Chapter 2 The Synthesis of Novel Dihydronaphthalenes and Benzofluorenes Thischapterisconcernedwiththesynthesisandapplicationsofdihydronaphthalenes andbenzofluorenes.Thischapterdescribesliteraturemethodsforthepreparationof dihydronaphthalenesandbenzofluorenes.Effortstodiscovernewsyntheticmethods forthesynthesisofdihydronaphthalenesandbenzofluorenesarethendescribed. 2.1 Introduction to Dihydronaphthalenes The 1,2-dihydronaphthalene ring system is present in various natural products of therapeutic importance including: cannabisins 48, isolated from the fruits of Cannabissativa[1].6,7-dehydrosempervirol49[2],isolatedfromtherootsofSalvia apianaandnegundinB50[3],isolatedfromtherootsofVitexnegundo.Nafoxidene 51 is a class of biologically active dihydronaphthalene and its analogues can be prepared from 1-(4-benzyloxyphenyl)-6-methoxy-2-phenyl-3,4-dihydronaphtha- lene[4–6].Dihydronaphthalenederivativesare used asfluorescent ligands for the estrogenreceptor[7]andexhibitactivityasHepatitisCNS5Bpolymeraseinhibitors [8].Recently,dihydronaphthaleneswerefoundtobepotentandselectiveinhibitors ofaldosteronesynthase(CYP11B2)forthetreatmentofcongestiveheartfailureand myocardialfibrosisFig. 2.1[9]. Asdihydronaphthalenederivativesareusefulstartingmaterialsforthesynthesis of biologically active cyclic molecules [10], numerous traditional synthetic approachestothesecompoundshavebeen reported[11–13,45].Amongthem the dearomatisation ofnaphthalene derivativesbythenucleophilicadditionofcertain organometallicreagentsisoneofthemostusefulandconvenientmethods[14–18].A drawbackofthenucleophilicadditionmethodisthedifficultyinapplicationtoawide range of substrates. Dihydronaphthalenes are known as useful building blocks in organicsynthesis[7,19–27].Theycanundergobromination[28],cyclopropanation [29, 30], dipolar cycloaddition [31, 32] and epoxidation [33] reactions to afford S.A.Shahzad,NovelSelenium-MediatedRearrangementsandCyclisations, 13 SpringerTheses,DOI:10.1007/978-3-642-33173-2_2, (cid:2)Springer-VerlagBerlinHeidelberg2013 14 2 TheSynthesisofNovelDihydronaphthalenesandBenzofluorenes R2O X OH H3CO H3CO OH R1O X H HO OH 48 49 50 51 R3O H OR1 NegundinB OCH3 N O X=-CONH(CH2)2-C6H4OH(4-) OH Nafoxidene R1,R2,R3=H,Me,Ac Fig.2.1 Dihydronaphthalenenaturalproducts O K(2.4eq) O Li(2.4eq) O OH or FeCl3 K(2.4eq) 75% 75% 55 52 53 54 O O O Li(2eq),liquid Limetal(2eq), NH3excess,MeI liquidNH3excess 75% 75% 58 56 57 Scheme2.1 TheBirchreduction useful products. Rhodium- and palladium-catalysed asymmetric ring-opening reactions ofoxabenzonorbornadienes byvarious alcohol,amine andalkyl nucleo- philesafforddihydronaphthalenederivativesingoodyields[34,35].Theconversion of a- and b-tetralone into dihydronapthalenes was accomplished by palladium- catalysedcouplingofGrignardreagentswithinsitu-generatedenolphosphates[36]. The gold(I)-catalysed intramolecular rearrangement of vinylidenecyclopropanes alsogivesdihydronaphthalenes[37].Themetal-ammoniareductionofnaphthalene anditsderivativeshasalsobeenextensivelyinvestigated[38,39].Additionalmetal- catalystshavealsobeenusedintheformationofdihydronaphthalenes,suchasthose usedintheBirchreductionandthereductivemethylationof1-and2-acetylnaph- thalenesintodihydronaphthalenesasdescribedbyRaoandSundar.Ithasbeenfound that 1-acetylnaphthalene is reduced to the 3,4-dihydronaphthalene 57 whilst the 2-acetylnaphthalene gives the corresponding 1,2,3,4-tetrahydronaphthalene 53 (Scheme 2.1)[40].However,anhydrousferricchloridehasbeenfoundtolimitthe reductiontothedihydro-stagewith2-acetylnaphthalene. 1,2-Dihydronaphthalene derivatives have been synthesised by the thermal cyclisations of alkenyliodonium tetrafluoroborates. The required alkenyliodonium salts60possessinganaromaticgroupwerepreparedfromalkenylsilanes59using iodosylbenzene inthepresence ofboron trifluoride-diethyletherat0 (cid:3)C followed byquenchingwithaqueoussodiumtetrafluoroborate,affordinga77 %yieldofthe vinyliodonium tetrafluoroborate 60. Intramolecular aromatic vinylation of the iodonium salts 60 was found to occur smoothly on gentle heating at 40 (cid:3)C for 2.1 IntroductiontoDihydronaphthalenes 15 ICoHdo2Csyl2lb,eBnFz3e•neOE(3t2e(q3),eq) CHC3l03,m4i0noC R1 59 SiMe3R2 R1=H0,CoCl,,B7rh;R2=H,MeR1 60 I+PhRB2F4¯ 65% R1 61 R2 Scheme2.2 Hypervalentiodine-mediatedsynthesisofdihydronaphthalene61 0.5 h in a sealed tube and provided dihydronaphthalene 61 in 65 % yield (Scheme 2.2) [41]. 1,2-Dihydronaphthalenes can also be prepared in moderate yields from allenylsilanes and benzylic cations by a one-step intermolecular cyclisation. For example, treatment of alcohol 62 with an excess of allenylsilane 63 and 2.0 equivalents of tin(IV) chloride in dichloromethane at 0 (cid:3)C afforded dihydro- naphthalene64in65 %yield.Thereactioncanalsobecarriedoutusinganexcess ofbenzylicalcohol,forexample,treating2.0equivalentsofalcohol62withallene 63 afforded dihydronaphthalene 64 in 79 % yield. The use of an excess of one of thereactantsisadrawback.Anotherdrawbackisthatsubstitutiononthearomatic ring controls whether dihydronaphthalene or spirodecatrienone products are formed (Scheme 2.3) [42]. The transition metal-promoted insertion of carbonyl compounds to carbon– carbontriplebondscanprovideusefulroutetodihydronaphthalenes.Oxidationof diethyl a-benzylmalonate 65 by manganese(III)acetate in acetic acid at 70 (cid:3)C in the presence of alkynes 66 leads to dihydronaphthalene derivatives 67 in low to good yields (Scheme 2.4) [43]. In2002,Harrowven[44]reportedtheconversionof4-arylalk-1-en-1-ylmethyl ethers68todihydronaphthalenesundercatalyticreactioncondition.Cyclisationis accomplishedbywarmingatoluenesolutionofthesubstrate68with1,2-ethanediol andcatalyticpara-toluenesulfonicacidat80 (cid:3)Cwhichproceedsviainsituformation ofa1,3-dioxolane.Reactionsgenerallygivegoodyields(66–91 %)andhavebeen successful with electron rich, unsubstituted and halogenated arenes, the latter requiringextendedreactiontimes(Scheme 2.5). Suzuki and co-workers [45] described the thermal ring expansion of various alkenylbenzocyclobutenolderivativesintodihydronaphthalenes.Thereactionswere carriedoutat110 (cid:3)Cintoluene.Thermolysisof70showedareactivitydependence ontheRgroup(Scheme 2.6).Therelativepropensitytoformeitherdihydronaph- thalene71ornaphthalenederivative72isdependentuponthenatureofthesubstrate. Substrateswithsilylormethylethergroupsunderwentsmoothrearrangementtogive thedihydronaphthalene71.WhenRisanacetyl,thenaphthalene72bwasobtainedas themainproduct.Thestereochemistryofthethermalconversionofalkenylbenzo- cyclobutenol into either cis-dihydronaphthalene or trans-dihydronaphthalene was alsostudied. Yamamoto[46]describedthepreparationof1,2-dihydronaphthalene75bythe reactionofo-(alkynyl)benzaldehydesoro-(alkynyl)phenylketones73witholefins 74 using 10 mol % Cu(OTf) at 80 (cid:3)C in THF. This Cu(OTf) -catalysed cyclo- 2 2 addition reaction affords dihydronaphthalene derivatives 75 bearing a ketone 16 2 TheSynthesisofNovelDihydronaphthalenesandBenzofluorenes OH OMe Si(t-Bu)Me2 MeO OMe Si(t-Bu)Me 2 SnCl (2equiv) HO 4 • 62 63 MeO Et OH Et OMe OMe HO Si(t-Bu)Me HO Si(t-Bu)Me2 2 MeO MeO Et 64 Et Scheme2.3 Synthesisofdihydronaphthalene64frombenzylicalcohol62 COOEt COOEt Mn(OAc)3 COOEt R R1 COOEt 13-92% R1 65 66 67 R=alkyl,aryl,Me Si;R1=H,alkyl,Ph,COOEt R 3 Scheme2.4 Manganesemediatedsynthesisofdihydronaphthalene67 R 1equiv.(CH OH) ,10mol%p-TsOH 2 2 R 68 OMe toluene,80oC,4 24h,66 91%yield 69 Scheme2.5 Acid-catalysedcyclisationof68todihydronaphthalene69 OR″ R2 Toluene,110oC OR″ R1 OR″ R1 R′ R1 R′ R′ OR R=TBDMS,R1=R2=H,71a=95% R2 R2 R=Me,R1=R2=H,71b=68%,72a=27% OR 70 R=Ac,R1=R2=H,72b=85% 71 72 R=TBDMS,R1=R2=Me,71c=94%,72c=5% Scheme2.6 Thermalringexpansionof70intodihydronaphthalenes function at the 1-position in 26–90 % yields. The process is reasonably general with regard to the types of substituents on the olefin that can be employed and alkyne can also be used with a range of substitution patterns (Scheme 2.7). The formation of dihydronaphthalene derivatives from x-arylalkyne 76 can be catalysed by the use of 0.1 mol % Hg(OTf) -(TMU) (TMU = tetramethylurea) 2 3 complex in acetonitrile at room temperature. Under these conditions, various dihydronaphthalene derivatives are formed in good yields along with smaller amounts of by-products. However, the choice of substitution pattern on the substrate is crucial for the success of this process (Scheme 2.8) [47]. 2.1 IntroductiontoDihydronaphthalenes 17 O R3 O R R1 10mol%Cu(OTf)2,THF R2R4 R2 R4 80oC,10h,26-90%yield 73 R 74 R3 75 R1 R=H,Bu,Ph;R1=H,Me,Ph R2=R4=H,alkyl,aryl;R3=H,Me Scheme2.7 Cu(OTf) -catalysed[4?2]cycloadditionofo-alkynylbenzeneswithalkenes 2 OMe OMe Hg(OTf) —(TMU) (0.1mol%) 2 3 OMe CH CN,r.t,3.3h, 95% OMe 3 76 77 Scheme2.8 Mercurictriflate-(TMU) -catalysedcyclisationofx-arylalkyne 3 R2 R2 CO2Et Mn(OAc)3,AcOH,80oC,10h CO2Et 78 R1 CO2Et 60—70% R1 CO2Et R1=H,Me,OMe,Cl,Br,NO2 79 EtO2C CO2Et R2=H,Me,Ph R2 R2 CO2Et 78a RE1tO2C CO2Et 78b R1 CO2Et Scheme2.9 Manganeseacetatemediatedfree-radicalcyclisationreactionofalkylenecyclopropanes Chenandco-workers[48]reportedaconvenientsynthesisof3,4-dihydronaphth- alen-2-yl-malonicesters79inmoderateyieldbythereactionofarylidenecyclopro- panes78withdiethylmalonateinthepresenceofMn(OAc) .Thereactionisproposed 3 to proceed by the b-scission of the C–C bond in the cyclopropane ring in 78a to generate78b.Subsequentintramolecularradicalcyclisationof78b producescyclic product79withthelossofaprotonandoxidationinthepresenceofanothermolecule ofMn(OAc) (Scheme 2.9). 3 Theregio-andstereoselectivering-openingadditionofalkyl-orallylzirconium reagentsto7-oxabenzonorbornadienes80asdescribedinScheme 2.10iscatalysed by10 mol %NiBr (dppe)and20 mol %ZnpowderindryTHFat50 (cid:3)C[49].Under 2 theseconditions,awiderangeofcis-2-alkyl-orallyl-1,2-dihydronaphthalenes82are formed in good yields (49–82 %). The nickel-catalysed transmetalation of alkyl- zirconiumreagentstoformnickel(II)alkylintermediate81cispostulatedtoproceed throughtheformationofapalkenenickelcomplex81b.Thecatalyticcycleinvolves 18 2 TheSynthesisofNovelDihydronaphthalenesandBenzofluorenes O R OH [NiBr2(dppe)](10mol%),Zn(20mol%) R Cl(Cp)2Zr THF,50oC,12h,49—82% 80 81 R=alkyl,benzyl,SiMe3,cyclohexyl,cyclopentyl 82 Scheme2.10 Synthesis of dihydronaphthalene 82 by nickel-catalysed addition of alkyl zirconiumreagents81tooxabenzonorbornadienes initial coordination of 7-oxabenzonorbornadiene (via the exo face of the carbon– carbon double bond) to the Ni center in 81b followed by the addition of the or- ganonickelspeciesintothedoublebondresultingintheformationofintermediate 81c.Subsequentb-oxyeliminationleadstointermediate81d,andtransmetalation withCp ZrClBrgivesthenickel(II)catalystandzirconiumalkoxide82a.Thelatter 2 is converted to the final desired alkyl product 82 by protonation after workup (Scheme 2.11). Ichikawaandco-workers[50]haveshownthat2,2-difluorovinylketonesbearing anarylgroupcanbecyclisedto4-fluorinated3-acyl-1,2-dihydronaphthalenesusing 1equivalenttrimethylsilylatingagent[Me SiOTforMe SiB(OTf) ].Theresulting 3 3 4 dihydronaphthalene84issubjectedtoasubstitution-cyclodehydrationprocessora Nazarov-type cyclisation to construct fused polycyclic systems. The process is believedtoproceedthroughthegenerationofthea-fluorocarbocation83afollowed by Friedel–Crafts cyclisation. For example, 4-fluorinated 3-acyl-1,2-dihydro- naphthalene 84 was formed in 84 % yield via a Friedel–Crafts-type alkylation accompanied by the loss of a fluoride ion. 4,5-Dihydrobenzo[g]indazoles 85 and 5,6-dihydrobenzo[h]quinazolines 86 have been obtained in good yields by the reaction of 84 with both hydrazines and amidines as bifunctional nucleophiles in benzeneat reflux, respectively (Scheme 2.12). Alternatively,1,2-disubstituted-3,4-dihydronaphthalenes89areformedin36–90 % yieldsbythecycloadditionreactionofvinylarenes87withelectron-deficientalkynes88 suchasdiethylacetylenedicarboxylateandmethylphenylpropiolate[51].Thesereac- tionwereconductedat110 (cid:3)CinthepresenceofDMF-DMA(N,N-dimethylformamide dimethylacetal)asanorganocatalyst(Scheme 2.13).Thisorganocatalysedmethodol- ogyexhibitstheadvantagesofsubstrateversatilityandmildreactionconditions. Anewsynthesisofdihydronaphthalenefroma-tetralonewasdisclosedbySingh and co-workers [52]. When ketoxime 91 was treated with (stoichiometric) triphen- ylphosphineandaceticanhydrideintolueneatreflux,completeconversiontoproduct 92wasobserved.Thismethodologyinvolvesaphosphine-mediatedreductiveacyla- tionofoximesandtheresultingdihydronaphthalene92bearingenamideisisolatedin goodyields(upto89 %)withexcellentpurity(Scheme 2.14)[52]. Reactions of arylsubstituted propargylic alcohols catalysed by a simple Lewis or Brønsted acid have been developed for the selective synthesis of di- and tetrahydronaphthalene systems [53]. Treatment of a variety of aryl substituted propargylic alcohols 93 with toluenesulfonic acid in nitromethane at 80 (cid:3)C afforded the corresponding 1,2-dihydronaphthalenes 95 formed through the 2.1 IntroductiontoDihydronaphthalenes 19 R Cl(Cp) Zr 2 P Br Ni Cp ZrClBr OZr(Cp)2Cl P Br 2 R 82a P=PPh2 R P Ni Br 81a P Cp ZrClBr 2 ZnBr 2 R P ZnBr3 Ni 81d P P 80 O Ni P Br R P Ni O P R 81b O 81c Scheme2.11 Proposedcatalyticcycleforthepreparationof82 O OLA O Ph H3C Ph LA H3C Ph H3C Ph H3C CF2 0oC CF2 F RNHNH2 NN R 85 83 83a 84 NH CRNH2 Ph H3C N N R 86 Scheme2.12 Synthesisofdihydronaphthaleneanditsapplicationtofusedheterocycles R2 COOR3 DMF-DMA(20mol%) COOR3 R1 R3OOC COOR3 R1 110oC,5h,36-90% 87 88 89 R2 R1=Me,Cl,Br;R2=H,Me;R3=Me,Et Scheme2.13 Synthesisofdihydronaphthalenebycycloadditionreactionof87with88 20 2 TheSynthesisofNovelDihydronaphthalenesandBenzofluorenes O NOH NHAc NH2OH•HCl R3P,Ac2O NaOAc,MeOH toluene,reflux 89%yieldfromketone 90 91 92 R=Ph,Et,n-Bu,n-Oct,cyclohexyl Scheme2.14 Synthesisofdihydronaphthalene92froma-tetralone90 E E E E E E E 5mol%TsOH•H2O E 5FemCol6l%•6H2O isomerisation Ph CH3NO2,80oC Ph • 80oC Ph 63-93%yield 0→5oC, Ph PhOH 37—95% Ph Ph Ph 95 93 94 95 Scheme2.15 Synthesisof95fromaryl-substitutedpropargylicalcohols93 intramolecular Friedel–Crafts reaction followed by successive isomerisation in moderateto excellent yields, dependingon the nucleophilicityof the aryl nucleus involved and the nature of substituents at the propargylic position. Selective preparationof95couldbeachievedbyusingFeCl •6H Oat0–5 (cid:3)C.Itwasalso 3 2 feasible to isolate 94 in good yields using TsOH as a catalyst if the reaction was carried out at room temperature. Remarkably, both 93 and 95 were converted to spiro-skeletons, when using FeCl • 6 H O at 80 (cid:3)C (Scheme 2.15). 3 2 A range of dihydronaphthalenes was accomplished by the palladium-catalysed de-aromatisation reaction of naphthalene derivatives with allyltributylstannane (Scheme 2.16) [54]. The allylative de-aromatisation reactions of naphthalene derivatives 96 with allyltributylstannane have been performed in the presence of [Pd (dba) ](5 mol %)andPPh (20 mol %).Thesimplesubstrates96underwent 2 3 3 thede-aromatisationreactionsmoothlytoafford97inhighyields(74–87 %)Neither theelectron-donatinggroupnortheelectron-withdrawinggrouponthearomaticring exertedastronginfluenceonthereaction(exceptintermsofthereactiontimes).The proposed mechanism involves the formation of g3-allylpalladium chloride inter- mediate96bbyoxidativeadditionof96atoaPd(0)species,followedbyreaction withallyltributylstannanetogenerateabis(g3-allyl)palladiumintermediate96cupon ligandexchange.Isomerisationof96cwouldoccurtogiveabis(g3-allyl)palladium intermediate96d.Theresultingallyl-Pdcomplexundergoesreductiveeliminationto formthedearomatisedproduct97andregeneratethePd(0)catalyst(Scheme 2.17). Nickelcanefficientlycatalysethecyclisationofalkenes,andalkynestoafforda seriesofsubstituteddihydronaphthalenesthatcannotbepreparedfromthereadily availablestartingmaterials[55].In2009,XieandQiudescribedthepreparationof wide range of dihydronaphthalenes in good yields from nickel-catalysed three- component [2 ? 2 ? 2] carboannulation reaction of arynes, activated alkenes, and alkynes [56]. This work offers an exceptionally efficient route to 1,2- dihydronaphthlenesfromreadilyavailablestartingmaterials.Variousalkyneswere 2.1 IntroductiontoDihydronaphthalenes 21 Cl [Pd2(dba)3](5mol%) PPh (20mol%),CH Cl 3 2 2 rt,2 24h SnBu 3 74—89%yields 97 R 96 R Scheme2.16 Synthesis of 97 by palladium-catalysed de-aromatisation of naphthalene deriva- tiveswithallyltributylstannane Cl L Pd Cl Pd Cl L L SnBu3 96 96a 96b Pd(0) Pd Pd BuSnCl 3 97 96d 96c Scheme2.17 Mechanismforthede-aromatisationof96(allchargesareomitted) TMS [Ni(cod)2](5mol%),CsF(3equiv.) R2 R1 R2 R3 R4 R1 OTf CH3CN,r.t,upto78%yield R4 98 99 100 R2=CO2Me,CO2n-Bu,CN R3 101 R3=alkyl,allyl,methoxy;R4=aryl,alkyl,CO2Me Scheme2.18 Nickel-catalysedsynthesisof101viaamulti-componentreaction compatiblewiththisnickel-catalysedcarboannulationreactionandgavethedesired dihydronaphthalenes101inverygoodyields.Thebestresultswereobtainedusing 5 mol % [Ni(cod) ] and 3 equivalents cesium fluoride in acetonitrile at room 2 temperature.Ifunactivatedalkeneswereused,noneofthedesiredproducts101were detected.Functionalisedaryneprecursorswithelectron-donatinggroupswereless effective, producing dihydronaphthalene derivatives 101 in moderate yields (Scheme 2.18). In 2009, the rhodium-catalysed reaction of 1,6-enynes 103 with 2- bromophenylboronicacids102hasbeenutilizedbyTongetal.[57].Toconstructa multi-substituted dihydronaphthalene scaffold. A screen of reaction conditions revealedthat5 mol %Rh(CO) (acac),triphenylphosphine,potassiumcarbonatein 2 a dioxane and water mixture at 100 (cid:3)C for 3–5 h afforded dihydronaphthalene 22 2 TheSynthesisofNovelDihydronaphthalenesandBenzofluorenes R Br Rh(CO) (acac),PPh ,K CO 2 3 2 3 X B(OH)2 Y X dioxane:H2O(20:1) 32-75%yield R Y X=O,N;Y=O,CH 2 104 102 103 Scheme2.19 Rhodium-catalysedsynthesisofdihydronaphthalenescaffold104 scaffold104ingoodyieldsformostsubstrates.This[2 ? 2 ? 2]cycloadditionof 1,6-enynes with 2-bromophenylboronic acids involves the Rh-catalysed regiose- lective insertion of an alkyne into an arylrhodium(I) species and the oxidative additionofC–Brbondsintheadjacentphenylringtotheresultingvinylrhodium(I) species as key steps (Scheme 2.19). In 2009, Yao and co-workers [58] exploited scope of isochromenylium tetra- fluoroborates as precursors of various dihydronaphthalenes. Direct metal-free treatmentofisochromenyliumtetrafluoroborate106withalkenesinacetonitrileat either 25 or 60 (cid:3)C afforded a diverse range of dihydronaphthalenes 107 via mild cascade reactions. Reaction of 106 with the monosubstituted, disubstituted, and trisubstitutedolefinsaswellaswithcyclicalkenesdelivereddesiredproducts107 successfully in 48–79 % yields (Scheme 2.20). Inan attempt toinducechirality on dihydronaphthaleneringsystems, Cho and co-workers used chiral (S,S0)-(R,R0)-C -ferriphos 108 as ligand and [Rh(cod)Cl] 2 2 as a catalyst in tetrahydropyrane at 80 (cid:3)C. In the presence of a rhodium catalyst generated in situ from [Rh(cod)Cl] and (S,S0)-(R,R0)-C2-ferriphos 108, the 2 asymmetric ring-opening reaction of azabenzonorbornadienes 109 with various aliphaticandaromaticaminesproceededwithhighenantioselectivity(upto99 % ee) to give the corresponding 1,2-diamine substituted dihydronaphthalene deriv- atives110inhighyields.Experimentsrevealedthatthenatureofthechiralligand hasthesignificantimpactonthereactivityofthecatalystandtheuseofexcess(2.2 equiv. to Rh) of the chiral ligand plays an important role to increase the enanti- oselectivity in the ring-opening reactions of azabenzonorbornadienes with amine nucleophiles (Scheme 2.21) [59]. In 2010, Ohwada and co-workers [60] disclosed the acid-catalysed cyclisation of arylacetoacetates to afford 3,4-dihydronapththalene derivatives in Brønsted superacids. For example, methyl 2-aceto-4-phenylbutyrate 111 underwent the cyclisationinthepresenceof10equivalentstrifluoromethylsulfonicacid(TFSA) to afford 1-methyl-2-carbomethoxy-3,4-dihydronaphthalene 112 and 1-methyl- 3,4-dihydronaphthalene-2-carboxylic acid 113 in 87 % combined yield. In the same communication, they also reported thermochemical data on the acid- catalysed cyclisation of arylacetoacetates. Thermochemical data shows that activation of arylacetoacetates toward cyclisation by a strong acid, and the electron-withdrawing nature of the O-protonated ester functionality significantly increases the electrophilicity of the ketone moiety (Scheme 2.22) [60].
Description: