C L , R S , LAUSE EARNING ESOLUTION PACE & P EBBLING by Philipp Hertel AThesisSubmittedinConformityWiththeRequirements FortheDegreeofDoctorofPhilosophy GraduateDepartmentofComputerScience UniversityofToronto Copyright(cid:13)c 2008byPhilippHertel Abstract ClauseLearning,ResolutionSpace,&Pebbling PhilippHertel DoctorofPhilosophy GraduateDepartmentofComputerScience UniversityofToronto 2008 Currently,themosteffectivecompleteSATsolversarebasedontheDPLLalgorithmaugmentedbyClause Learning. These solvers can handle many real-world problems from application areas like verification, diagnosis,planning,anddesign. ClauseLearningworksbystoringpreviouslycomputed,intermediatere- sultsandthenreusingthemtoprunethefuturesearchtree. WithoutClauseLearning,however,DPLLloses mostofitseffectivenessonrealworldproblems. Recentlytherehasbeensomeworkonobtainingadeeper understanding of the technique of Clause Learning. In this thesis, we contribute to the understanding of ClauseLearning,andtheResolutionproofsystemthatunderliesit,inanumberofways. WecharacterizeClauseLearningasanew,intuitiveResolutionrefinementwhichwecallCL. Wethen showthatCLproofscaneffectivelyp-simulategeneralResolution. Furthermore,thisresultholdsevenfor themorerestrictiveclassof greedy, unitpropagating CLproofs, whichmoreaccuratelycharacterizeClause Learningasitisusedinpractice.ThisresultissurprisingandindicatesthatClauseLearningissignificantly morepowerfulthanwaspreviouslyknown. Since Clause Learning makes use of previously derived clauses, it motivates the study of Resolution space. WecontributetothisareaofstudybyprovingthatdeterminingthevariablespaceofaResolution derivationisPSPACE-complete. Thereductionalsoyieldsasurprisingexponentialsize/spacetrade-offfor Resolutioninwhichanincreaseofjust3unitsofvariablespaceresultsinanexponentialdecreaseinproof- size. ThisresultrunscountertotheintuitionsofmanyintheSAT-solvingcommunitywhohavegenerally believedthatproof-sizeshoulddecreasesmoothlyasavailablespaceincreases. In order to prove these Resolution results, we need to make use of some intuition regarding the rela- tionshipbetweenBlack-WhitePebblingandResolution. Infact,determiningthecomplexityofResolution variable space required us to first prove that Black-White Pebbling is PSPACE-complete. The complex- ityoftheBlack-WhitePebblingGamehasremainedanopenproblemfor30yearsandresistednumerous attemptstosolveit. Itssolutionistheprimarycontributionofthisthesis. ii Acknowledgements To start with, I would like to thank my supervisor Toni Pitassi. I have learned far more from Toni than I probablyknowhowtoarticulate. TonitaughtmeagreatdealjustbybeingToni. Byfollowingtheexample ofherdedicationtoherworkandherfamily, Ihavebecomeamuchbetterresearcherandamoremature person in general. Her fun and free-spirited nature have also made working with her an incredibly cool andenjoyableexperience. IwasveryluckytohaveanincrediblePhDcommitteeandIwouldliketothankitsmembers,starting withAlasdairUrquhart. Despitebeingnotallerthanme, Alasdairisanintellectualgiantamongusmere mortals. Alasdair knows everything about everything and it has been an honour and a treat learning fromhim. InmanywaysFahiemBacchus’spresenceonmycommitteewasveryreassuringsincehewas always calm and collected even in the face of the mind-numbing complexity of clause learning. Fahiem isalsoagreatwriterandIhavelearnedalotaboutbeingpersuasivefromhim. ProfessorCookisatruly inspirationalfigurewhohasmadesuchfundamentalcontributionstocomputersciencethatworkingwith him makes one believe that the hardest problems might just be solvable. I would also like to thank my externalexaminerNickPippenger. ReadingNick’ssurveypaperonPebblinghelpedmyresearchagreat dealanditwasarealpleasuremeetinghim. ThoughCharlieRackoffwasonlyaddedtomycommitteefor myfinaldefense,IfeellikeIhavealottothankhimfor.CharlieisprobablythemostoriginalthinkerIhave ever met and he has really taught me the value of asking the right questions, which is arguably the most importantlessonanyoneinresearchcouldeverbetaught. It was Charles Morgan who gave me the most encouragement to go to graduate school. I would like to thank him for his mentorship and his unerring moral compass. If everyone could know someone like Charlesduringtheirdevelopmentalyears,theworldwouldnotbesuchascrewedupplace. I would also like to thank NSERC for supporting me financially throughout graduate school. I don’t reallyknowwhoisresponsibleformeoverthere, butwhoeveryouare, thankyouformakingitpossible formetohavearoofovermyheadandfoodinmytummy. AllofmyfriendsattheUniversityofTorontoalsodeservelotsofthanks.Firstandforemost,Iwouldlike to acknowledge Stratis Ioannidis. Stratis, you were a great roommate and continue to be a terrific friend. EmmanuelleandIhadawonderfultimetravelingtoGreecetovisityouandyourfamily. Ihopethatyou andGrace(whoIwouldalsoliketoacknowledge!) remainashappyasever. IwouldliketothankMarc Tedder for being human and allowing me to waste hours of his time discussing a huge range of issues. I would also like to thank my friend Nazanin Mirmohammadi. Your honesty, intelligence, and curiosity inspiremyown. IwouldalsoliketothankAlanSkelley,KleoniIoannidou,andMarkBravermanforbeing greatfriends. Iamsurewewillcontinuetobeintouchformanyyearstocome. Of course, I would never have been able to do this without my family. I would like to thank my wife Emmanuelle,whoseloveandsupportmadeeverythingpossible. Thankyouforyoursenseofhumourand allofyourpatienceandunderstanding. IwouldalsoliketothankmybrotherAlexanderwhohasalways been a great older brother and role-model to me. Last, but certainly not least, I would like to thank my Mother. Thejourneyofmyeducationstartedalongtimeagowithyou,andhasbeenpunctuatedalongthe waywithmanyofyoursacrifices. Forthat,andformanyotherthings,Iwillbeeternallygrateful. iii Contents 1 Introduction 1 1.1 Summary&Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Definitions&PreviousResults 6 2.1 GeneralLogicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 DAG/CircuitDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 ProofComplexityDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 p-Simulation&ExponentialSeparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Effectivep-Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Automatizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 ResolutionDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 ResolutionProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ClassicResolutionProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ResolutionProofsasDAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Configuration-StyleResolutionProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 ResolutionRefinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.3 ResolutionComplexityMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 PreviousResolutionResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1 ResolutionHierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.2 ResolutionSpaceResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.3 RelationshipsBetweenComplexityMeasures. . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.4 PreviousAutomatizabilityResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PositiveResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 NegativeResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 PebblingGameDefinitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 BlackPebbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.2 Black-WhitePebbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.3 Frugality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 PreviousPebblingResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 iv 3 ThePSPACE-CompletenessofBlack-WhitePebbling 29 3.1 OverviewofMainResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Lingas: BlackPebblingMonotoneCircuitsisPSPACE-Complete . . . . . . . . . . . . . . . . . 31 3.3 ReductionFromQBFψtoBlack-WhitePebblingDAGG . . . . . . . . . . . . . . . . . . . . . 37 3.4 ProofofCorrectness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.1 ForwardDirection/UpperBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 ReverseDirection/LowerBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 ExponentialTime/SpaceTrade-OffforBlack-WhitePebbling . . . . . . . . . . . . . . . . . . . 85 3.6 PSPACE-CompletenessoftheSymmetricBlack-WhitePebblingGame . . . . . . . . . . . . . 85 3.6.1 DefinitionofSymmetricBlack-WhitePebbling . . . . . . . . . . . . . . . . . . . . . . . 85 3.6.2 ModificationtotheDefinitionofFrugality . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6.3 ModificationtotheBlack-WhitePebblingReduction . . . . . . . . . . . . . . . . . . . 86 3.6.4 ProofThatSymmetricBlack-WhitePebblingisPSPACE-Complete . . . . . . . . . . . 86 4 ResolutionSpaceResults 89 4.1 ProofOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 ReductionFromQBFψToCNFFormulaPeb(G(cid:48)) . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.1 ConstructionofG(cid:48) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.2 ConstructionofPeb(G(cid:48)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2.3 OtherPreliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3 ProofofCorrectness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.1 ForwardDirection/UpperBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.2 ReverseDirection/LowerBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.3 Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 TheProofComplexityofClauseLearning 129 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 DPLL&RegularTreeResolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.1 TheDPLLProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.2 DPLLProducesTreeResolutionProofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2.3 TheClauseLearningProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.3 ClauseLearningProofs(CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.4 Greedyvs. Non-greedyClauseLearningProofs . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.5 ThePowerofClauseLearningProofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.5.1 RelationToPreviousWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.5.2 ClauseLearningEffectivelyp-SimulatesResolution . . . . . . . . . . . . . . . . . . . . 142 5.5.3 ImplicationsoftheEffectivep-simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.5.4 ResolutionHierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 v 6 RelatedOpenProblems 154 6.1 ClauseLearningProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 PebblingProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.3 ResolutionSpaceProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 vi List of Figures 2.1 AportionoftheResolutionProofComplexityHierarchybeforetheinclusionofClauseLearn- ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 ThemonotonecircuitG producedforψ = ∀x ∃x ∀x (x ∨x¯ ∨x )∧(x¯ ∨x ∨x )∧(x¯ ∨ 3 2 1 3 2 1 3 2 1 3 x ∨x¯ )∧(x ∨x¯ ∨x¯ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 1 3 2 1 3.2 AnExampleofaLiteralWidgetfromLingas’sConstruction . . . . . . . . . . . . . . . . . . . 33 3.3 TheExistentialWidgetFromLingas’sConstruction. . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 TheUniversalWidgetFromLingas’sConstruction. . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Aliteralwidgetforvariablex (left). Aliteralwidgetforvariablex inthetruestate(center). i i Aliteralwidgetforvariablex inthefalsestate(right). . . . . . . . . . . . . . . . . . . . . . . 38 i 3.6 Aclausewidgetforclausez =(l1∨l2∨l3)(left). Theconnectionofz toG (center). And j j j j m 0 a4-slide({v1,v2,v3,v4},{u1,u2,u3,u4})(right). . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 LegendexplainingthecomponentsofFigures3.8and3.9.. . . . . . . . . . . . . . . . . . . . . 40 3.8 AuniversalwidgetfortheBlack-WhitePebblingresult. . . . . . . . . . . . . . . . . . . . . . . 41 3.9 AnexistentialwidgetfortheBlack-WhitePebblingresult.. . . . . . . . . . . . . . . . . . . . . 42 3.10 AnexampleofGforψ =∀x ∃x ∀x (x ∨x¯ ∨x )∧(x ∨x ∨x¯ )∧(x¯ ∨x ∨x¯ )∧(x¯ ∨x¯ ∨x ) 44 3 2 1 1 2 3 1 2 3 1 2 3 1 2 3 3.11 Subintervalsof[tα,tω]duringwhichnodesoftheuniversalwidgetmustbeemptyormust containablackpebble.Intervalsduringwhichanodemustcontainablackpebbleareshown as a thick blue line, while intervals during which a node must be empty are shown as a thinnerredline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.12 Subintervalsof[tα,tω]duringwhichnodesoftheexistentialwidgetmustbeemptyormust containablackpebbleincase2a. Intervalsduringwhichanodemustcontainablackpebble areshownasathickblueline,whileintervalsduringwhichanodemustbeemptyareshown asathinnerredline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.13 Subintervalsof[tα,tω]duringwhichnodesoftheexistentialwidgetmustbeemptyormust containablackpebbleincase2b. Intervalsduringwhichanodemustcontainablackpebble areshownasathickblueline,whileintervalsduringwhichanodemustbeemptyareshown asathinnerredline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.14 ModificationmadetoG toformG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 sym vii 4.1 ClauseWidgetforz =(x ∨x ∨x )inG(cid:48). (Alledgesaredirectedfromlowernodestoward j 1 2 3 highernodes.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.1 AT-RESrefutationofF =(x¯ ∨x¯ )∧(x¯ )∧(x¯ ∨x¯ ∨x¯ )∧(x ∨x¯ )∧(x ∨x¯ ∨x¯ )∧(x ∨ 1 2 5 1 2 5 1 2 2 3 4 2 x ∨x )∧(x ∨x ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4 5 2 3 5.2 ACLrefutationofF = (x¯ ∨x¯ )∧(x¯ )∧(x¯ ∨x¯ ∨x¯ )∧(x ∨x¯ )∧(x ∨x¯ ∨x¯ )∧(x ∨ 1 2 5 1 2 5 1 2 2 3 4 2 x ∨x )∧(x ∨x ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4 5 2 3 5.3 General form of the CL refutation. The refutation is drawn as a tree for clarity’s sake, but therewillbecross-edgespointingfromsomesub-proofsbacktosomeearliersub-proofs. . . 143 5.4 Subproofi.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.5 General form of the gCL refutation. The refutation is drawn as a tree for clarity’s sake, but therearecrossedgespointingfromsub-proofsbacktoearliersub-proofsandfromthederiva- tionof∅backtosub-proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.6 Subproofi.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.7 ThestructureofP(p,i),attachedtothebackboneofsub-proofi. . . . . . . . . . . . . . . . . . 148 5.8 TheResolutionProofComplexityHierarchyincludingClauseLearning. . . . . . . . . . . . . 153 viii Chapter 1 Introduction 1.1 Summary & Motivation Thisthesiscoversthreemaintopics: ClauseLearning, ResolutionSpace, andBlack-WhitePebbling. At first glance, clause learning and black-white pebbling seem to be unrelated topics, but they are linked by their mutual connections to the study of Resolution space measures. In this chapter we introduce each ideaandgivesomeintuitionastowhytheyareinterestingandimportanttopicsofstudy. Wealsobriefly describe the novel contributions made in this thesis. We shall use [Sip96] and [CK01] as our standard references for complexity theory and proof complexity, and begin our introduction by discussing black- whitepebbling. Thecomplexityoftheblack-whitepebblinggamehasremainedanopenproblemforalmost30years.In thisthesiswesettlethisopenproblembyshowingthattheblack-whitepebblinggameisPSPACE-complete. WethenusesimilarideasinamorecomplicatedreductiontoprovethePSPACE-completenessofResolution space. Thereductionalsoyieldsasurprisingexponentialtime/spacespeedupforResolutioninwhichan increaseof3unitsofspaceresultsinanexponentialdecreaseinproof-size. The Black-White Pebbling Game was introduced by Cook and Sethi in 1976 [CS76] in an attempt to separateP fromNL. TheBlack-WhitePebblingGamereceivedconsiderableattentionthroughoutthenext decade due to its numerous applications including VLSI design, compilers, and algebraic complexity. In 1983, determining its complexity was rated as “An Open Problem of the Month” in David Johnson’s NP- Completeness Column [Joh83]. An excellent survey of pebbling results from this period can be found in Pippenger [Pip80]. Recently, there has been a resurgence of interest in pebbling games due to their links withpropositionalproofcomplexity[BS02,ET01,Nor06,HU07,Her08]. TheBlack-WhitePebblingGamewasprecededbytheBlackPebblingGame,whichhasalsobeenwidely studied [Pip80]. Let G = (V,E) be a DAG with one distinguished output node, s. In the Black Pebbling Game,aplayertriestoplaceapebbleonswhileminimizingthenumberofpebblesplacedsimultaneously on G. The game is split up into distinct steps, each of which takes the player from one pebbling configu- rationtothenext. Initially,thegraphcontainsnopebblesandeachsubsequentconfigurationfollowsfrom thepreviousbyoneofthefollowingrules: 1 CHAPTER1: INTRODUCTION 2 • Atanypointtheplayermayplaceablackpebbleonanysourcenodev. • Atanypointtheplayermayremoveablackpebblefromanynodev. • For any node v, if all of v’s predecessors have pebbles on them, then the player may place a black pebbleonv,ormayslideablackpebblefromapredecessoruofvtov. The Black Pebbling Game models deterministic space-bounded computation. Each node represents a resultandtheplacementofablackpebbleonanoderepresentsthedeterministiccomputationoftheresult from previously computed results. A sequence of moves made by the player is called a pebbling strategy. If a strategy manages to pebble s using no more than k pebbles, then that strategy is called a k-pebbling strategy. TheBlack-WhitePebblingGameisamorepowerfulextensionoftheBlackPebblingGamethatincludes whitepebbles,whichbehaveinadualmannertotheoriginalblackpebbles. Asbefore,theplayerattempts to place a black pebble on s while minimizing the number of pebbles placed simultaneously on G at any time. However,unliketheBlackPebblingGame,theBlack-WhitePebblingGamedoesnotenduntilevery nodeotherthansisempty. Sotheplayermustremoveanyoutstandingpebblesonceshasbeenreached. TheBlack-WhitePebblingGameextendstheBlackPebblingGamewiththeadditionofthefollowingrules: • Atanypointtheplayermayremoveawhitepebblefromanysourcenodev. • Atanypointtheplayermayplaceawhitepebbleonanynodev. • Foranynodev withawhitepebbleonit,theplayermayslidethepebbletoanemptypredecessoru ofvifallofv’sotherpredecessorsarepebbled,ortheplayermayremovethewhitepebbleifallofv’s predecessorsarepebbled. • Thegameendswhenscontainsablackpebbleandeveryothernodeisempty. As before, the placement of each black pebble is meant to model the derivation of a deterministically computed result, while the placement of each white pebble is meant to model a non-deterministic guess whoseverificationrequiresallofitsantecedentstobederived. In1978,LingasshowedthatageneralizationoftheBlackPebblingGame,playedonmonotonecircuits instead of DAGs, is PSPACE-complete [Lin78]. This was a surprising result since the PSPACE-complete games of the time involved two players and it was clear how the alternation between them led to each game’shighcomplexity. In1980,Gilbert,Lengauer,andTarjanelaboratedonthebasicstructureofLingas’s constructiontoprovethePSPACE-completenessoftheBlackPebblingGameonDAGs[GLT80]. Themain difficultyinmovingfrommonotonecircuitstothemorerestrictedclassofDAGsisthecreationofanOR widgetusingonlytheglobalboundonthenumberofpermissiblepebblesandnodeswhichactlikeAND gates. While the above results settle the complexity of black pebbling, determining the complexity of black- whitepebblinghasresistednumerousattempts. Incontrasttoblackpebbles,whitepebblesallowamuch richer choice of strategies since they can be placed anywhere on the graph regardless of previous pebble
Description: