ebook img

Dressed Photons: Concepts of Light–Matter Fusion Technology PDF

329 Pages·2014·12.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dressed Photons: Concepts of Light–Matter Fusion Technology

Nano-Optics and Nanophotonics Motoichi Ohtsu Dressed Photons Concepts of Light–Matter Fusion Technology Nano-Optics and Nanophotonics For further volumes: http://www.springer.com/series/8765 The Springer Series in Nano-Optics and Nanophotonics provides an expanding selection of research monographs in the area of nano-optics and nanophotonics, science- and technology-based on optical interactions of matter in the nanoscale and related topics of contemporary interest. With this broad coverage of topics, the series is of use to all research scientists, engineers and graduate students who need up-to-date reference books. The editors encourage prospective authors to corre- spond with them in advance of submitting a manuscript. Submission of manu- scripts should be made to the editor-in-chief, one of the editors or to Springer. Editor-in-Chief Motoichi Ohtsu Department of Electrical Engineering and Informations Systems, School of Engineering The University of Tokyo Yayoi, Bunkyo-ku 2-11-16, 113-8656 Tokyo, Japan Motoichi Ohtsu Dressed Photons Concepts of Light–Matter Fusion Technology 123 Motoichi Ohtsu Department of Electrical Engineering and Informations Systems The University of Tokyo Tokyo Japan ISSN 2192-1970 ISSN 2192-1989 (electronic) ISBN 978-3-642-39568-0 ISBN 978-3-642-39569-7 (eBook) DOI 10.1007/978-3-642-39569-7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945799 Ó Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface A dressed photon is a virtual photon that dresses material energy, specifically, the energy of an electron–hole pair, in nanometric space. A quarter of a century has passed since the author pioneered basic research on the dressed photon, and even 20 years have passed since he proposed nanophotonics, which is a novel optical technology exploiting the dressed photon. This technology, which is neither wave- optical technology nor materials technology but a mixture of the two, should be named ‘‘Light-Matter Fusion Technology.’’ Although the number of researchers engaged in this technology was quite small in its early stages, it has been rapidly increasing in recent years, and a number of related industries have been born. In view of the rapid growth of this technical field, the purpose of this book is to disseminate the concepts of the dressed photon. First, Chap. 1 surveys the topics to be discussed in this book. Chapters 2–4 describe the fundamental concepts and theories of dressed photons, using a combination of concepts from optical science, quantum field theory, and condensed matter physics. In Chaps. 5–8, several applications are reviewed. Since the technologies enabling these applications are rapidly progressing, it is recommended that readers refer to the original papers or review articles for details. Finally, Chap. 9 summarizes the topics and presents a future outlook on the field. As supplementary material, Appendices A–H describe related topics and give detailed derivations of the equations appearing in this book. During the course of establishing the fundamentals and developing applications of dressed photons, the author has gotten a lot of suggestions and comments from leading scientists in the relevant fields of research. Furthermore, fruitful discus- sions have been held with many young, active scientists, from whom the author has been greatly enlightened. Since the dressed photon is now being applied to establish generic technologies for constructing infrastructures that will be needed for future society, this book will provide scientific and technical information about dressed photons to scien- tists, engineers, and students who are and will be engaged in this field. The author thanks Drs. T. Kawazoe, T. Yatsui, N. Tate, W. Nomura, K. Kitamura (The University of Tokyo), Dr. Naruse (National Institute of Information and Communications Technology), Dr. K. Kobayashi (Yamanashi University), Dr. S. Sangu (Ricoh, Co. Ltd.), and Dr. Y. Tanaka (JFE Steel Corp.) for their collaborations in research on dressed photons. He also extends special thanks to v vi Preface Drs. M. Tsukada (Tohoku University), H. Hori, and I. Banno (Yamanashi Univer- sity) for their encouragement throughout the course of the author’s research work. Several application technologies of dressed photons, reviewed in Chaps. 5–8, were developed through academia–industry collaborations under arrangements made by the Specified Nonprofitt Corporation ‘‘Nanophotonics Engineering Organization.’’ Finally, the author is grateful to Dr. C. Acheron of Springer– Verlag for his guidance and suggestions throughout the preparation of this book. May 2013, Tokyo Motoichi Ohtsu Abeunt studia in mores. Publius Ovidius Naso, Heroides, VI, 83 Contents 1 What is a Dressed Photon?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Comparison with Conventional Light . . . . . . . . . . . . . . . . . . . . 1 1.2 Light–Matter Interactions via Dressed Photons . . . . . . . . . . . . . 4 1.3 Energy Transfer Between Nanomaterials . . . . . . . . . . . . . . . . . 6 1.4 Novel Phenomena Arising from Further Coupling . . . . . . . . . . . 7 1.5 Symbols for Quantum Operators . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Physical Picture of Dressed Photons . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Virtual Photons Dressing Material Energy . . . . . . . . . . . . . . . . 11 2.2 Range of Interaction Mediated by Dressed Photons . . . . . . . . . . 18 2.2.1 Effective Interaction Between Nanomaterials . . . . . . . . . 19 2.2.2 Size-Dependent Resonance and Hierarchy . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Energy Transfer and Relaxation by Dressed Photons . . . . . . . . . . 37 3.1 Coupled States Originating from Two Energy Levels. . . . . . . . . 37 3.2 Principles of Dressed-Photon Devices . . . . . . . . . . . . . . . . . . . 42 3.2.1 Dressed-Photon Devices Using Two Quantum Dots . . . . 43 3.2.2 Dressed-Photon Devices Using Three Quantum Dots . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Coupling Dressed Photons and Phonons . . . . . . . . . . . . . . . . . . . . 59 4.1 Novel Molecular Dissociation and the Need for a Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.1 Unique Phenomena of Molecular Dissociation by Dressed Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 Lattice Vibrations in the Probe . . . . . . . . . . . . . . . . . . . 62 4.2 Transformation of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 Diagonalization by Unitary Transformation . . . . . . . . . . 67 4.2.2 Physical Picture of the Quasi-Particle . . . . . . . . . . . . . . 71 4.2.3 The Equilibrium Positions of Atoms . . . . . . . . . . . . . . . 73 4.3 Localization Mechanism of Dressed Photons . . . . . . . . . . . . . . 75 4.3.1 Conditions for Localization . . . . . . . . . . . . . . . . . . . . . 75 vii viii Contents 4.3.2 Position of Localization . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 Light Absorption and Emission via Dressed-Photon–Phonons . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Devices Using Dressed Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Structure and Function of Dressed-Photon Devices . . . . . . . . . . 89 5.1.1 Devices Utilizing Energy Dissipation . . . . . . . . . . . . . . 89 5.1.2 Devices in Which Coupling with Propagating Light is Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2 Characteristics of Dressed-Photon Devices . . . . . . . . . . . . . . . . 117 5.2.1 Low Energy Consumption . . . . . . . . . . . . . . . . . . . . . . 118 5.2.2 Tamper-Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.3 Skew Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Autonomy in Energy Transfer . . . . . . . . . . . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6 Fabrication Using Dressed Photons. . . . . . . . . . . . . . . . . . . . . . . . 137 6.1 Molecular Dissociation by Dressed-Photon–Phonons . . . . . . . . . 137 6.1.1 Comparison Between Experiments and Theories . . . . . . . 137 6.1.2 Deposition by Molecular Dissociation . . . . . . . . . . . . . . 144 6.2 Lithography Using Dressed-Photon–Phonons . . . . . . . . . . . . . . 147 6.3 Fabrication by Autonomous Annihilation of Dressed-Photon–Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3.1 Smoothing a Material Surface by Etching . . . . . . . . . . . 160 6.3.2 Repairing Scratches on a Substrate Surface by Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.3.3 Other Related Methods . . . . . . . . . . . . . . . . . . . . . . . . 168 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7 Energy Conversion Using Dressed-Photons . . . . . . . . . . . . . . . . . . 171 7.1 Conversion From Optical to Optical Energy . . . . . . . . . . . . . . . 171 7.1.1 Multi-Step Excitation . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.1.2 Non-Degenerate Excitation and Applications . . . . . . . . . 184 7.2 Conversion From Optical to Electrical Energy . . . . . . . . . . . . . 190 7.2.1 Multi-Step Excitation and Autonomous Fabrication. . . . . 191 7.2.2 Wavelength Selectivity and Light Emission . . . . . . . . . . 195 7.3 Conversion From Electrical to Optical Energy . . . . . . . . . . . . . 200 7.3.1 Autonomous Device Fabrication . . . . . . . . . . . . . . . . . . 201 7.3.2 Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.3 Applications to Other Related Devices . . . . . . . . . . . . . 208 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Contents ix 8 Spatial Features of the Dressed-Photon and its Mathematical Scientific Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.1 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.1.1 Hierarchical Memory. . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.1.2 Hierarchy Based on the Constituents of Nanomaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8.1.3 Hierarchy and Local Energy Dissipation . . . . . . . . . . . . 221 8.1.4 Applications Exploiting the Differences Between Propagating Light and Dressed Photons . . . . . . . . . . . . . 223 8.2 Conversion From an Electric Quadrupole to an Eelectric Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 8.3 Probe-Free Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.3.1 Magnified Transcription of the Spatial Distribution of the Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.3.2 Spatial Modulation of the Energy Transfer Between Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . 231 8.4 Mathematical Scientific Model . . . . . . . . . . . . . . . . . . . . . . . . 233 8.4.1 Formation of Nanomaterials . . . . . . . . . . . . . . . . . . . . . 235 8.4.2 Statistical Modeling of Morphology . . . . . . . . . . . . . . . 240 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9 Summary and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 9.2 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Appendix A: Multipolar Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . 253 Appendix B: Elementary Excitation and Exciton-Polariton . . . . . . . . . 259 Appendix C: Projection Operator and Effective Interaction Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Appendix D: Transformation from Photon Base to Polariton Base . . . 275 Appendix E: Derivation of the Equations for Size-Dependent Resonance . . . . . . . . . . . . . . . . . . . . 279 Appendix F: Energy States of a Semiconductor Quantum Dot . . . . . . 283

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.