ebook img

Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas PDF

158 Pages·2022·10.975 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas

Springer Series on Atomic, Optical, and Plasma Physics 119 John Rice Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas Springer Series on Atomic, Optical, and Plasma Physics Volume 119 Editor-in-Chief GordonW.F.Drake,DepartmentofPhysics,UniversityofWindsor,Windsor,ON, Canada SeriesEditors JamesBabb,Harvard-SmithsonianCenterforAstrophysics,Cambridge,MA,USA AndreD.Bandrauk,FacultédesSciences,UniversitédeSherbrooke,Sherbrooke, QC,Canada KlausBartschat,DepartmentofPhysicsandAstronomy,DrakeUniversity, DesMoines,IA,USA CharlesJ.Joachain,FacultyofScience,UniversitéLibreBruxelles,Bruxelles, Belgium MichaelKeidar,SchoolofEngineeringandAppliedScience,GeorgeWashington University,Washington,DC,USA PeterLambropoulos,FORTH,UniversityofCrete,Iraklion,Crete,Greece GerdLeuchs,InstitutfürTheoretischePhysikI,UniversitätErlangen-Nürnberg, Erlangen,Germany AlexanderVelikovich,PlasmaPhysicsDivision,UnitedStatesNavalResearch Laboratory,Washington,DC,USA TheSpringerSeriesonAtomic,Optical,andPlasmaPhysicscoversinacomprehen- sive manner theory and experiment in the entire field of atoms and molecules and their interaction with electromagnetic radiation. Books in the series provide a rich sourceofnewideasandtechniqueswithwideapplicationsinfieldssuchaschem- istry,materialsscience,astrophysics,surfacescience,plasmatechnology,advanced optics, aeronomy, and engineering. Laser physics is a particular connecting theme thathasprovidedmuchofthecontinuingimpetusfornewdevelopmentsinthefield, suchasquantumcomputationandBose-Einsteincondensation.Thepurposeofthe seriesistocoverthegapbetweenstandardundergraduatetextbooksandtheresearch literaturewithemphasisonthefundamentalideas,methods,techniques,andresults inthefield. Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/ John Rice Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas JohnRice PlasmaScienceandFusionCenter MassachusettsInstituteofTechnology Cambridge,MA,USA ISSN1615-5653 ISSN2197-6791 (electronic) SpringerSeriesonAtomic,Optical,andPlasmaPhysics ISBN978-3-030-92265-8 ISBN978-3-030-92266-5 (eBook) https://doi.org/10.1007/978-3-030-92266-5 ©SpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Examples of rotation can be found everywhere in nature, from water circling the drain to hurricanes to spots on Jupiter to entire galaxies. Rotation is also seen in high temperature plasma experiments, often with no obvious cause. The purpose of the present study is to document and attempt to understand the experimentally observedrotationintokamaks,toroidal(donutshaped)devicesusedtocontainhigh temperature (a few keV ≈ 10s of millions of degrees) plasmas. While there are severalexternalmomentumsourceswhichcanbeusedtodriverotationintokamaks, spontaneous,self-generatedflow,upto∼100km/s,isroutinelyobservedinplasmas without external momentum input. Furthermore, this intrinsic rotation can reverse direction in a fraction of a second without any obvious reason. The purpose of tokamak research is to provide an energy source via controlled thermonuclear fusion, and in order to achieve this in a cost effective manner, it is important to understand the rich variety of phenomena in tokamak plasmas. What better opportunityistherethanexplainingself-generatedflow? The influence of rotation on tokamak performance has been widely demon- strated.Forinstancerotationcanstabilizecertaindeleteriousmagnetohydrodynamic (MHD) instabilities, and the rotation gradient has been shown to suppress turbu- lence, leading to transport barriers and an enhancement in energy confinement. In thisregarditisimportanttounderstandtherotationintokamakplasmas,andtouse this understanding to control the rotation spatial profile. There are several recent experimental [1–5] and theoretical [6–10] surveys on this subject, and the present goalistoupdateandexpandupontheobservationalreviews. Toroidal velocity profile evolution is governed by a balance between external torques(momentumsourcesandsinks)andthemomentumfluxgradient[4]as m·∂(nv )/∂t=−∇·(cid:4) +S (1) φ φ ext where v is the toroidal velocity, n is the density, m is the particle mass, (cid:4) is φ φ themomentumfluxandS includesexternalmomentumsourcesandsinks.There ext areseveralmomentumsources,e.g.directdrivefromneutralbeaminjectionorradio frequencywaves,andindirectdrivefromtheelectricfieldcreatedbyorbitshiftsand v vi Preface losses.Sinksincludeneutraldampingandmagneticbraking(neo-classicaltoroidal viscosity).Sinksandindirectsourcesdependupontheambientplasmaparameters. The magnetic geometry and subsequent particle orbits must be considered since non-ambipolaritywillgiverisetoanelectricfieldwhichentersintotheforcebalance and collisions must also be taken into account; these are the ingredients for neo- classicaltheory. The momentum flux is dominated by the toroidal Reynolds stress [11] which consistsofthreeparts: (cid:4) /m=−χ ∂v /∂r+V v +(cid:6)res (2) φ φ φ p φ whereχ isthemomentumdiffusivity(orviscosity),V isthemomentumpinch(or φ p convection) and(cid:6)res istheresidualstress.Allthreeofthesetransportcoefficients canbedominated bydifferentcompetingeffectswhichalsodepend uponambient plasmaparameters.Thelattercomponent,whichisindependentofboththetoroidal velocity v and its spatial gradient ∂v /∂r, has the unique characteristic that it φ φ can function as a momentum source (and so appears on both sides of the force balance),withtheintrinsictorquedensitygivenby∇ ·(cid:6)res [11].(cid:6)res isgoverned by turbulence which is often driven by spatial gradients of plasma parameters. Followingasummaryofrotationvelocitymeasurementtechniques(Chap.1)willbe an examination of momentum sources (Chap.2) and sinks (Chap.3), comparisons with the predictions of neo-classical theory (Chap.4), a detailed discussion of the residual stress as a momentum source (Chap.5) and a review of the momentum transportcoefficientsχ ,V and(cid:6)res(Chap.6). φ p Itisimportanttounderstandallaspectsofthisproblem,coveredinChaps.2–6. Eachoftheseeffectshasadifferentplasmaparameterdependence(suchasdensity, temperature, neutral density, collisionality) and each can dominate in different regionsofoperationalspace.Itisnecessarytoconsidermagneticgeometry,particle orbits, collisions, electric fields, MHD constraints through current and pressure gradientsandtheinfluenceofturbulencethroughdensity,temperature,pressureand currentdensitygradients.Furthercomplicatingthisproblemisthatthevelocityisa vector,withdirectionandmagnitude.Thechallengeistoaccountforthismyriadof effectsinacomprehensivemanner.Thisprocesswillbesystematicallyaddressedas follows,afteradiscussionofvelocitymeasurementtechniques. The most common method of velocity determination, from Doppler shifts of atomictransitions,willbecoveredinSect.1.1,withareviewofpassive(Sect.1.1.1) and active (Sect.1.1.2) techniques. Direct external momentum sources will be considered in Sect.2.1, including neutral beam injection (NBI) and various radio frequency schemes (ICRF, LH and ECH). In Sect.2.2, indirect rotation drive due to j×B forces arising from radial orbit shifts and non-ambipolar effects, such as toroidal magnetic field ripple loss, will be reviewed. A summary of momentumsinkswillbepresentedinChap.3,includingneutraldamping,magnetic field perturbations and neo-classical toroidal viscosity. In Chap.4 comparisons of observationswithneo-classicalcalculationswillbeshown,includingbothpoloidal and toroidal rotation. Self-generated flow arising from the residual stress will be Preface vii discussedingreatdetailinChap.5.Twogeneralcategoriesofintrinsicrotationwill beexamined, thatoccuring intheenhanced confinement regimes (H-andI-mode) and that in L-mode plasmas, including the curious rotation reversal phenomenon (and its connexion with confinement saturation and “non-local” heat transport cut-off). Chapter 6 will be concerned with determination of momentum transport coefficients:themomentumdiffusivity,themomentumpinchandtheresidualstress. AdiscussionofopenquestionswillbethesubjectofChap.7.Inthefollowing,the toroidal rotation will be written as v or V while the poloidal rotation will be φ Tor denotedasv orV .Amajorityofvelocitymeasurementsisofimpurityrotation, θ Pol whichisoftenusedasaproxyformainionrotation. Cambridge,MA,USA JohnRice Acknowledgments EnlighteninginteractionswithClementeAngioni,ManfredBitter,YannCamenen, Norman Cao, Jonathan Citrin, John deGrassie, Peter deVries, Patrick Diamond, Basil Duval, Lars-Goran Eriksson, Chi Gao, Martin Greenwald, Brian Grierson, JerryHughes,KatsumiIda,AlexInce-Cushman,DavisLee,EarlMarmar,Rachael McDermott, Yong-Su Na, Arthur Peeters, Yuri Podpaly, Thomas Pütterich, Matt Reinke, Timothy Stoltzfus-Dueck, Tuomas Tala, Steve Wolfe, and Maiko Yoshida are gratefully acknowledged. Work supported at MIT by DoE Contract No. DE- FC02-99ER54512. ix Contents 1 VelocityMeasurementsinTokamaks...................................... 1 1.1 DopplerShiftsofAtomicTransitions.................................. 1 1.1.1 PassiveSpectroscopy........................................... 1 1.1.2 ActiveSpectroscopy............................................ 6 1.2 MHDModeRotation ................................................... 9 1.3 ProbeMeasurements.................................................... 10 1.4 MicrowaveDopplerReflectometryandScattering.................... 11 1.5 Comments............................................................... 14 2 MomentumSources.......................................................... 21 2.1 DirectRotationDrive................................................... 21 2.1.1 NeutralBeamInjection......................................... 21 2.1.2 IonCyclotronRangeofFrequenciesWaves................... 24 2.1.2.1 IonBernsteinWaves.................................. 24 2.1.2.2 ModeConversionFlowDrive ....................... 25 2.1.2.3 FastMagnetosonicWaves............................ 28 2.1.3 LowerHybridWaves ........................................... 31 2.1.4 ElectronCyclotronWaves...................................... 33 2.1.5 CompactTorusInjection ....................................... 35 2.2 IndirectRotationDrive ................................................. 35 2.2.1 OrbitShiftj×BForces ......................................... 35 2.2.2 IonandElectronLossDuetoToroidalMagnetic FieldRipple..................................................... 39 2.2.3 EdgeThermalIonOrbitLoss .................................. 41 2.3 Comments............................................................... 43 3 MomentumSinks ............................................................ 45 3.1 NeutralDamping........................................................ 45 3.2 Mode Locking, Magnetic Braking and Neo-Classical ToroidalViscosity....................................................... 46 3.3 EdgeLocalizedModes.................................................. 51 3.4 Comments............................................................... 51 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.