheborealsites.AlthoughMoosoneehadveryhighspeciesandfunc- tionalrichness,highnumbersoftwoverylargepredaciouscarabidbeetleswerecaught(Cara- busmaeanderandC.melanarius),andthesedominatedtheoverallbiomass(Fig1).Omnivores wereexceptionallyprominentinthehigharctic,representedprimarilybytheopportunistically predaciousgranivore,Amaraalpina(Fig1). Diversity Bothobservedspeciesrichness(P=0.002,R2=0.6345,F=18.36,df=9)andexpectedspecies richness(P=0.002,R2=0.6411,F=18.86,df=9)exhibitedstrongnegativerelationships withlatitude.TheSimpson’sindexsimilarlydeclinedsignificantlywithlatitude(P=0.0043, R2=0.5723,F=14.38,df=9),butevennesshadnosignificantspatialpattern(P=0.06, R2=0.3078,F=5.002,df=8).Functionalgrouprichnesshadahighlysignificantnegative PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 7/16 BiodiversityofNorthernBeetles relationshipswithlatitude(P=0.0007,R2=0.7101,F=25.49,df=9).Functionalgroup richnessandspeciesrichnesshaveaverystrongpositivelinearrelationship(P<0.0001, R2=0.9307,F=148.6,df=10). Inourpathanalysisofspeciesdiversity,weoptedtoincludeMeanTemp,TotPrecip,and MaxVegHt,asmediatingeffects.Fisher’sCtests(whichsimultaneouslytestallindependencies inaDAG)indicatedthat,whileallthreemodelsweregoodfitswithnoimportantdependencies missing,thefirstandsimplestmodel(Fig2A)providedthebestoutcome(Fishers’sC=3.637, P=0.888).Thepathanalysisindicatesthatspeciesrichnessisindirectlyaffectedbylatitude. MeanTemp,MaxVegHtandTotPrecipalldeclineaslatitudeincreases.MeanTempandMax- VegHthavepositiveeffectonspeciesrichness,whileTotPreciphasanegativeeffect.The strengthanddirectionoftherelationshipsdeterminedbythepathanalysisforthebest-fit modelareshowninFig2(Model1).Forfunctionaldiversity,Fisher’sCtestsindicatedthatall threemodels(D-F)wereacceptable,butmodelFwasthebestfit(Fisher’sC=5.099,P=0.984). InthispathanalysiswefoundthatMeanTempandspeciesrichnessbothhadapositiveeffect onfunctionalrichness,andthatlatitudehadanindirectnegativeeffectthroughthesemediating factors(Fig2,Model2).Relationshipsbetweenfunctionalgrouprichness,andMaxVegHtand TotPrecip,didnotimprovethemodel. Fig2.Threealternative(A,B,andC)directedacyclicgraphs(DAG)ofhypothesizeddirectandindirecteffectsonspeciesrichness(S).Model1: resultsofbestfitpathmodel(derivedfrommodelA).D,EandFarealternativeDAGsofhypothesizedeffectsonfunctionalgrouprichness(F).Model:results ofthebestfitpathmodel(frommodelF).Thedirectionofthearrowindicatesthedirectionoftherelationship.Solidlinesindicateasignificantrelationship. EstimatedcoefficientsandP-valuesareshownforeachrelationship.Latitude(L),TotPrecip(P),MeanTemp(T)andMaxVegHt(V) doi:10.1371/journal.pone.0122163.g002 PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 8/16 BiodiversityofNorthernBeetles Assemblagestructure SolutionswerereachedfortheNMDSordinationsofthespeciesassemblages(stress=0.079913, Fig3a)andthefunctionalassemblages(stress=0.05501,Fig3b).WiththeexceptionofCAM andBAN,whosespeciesassemblagesessentiallyoverlapintheordinationspace,alllocations displayeddistinctspeciesandfunctionalassemblages.Thearrangementofthelocationsinthe ordinationsindicatedthatthoseinthesameecoclimaticzonehadsimilarassemblages,and thattherewerecleardelimitationsbetweenzones.Functionalassemblagesfromthewestern andeasternpartofthecontinentshowaslighttendencytoassembleclosertogether,evenbe- tweenecoclimaticzones;thisismorepronouncedforlocationsinthenorthborealandsubarc- tic.Agradientofsimilaritywasevidentbetweenecoclimaticzones:assemblagesinthe Fig3.Non-metricmultidimensionalscalingordinationsshowingsimilaritiesbetweena)species,and b)functionalassemblagesfromateachlocation.Shadedpolygonsareusedtodelimittheordination spaceoccupiedbysitescontainedwithinthesameecoclimaticzone.Spatial,climatic,andbioticvariables thataresignificantlycorrelatedwiththeassemblagesareplottedontheordinationspaceasvectors(for clarity,non-significantvariablesareomitted,andonlythemostimportanttemperature-relatedvariableis includedforeachordination);thelengthofthevectorindicatesthestrengthofthecorrelation.(HAZhasbeen omittedasanoutlerfrombothordinations,asitcontainsonlyone,uncommonspecies). doi:10.1371/journal.pone.0122163.g003 PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 9/16 BiodiversityofNorthernBeetles subarcticweremorelikethosefoundinthehigharctic,whilenorthborealassemblageswere moresimilartosubarcticthantohigharcticassemblages.Speciesassemblagestructurewassig- nificantlycorrelatedwithlatitude(S3Table).AccordingtotheProcrustesrotationanalysis,the speciesandfunctionalordinationswerecorrelated(Procrustessumofsquares=0.36157,Pro- crustescorrelation,r=0.7964,P=0.001,999permutations). Speciesandfunctionalassemblagestructureweresignificantlycorrelatedwithalltempera- ture-drivenclimaticfactors,withtheexceptionthatfunctionalassemblageswerenotrelatedto DDBO(S3Table).BothassemblagetypeswerealsosignificantlyrelatedtoFrost.Speciesas- semblagestructurewasadditionallysignificantlyrelatedtoTotPrecip,whilefunctionalassem- blagealsohassignificantrelationshipswithSoilD,VarSoilDandGramCov.Otherwise,the plantcommunitycompositionisnotrelatedtoeitherspeciesorfunctionalassemblagestruc- ture.Variablesthataresignificantlyrelatedtoassemblagestructureareplottedasvectorsin Fig3(onlythetemperaturefactorwiththestrongestrelationshiptoassemblagestructureis shown,forclarity). Discussion Atalargespatialextent,thediversityandassemblagestructureofnorthernbeetlesshowstrong latitudinalgradients,primarilyduetomediatingeffectsofclimate,particularlytemperature. Ourresearchspannedalatitudinalgradientof30°,includedthreeecoclimaticzones,andused standardizedfieldsamplingofterrestrialbeetlestouncoverbiodiversitypatternsacrossalarge geographicextent.Macroecologicalstudieswithextentsthatrangelessthan20°oflatitudeare unlikelytoshowclearspatialpatternsofspeciesrichness,evenifsuchpatternsexist[3];our findingsshouldthereforeprovideanaccurateportrayalofspatialbiodiversitypatternsinthe farnorth.Wefoundthatbeetlespeciesrichness(observed,predicted,andasmeasuredbythe Simpson’sindex)exhibitsclassicalnegativerelationshipswithlatitude.Thisalignswithgeneral observationsofbeetlerichnessdrawnfrompresence/absencedatainarcticandnorthernboreal regions[19]andwithsimilarpatternsdescribedforotherinsecttaxaatacontinentalscalein temperateregions,includingantsinEurope,andgrasshoppers,butterfliesanddungbeetlesin NorthAmerica[3]. Evennessshowedatendencytodeclinewithincreasinglatitude,butthegradientwasnon- significant.Speciesrichnessandevennesscanbe,andoftenare,similaralonglatitudinalgradi- ents,buttheymayalsoshownoorevennegativerelationshipswitheachother,astheymayre- flectdifferentaspectsofspatialvariationinspeciesassemblagesanddifferentresponsesto ecologicalfactors[42,43].Alternatively,ifassemblagesaremorespecies-richbecausetheypos- sessgreaternumbersofrarespecies,thenwemightexpectlatitudinaldecreasesinrichnessto beaccompaniedbygreaterevenness[3].Whilethemajorityofourrarespecies(singletonsand doubletons)wereindeedlocatedinthemoresoutherlylocations,thisdidnottranslatetoapos- itivelatitudinalevennesstrend. Inourstudy,functionalgrouprichnessshowedaverystrongclassicalspatialgradient,de- creasingsharplywithincreasinglatitude.Studiesonlarge-scalelatitudinalpatternsofanimal functionaldiversityarescarceandtheirconclusionsarevariable.Stevensetal.[14],forexam- ple,foundthatNewWorldbatfunctionaldiversity,richnessanddominancestronglyincreased towardstheequator,andmammalianfunctionaldiversitygenerallyappearstodisplaythe samepattern[15].Conversely,ananalysisofinvertebratescollectedfrom1000streammoni- toringstationsintheUSshowedthatfunctionalrichnessdecreasedonlyweaklywithincreased latitude[44]. Specificfunctionalgroupsorguildsmaydisplaydifferentlatitudinaldiversitypatterns.For example,alargesurveyofthefreshwaterdetriviorousshredderguildrevealedmuchhigher PLOSONE|DOI:10.1371/journal.pone.0122163 April22,2015 10/16

Description:
[17], and are the most abundant, diverse and ecologically significant epigeic (i.e., living pre- dominantly on In 2010 and 2011, as part of a larger research project [26, 27] we collected terrestrial beetles at . National Collection of Insects, Arachnids and Nematodes (Ottawa, Ontario, Canada), Ca
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.