DRIVER AGGRESSIVENESS ANALYSIS USING MULTISENSORY DATA FUSION A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY (cid:214)M(cid:220)RCAN KUMTEPE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING JANUARY 2016 Approval of the thesis: DRIVER AGGRESSIVENESS ANALYSIS USING MULTISENSORY DATA FUSION submitted by (cid:214)M(cid:220)RCAN KUMTEPE in partial ful(cid:28)llment of the require- ments for the degree of Master of Science in Electrical and Electronics Engineering Department, Middle East Technical University by, Prof. Dr. G(cid:252)lbin Dural (cid:220)nver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. G(cid:246)n(cid:252)l Turhan Sayan Head of Department, Electrical and Electronics Eng. Prof. Dr. G(cid:246)zde Bozda§(cid:25) Akar Supervisor, Elec. and Electronics Eng. Dept., METU Examining Committee Members: Prof. Dr. A. Ayd(cid:25)n Alatan Electrical and Electronics Engineering Department, METU Prof. Dr. G(cid:246)zde Bozda§(cid:25) Akar Electrical and Electronics Engineering Department, METU Assoc. Prof. Dr. Alptekin Temizel Modeling and Simulation Department, METU Assoc. Prof. Dr. (cid:157)lkay Ulusoy Electrical and Electronics Engineering Department, METU Asst. Prof. Dr. Osman Serdar Gedik Computer Engineering Dept., Y(cid:25)ld(cid:25)r(cid:25)m Beyaz(cid:25)t University Date: January 22, 2016 I hereby declare that all information in this document has been ob- tained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: (cid:214)M(cid:220)RCAN KUMTEPE Signature : iv ABSTRACT DRIVER AGGRESSIVENESS ANALYSIS USING MULTISENSORY DATA FUSION Kumtepe, (cid:214)m(cid:252)rcan M.S., Department of Electrical and Electronics Engineering Supervisor : Prof. Dr. G(cid:246)zde Bozda§(cid:25) Akar January 2016, 77 pages Every year a vast number of tra(cid:30)c accidents occur globally. These tra(cid:30)c acci- dents cause fatalities, severe injuries and huge economical cost. Most of these tra(cid:30)c accidents occur due to aggressive driving behaviour. Therefore, detection of driver aggressiveness could help reducing the number of tra(cid:30)c accidents by warning related authorities to take necessary precautions. Although aggressive- ness is a psychological phenomenon, driver aggressiveness can be analysed by monitoring certain driving behaviour such as abrupt lane changes, unsafe fol- lowing distance and excess acceleration and deceleration. In this thesis work, a method is introduced in order to detect aggressive driving behaviour using a system on vehicle. The proposed method is based on fusion of visual and other sensor information to characterize related driving session and to decide whether the session involves aggressive driving behaviour. Visual information is used to detect road lines and vehicle images; whereas CAN bus information provides certain driving data such as vehicle speed and engine speed. Both information v is used to obtain feature vectors which represent a driving session. These feature vectorsareobtainedbymodellingtimeseriesdatabyGaussiandistributions. An SVM classi(cid:28)er is utilized to classify the feature vectors in order for aggressive- ness decision. The proposed system is tested by real tra(cid:30)c data and it achieved an aggressive driving detection rate of 94.0%. Keywords: Driver behavior, driver aggressiveness, road safety, line detection, vehicle detection, CAN bus vi (cid:214)Z ˙OKLU SENS(cid:214)R VER(cid:157)S(cid:157) KAYNA(cid:147)TIRIMI KULLANARAK S(cid:220)R(cid:220)C(cid:220) AGRES(cid:157)FL(cid:157)(cid:135)(cid:157) ANAL(cid:157)Z(cid:157) Kumtepe, (cid:214)m(cid:252)rcan Y(cid:252)ksek Lisans, Elektrik ve Elektronik M(cid:252)hendisli§i B(cid:246)l(cid:252)m(cid:252) Tez Y(cid:246)neticisi : Prof. Dr. G(cid:246)zde Bozda§(cid:25) Akar Ocak 2016 , 77 sayfa Her y(cid:25)l d(cid:252)nya (cid:231)ap(cid:25)nda b(cid:252)y(cid:252)k say(cid:25)da tra(cid:28)k kazas(cid:25) ger(cid:231)ekle‡mektedir. Bu tra(cid:28)k kazalar(cid:25) can kay(cid:25)plar(cid:25)na, ciddi sa§l(cid:25)k problemlerine ve b(cid:252)y(cid:252)k ekonomik mali- yete yol a(cid:231)maktad(cid:25)r. Bu tra(cid:28)k kazalar(cid:25)n(cid:25)n b(cid:252)y(cid:252)k k(cid:25)sm(cid:25) agresif s(cid:252)r(cid:252)‡ davran(cid:25)‡(cid:25) kaynakl(cid:25) olarak meydana gelmektedir. Bu nedenle, s(cid:252)r(cid:252)c(cid:252) agresi(cid:29)i§inin tespit edilip ilgili kurumlar taraf(cid:25)ndan (cid:246)nlem al(cid:25)nmas(cid:25)n(cid:25)n sa§lanmas(cid:25) tra(cid:28)k kazalar(cid:25)- n(cid:25)n say(cid:25)s(cid:25)n(cid:25) (cid:246)nemli (cid:246)l(cid:231)(cid:252)de azaltacakt(cid:25)r. Agresi(cid:29)i§in psikolojik bir olay olmas(cid:25)na kar‡(cid:25)n, ani ‡erit de§i‡ikilikleri, g(cid:252)vensiz takip mesafesi ve ani ivmelenme gibi s(cid:252)r(cid:252)‡ davran(cid:25)‡lar(cid:25)n(cid:25)n g(cid:246)zlemlenmesi ile analiz edilmesi m(cid:252)mk(cid:252)nd(cid:252)r. Bu tez (cid:231)a- l(cid:25)‡mas(cid:25)nda, s(cid:252)r(cid:252)c(cid:252) agresi(cid:29)i§inin tespit edilmesi i(cid:231)in ara(cid:231) (cid:252)zerinde (cid:231)al(cid:25)‡acak bir sistem sunulmu‡tur. Sunulan sistem, g(cid:246)rsel veri ve sens(cid:246)r verisinin ilgili s(cid:252)r(cid:252)‡(cid:252) tan(cid:25)mlamak (cid:252)zere kayna‡t(cid:25)r(cid:25)lmas(cid:25) ve ilgili s(cid:252)r(cid:252)‡(cid:252)n agresif s(cid:252)r(cid:252)‡ davran(cid:25)‡(cid:25) i(cid:231)e- rip i(cid:231)ermedi§ine karar verilmesine dayanmaktad(cid:25)r. Kameradan al(cid:25)nan veri yol (cid:231)izgilerinin ve yoldaki ara(cid:231)lar(cid:25)n tespiti i(cid:231)n kullan(cid:25)lmakta, denetleyici alan(cid:25) a§ vii veriyolundan ise ara(cid:231) ve motor h(cid:25)z(cid:25) bilgisi elde edilmektedir. Elde edilen bu bil- giler, s(cid:252)r(cid:252)‡leri tan(cid:25)mlayan (cid:246)znitelik vekt(cid:246)rlerini elde edilmek i(cid:231)in kullan(cid:25)lmakta- d(cid:25)r. Bu (cid:246)znitelik vekt(cid:246)rleri zaman serisi ‡eklindeki verilerin Gaussian da§(cid:25)l(cid:25)mlar olarak modellenmesi ile elde edilmektedir. Bir destek vekt(cid:246)r makinesi (SVM) s(cid:25)- n(cid:25)(cid:29)ay(cid:25)c(cid:25)s(cid:25) (cid:246)znitelik vekt(cid:246)rlerinin agresi(cid:29)ik i(cid:231)eri§i hakk(cid:25)nda s(cid:25)n(cid:25)(cid:29)and(cid:25)r(cid:25)lmas(cid:25) i(cid:231)in kullan(cid:25)lmaktad(cid:25)r. Sistem ger(cid:231)ek tra(cid:28)k verisi ile test edilmi‡ ve %94.0 oran(cid:25)nda do§ruluk pay(cid:25) ile ba‡ar(cid:25) g(cid:246)stermi‡tir. Anahtar Kelimeler: S(cid:252)r(cid:252)c(cid:252) davran(cid:25)‡(cid:25), s(cid:252)r(cid:252)c(cid:252) agresi(cid:29)i§i, yol g(cid:252)venli§i, (cid:231)izgi tes- piti, ara(cid:231) tespiti, CAN bus viii In memory of my father Duran Kumtepe, who was always proud of me ix ACKNOWLEDGMENTS First of all, I would like to present my sincere gratitude to my supervisor Prof. G(cid:246)zde Bozda§(cid:25) Akar for her guidance from the very (cid:28)rst day of my academic career. I feel myself very lucky for being student of such a gentle person and a experienced academic. No matter what the problem is, any time I got stuck at a point, she encouraged and provided me insightful ideas to overcome the problem by her wisdom, accompanied with a full understanding manner. She brought forward a wide variety of research alternatives and helped me to discover my interests and to shape my future. I would like to thank to Prof. A. Ayd(cid:25)n Alatan for sharing a huge knowledge on computer vision and machine learning topics and whenever I asked for his advise he never left my questions unanswered. One of the biggest motivation in my graduate studies is being a member of Multimedia Research Group. It has always been a great pleasure for me to work with the members of the best research group of METU. I am thankful to each and every current and former member for their valuable friendship. I would like to thank to Emrecan Bat(cid:25) for sharing all his technical knowledge without hesitation any time I ask for his help; Beril Be‡b(cid:25)nar for all long conversations we had about life, hobbies and travelling; Ece Selin B(cid:246)nc(cid:252) for her energy and making the atmosphere colourful with her energy; (cid:157)lker Buzcu for being my companion during the courses that we took; Ak(cid:25)n ˙al(cid:25)‡kan for reminding me to be always positive with his sincere smiles; Yeti Ziya G(cid:252)rb(cid:252)z for the TA tasks we did together and being an enjoyable friend; Emin Zerman for helping me to feel comfortable in the lab environment during my (cid:28)rst days and teaching me research methods and academical approach to the problems. I am also grateful to Dr. Alper Koz for his wisdom, advises and support during my research activities. I would like to thank to the new members of our group O§ul Can x
Description: