ebook img

Download Data Mecheng Adelaide Edu Au PDF PDF

164 Pages·2005·8.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Download Data Mecheng Adelaide Edu Au PDF

(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:11)(cid:12)(cid:13)(cid:14)(cid:12)(cid:15)(cid:15)(cid:16)(cid:14)(cid:12)(cid:13)(cid:17)(cid:8)(cid:18)(cid:9)(cid:19)(cid:20)(cid:4)(cid:6)(cid:15)(cid:16)(cid:8)(cid:2)(cid:12)(cid:21)(cid:8)(cid:22)(cid:2)(cid:6)(cid:23)(cid:15)(cid:19)(cid:2)(cid:6)(cid:14)(cid:3)(cid:2)(cid:5)(cid:8)(cid:24)(cid:3)(cid:14)(cid:15)(cid:12)(cid:3)(cid:15)(cid:25)(cid:8) (cid:24)(cid:3)(cid:23)(cid:9)(cid:9)(cid:5)(cid:8)(cid:9)(cid:10)(cid:8)(cid:22)(cid:15)(cid:3)(cid:23)(cid:2)(cid:12)(cid:14)(cid:3)(cid:2)(cid:5)(cid:8)(cid:11)(cid:12)(cid:13)(cid:14)(cid:12)(cid:15)(cid:15)(cid:16)(cid:14)(cid:12)(cid:13)(cid:8) (cid:8) (cid:8) (cid:1)(cid:1)(cid:1)(cid:1) (cid:2)(cid:2)(cid:2)(cid:2) (cid:7)(cid:7)(cid:7)(cid:7) (cid:10)(cid:10)(cid:10)(cid:10)(cid:2)(cid:2)(cid:2)(cid:2)(cid:7)(cid:7)(cid:7)(cid:7)(cid:11)(cid:11)(cid:11)(cid:11)(cid:1)(cid:1)(cid:1)(cid:1)(cid:12)(cid:12)(cid:12)(cid:12) (cid:6)(cid:6)(cid:6)(cid:6) (cid:16)(cid:16)(cid:16)(cid:16)(cid:5)(cid:5)(cid:5)(cid:5) (cid:3)(cid:3)(cid:3)(cid:3)(cid:4)(cid:4)(cid:4)(cid:4)(cid:5)(cid:5)(cid:5)(cid:5)(cid:6)(cid:6)(cid:6)(cid:6)(cid:3)(cid:3)(cid:3)(cid:3)(cid:1)(cid:1)(cid:1)(cid:1) (cid:5)(cid:5)(cid:5)(cid:5)(cid:8)(cid:8)(cid:8)(cid:8)(cid:6)(cid:6)(cid:6)(cid:6)(cid:2)(cid:2)(cid:2)(cid:2)(cid:5)(cid:5)(cid:5)(cid:5)(cid:9)(cid:9)(cid:9)(cid:9)(cid:1)(cid:1)(cid:1)(cid:1) (cid:3)(cid:3)(cid:3)(cid:3)(cid:2)(cid:2)(cid:2)(cid:2)(cid:6)(cid:6)(cid:6)(cid:6)(cid:13)(cid:13)(cid:13)(cid:13)(cid:7)(cid:7)(cid:7)(cid:7)(cid:14)(cid:14)(cid:14)(cid:14)(cid:9)(cid:9)(cid:9)(cid:9)(cid:1)(cid:1)(cid:1)(cid:1) (cid:14)(cid:14)(cid:14)(cid:14)(cid:15)(cid:15)(cid:15)(cid:15)(cid:3)(cid:3)(cid:3)(cid:3) (cid:17)(cid:17)(cid:17)(cid:17)(cid:17)(cid:17)(cid:17)(cid:17)(cid:1)(cid:1)(cid:1)(cid:1)(cid:14)(cid:14)(cid:14)(cid:14)(cid:8)(cid:8)(cid:8)(cid:8)(cid:18)(cid:18)(cid:18)(cid:18)(cid:1)(cid:1)(cid:1)(cid:1) (cid:9)(cid:9)(cid:9)(cid:9) (cid:10)(cid:10)(cid:10)(cid:10)(cid:12)(cid:12)(cid:12)(cid:12)(cid:6)(cid:6)(cid:6)(cid:6)(cid:5)(cid:5)(cid:5)(cid:5)(cid:9)(cid:9)(cid:9)(cid:9)(cid:11)(cid:11)(cid:11)(cid:11)(cid:1)(cid:1)(cid:1)(cid:1)(cid:4)(cid:4)(cid:4)(cid:4) (cid:14)(cid:14)(cid:14)(cid:14) (cid:1)(cid:1)(cid:1)(cid:1) (cid:14)(cid:14)(cid:14)(cid:14)(cid:8)(cid:8)(cid:8)(cid:8)(cid:18)(cid:18)(cid:18)(cid:18)(cid:13)(cid:13)(cid:13)(cid:13)(cid:8)(cid:8)(cid:8)(cid:8)(cid:19)(cid:19)(cid:19)(cid:19)(cid:1)(cid:1)(cid:1)(cid:1) (cid:5)(cid:5)(cid:5)(cid:5)(cid:18)(cid:18)(cid:18)(cid:18)(cid:3)(cid:3)(cid:3)(cid:3)(cid:9)(cid:9)(cid:9)(cid:9)(cid:1)(cid:1)(cid:1)(cid:1) (cid:13)(cid:13)(cid:13)(cid:13)(cid:2)(cid:2)(cid:2)(cid:2)(cid:7)(cid:7)(cid:7)(cid:7)(cid:2)(cid:2)(cid:2)(cid:2)(cid:14)(cid:14)(cid:14)(cid:14)(cid:17)(cid:17)(cid:17)(cid:17)(cid:6)(cid:6)(cid:6)(cid:6) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:26)(cid:15)(cid:27)(cid:15)(cid:5)(cid:8)(cid:28)(cid:29)(cid:8)(cid:30)(cid:9)(cid:12)(cid:9)(cid:4)(cid:16)(cid:25)(cid:8)(cid:31)(cid:16)(cid:9) (cid:15)(cid:3)(cid:6)(cid:8) (cid:1)(cid:14)(cid:12)(cid:2)(cid:5)(cid:8)!(cid:15)(cid:20)(cid:9)(cid:16)(cid:6)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:10)(cid:11)(cid:8) (cid:8) (cid:1) "#$(cid:30)%!(cid:24)(cid:8) (cid:12)(cid:6)(cid:5)(cid:5)(cid:8)(cid:13)(cid:7)(cid:14)(cid:15)(cid:6)(cid:8) (cid:16)(cid:6)(cid:17)(cid:17)(cid:6)(cid:8)(cid:18)(cid:19)(cid:6)(cid:7)(cid:20)(cid:4)(cid:4)(cid:21)(cid:8) (cid:22)(cid:14)(cid:2)(cid:19)(cid:23)(cid:6)(cid:24)(cid:8)(cid:18)(cid:15)(cid:14)(cid:3)(cid:19)(cid:8) (cid:25)(cid:24)(cid:24)(cid:23)(cid:26)(cid:8)(cid:18)(cid:3)(cid:23)(cid:5)(cid:14)(cid:24)(cid:6)(cid:8) (cid:8) (cid:24)#(cid:31)(cid:11)!(cid:29)(cid:28)(cid:24)%!(cid:8) (cid:27)(cid:7)(cid:28)(cid:8)(cid:29)(cid:6)(cid:26)(cid:8)(cid:30)(cid:23)(cid:31)(cid:31)(cid:4)(cid:24)(cid:23)(cid:3)(cid:4)(cid:8) (cid:8) (cid:1) (cid:24)(cid:31)%&(cid:24)%! (cid:18)(cid:14)(cid:7)(cid:8) (cid:4)(cid:17)(cid:17)(cid:8)(cid:23)(cid:26)(cid:21)(cid:8)(cid:18)(cid:14)(cid:7)(cid:8)!(cid:6)(cid:14)(cid:3)(cid:19)(cid:8)(cid:18)(cid:15)(cid:14)(cid:3)(cid:19)(cid:8)"#(cid:26)(cid:21)(cid:8) (cid:8) (cid:8) (cid:1) (cid:1)(cid:1) (cid:1) ii Executive Summary This project is a continuation of the 2004 University of Adelaide Mechanical Engineering final year VTOL project, which aimed to develop a controlled and stable VTOL model aircraft based on the F-35 Joint Strike Fighter. Last year’s project group was unable to complete the project for several reasons, primarily because of the poor performance of the internal combustion engines. Due to advances in electric motor and battery technology, the use of electric motors in now a feasible option and has been chosen for this year’s project. An investigation was performed to re-evaluate the most suitable aircraft upon which to base this year’s design. This research identified that the V-22 Osprey was the most suitable platform. The primary advantage in using the V-22 Osprey as opposed to the F-35 was the higher thrust to weight ratio achievable using propellers. Severaldesignswereconsideredduringtheconceptevolution, witheachconceptcompared with the design requirements. The final concept which met all requirements was then modelled in SolidEdge where further details were considered. The design consists of an Aluminium chassis with rotating wing arms controlled by servo motors allowing for tilt- rotor operation. Control simplifications use this wing arm rotation along with a rear tail-fan to directly control all three rotational degrees of freedom. Thrust providing components were selected to best satisfy the constraints of cost, weight andpower. Ultimatelytwo-bladefixed-pitchpropellerswerechosentobemountedradially to brushless motors via a planetary gearbox. These motors are controlled using an electronic speed controller and powered by on-board Lithium Polymer batteries. Using softwarebasedpropellertheorythesecomponentswereshowntoproduceadequatethrust. To facilitate the creation of an appropriate control system using the physical characteristics of the model aircraft, a mathematical representation of the system was obtained by following several closely related examples. Using this mathematical representation a state space controller was developed using a Reduced-Order Observer and tuned using LQR Optimal Control. Another control technique, Proportional Integral Derivative (PID) control, was also used as a controller for the aircraft. While the PID iii controllerwaslesscapablethanthestatespacecontroller, itwasmucheasiertoimplement and tune. The controllers were initially built in Matlab Simulink, which creates C code that is cross-compiledanddownloadedtoadSPACEDS-1104rapidprototypingcontrolplatform. This allowed for the easy implementation and tuning of these control systems. However this control platform is an undesirable final solution to control the aircraft due to its size and cost, so the control system was migrated to the on-board MiniDRAGON+ microcontroller. This microcontroller was specifically programmed to interface with all of the control peripherals, including a standard remote control and receiver which was used to control the model. The model aircraft was attached to a gimble to allow the tuning of the control systems while in a tethered and safe configuration. However due to problems associated with this gimble the tuning was not successfully completed. The model was then moved to a semi-tethered configuration, where it was removed from the gimble but still tethered via the wiring loom which allowed relatively free movement within a fixed range. During this semi-tethered stage of controller tuning a gearbox shaft failed which prevented progress towards the project goals of controlled and stable hover. The project was set back due to the late procurement of vital components and several mechanical failures. While this contributed to the project goals of controlled and stable hover being incomplete, the design was shown to be able to provide enough thrust to achieve hover and sufficiently controllable to achieve these goals. Furthermore due to the significant work undertaken in integration and control embedding the model is a solid control platform for future work. iv Acknowledgements The VTOL group would like to thank everybody who has assisted with the project. OurprojectsupervisorDr. BenCazzolatohasprovidedvaluableassistanceinthisproject. Both his technical advice and general experience have been very useful for us. We thank Benforcontinuouslyallocatingusintohisexceedinglydemandingscheduleandappreciate his time spent with us. The Sir Ross and Sir Keith Smith Fund for providing the financial support which has made this project possible. Mr. Tim Newman, our industrial associate has provided us with advice and product sourcing based on practical knowledge and experience with aeronautical engineering and model aircraft. Within the School of Mechanical Engineering Mr. Richard Pateman and Mr. Steven Kloeden from the workshop and Mr. Silvio De Ieso from Electronics and Instrumentation have been extremely helpful throughout the project, providing advice and assisting us despite our constant pestering. Dr. Frank Wornle has also provided valuable help with the microcontrollers and provided advice regarding the use of his real-time target for embedded control. Postgraduate student Mr. Rohin Woods also helped in the development of a Virtual Reality model. Finally the group would also like to thank our family and friends for supporting us throughout the project. v vi Disclaimer We, the authors, state that the material contained within is entirely our work unless otherwise stated. Zebb Prime Allan Stabile Michael Smith Jesse Sherwood vii viii Contents Executive Summary iii Acknowledgements v Disclaimer vii List of Figures xv List of Tables xviii 1 Introduction 1 1.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Literature Review 4 2.1 Key Findings of the 2004 Report . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Existing VTOL Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 F-35B Joint Strike Fighter . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 V-22 Osprey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Experimental Craft . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Previous Tilt-Rotor VTOL RC Aircraft . . . . . . . . . . . . . . . . . . . . 9 2.4 Control Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ix Contents Contents 3 Concept Evaluation 13 3.1 F-35 Joint Strike Fighter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Ducted Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Basic Feasibility Calculation . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Osprey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 RC Propellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Basic Feasibility Calculations . . . . . . . . . . . . . . . . . . . . . 17 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Mechanical Design 19 4.1 Control Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 Yaw Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 Pitch Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.3 Roll Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.4 Translation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Frame Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Tilt Rotor Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.3 Final Tilt-Rotor Design . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.4 Frame Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.5 Final Frame Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.2 Propeller Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.3 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 x

Description:
The aim of this project is to develop a remote control model VTOL aircraft that is a scale in free air, by the propeller due aerodynamic drag. k
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.