ebook img

Double Compton and cyclo-synchrotron in super-Eddington discs, magnetized coronae and jets PDF

25 Pages·2017·8.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Double Compton and cyclo-synchrotron in super-Eddington discs, magnetized coronae and jets

MNRAS467,2241–2265(2017) doi:10.1093/mnras/stx227 Double Compton and cyclo-synchrotron in super-Eddington discs, magnetized coronae and jets Jonathan C. McKinney,1‹ Jens Chluba,2 Maciek Wielgus,3 Ramesh Narayan4 and Aleksander Sadowski5 1UniversityofMarylandatCollegePark,DepartmentofPhysics,JointSpace-ScienceInstitute,3114PhysicalSciencesComplex, CollegePark,MD20742,USA 2JodrellBankCentreforAstrophysics,UniversityofManchester,OxfordRoad,ManchesterM139PL,UK 3CopernicusAstronomicalCenterofthePolishAcademyofSciences,ul.Bartycka18,PL00-716Warszawa,Poland D 4Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,MA02134,USA ow 5MITKavliInstituteforAstrophysicsandSpaceResearch,77MassachusettsAve,Cambridge,MA02139,USA nlo a d e d Accepted2017January24.Received2017January5;inoriginalform2016August30 fro m h ttp s ABSTRACT ://a c BlackholeaccretiondiscsaccretingneartheEddingtonratearedominatedbybremsstrahlung a d e cooling,butabovetheEddingtonrate,thedoubleComptonprocesscandominateinradiation- m ic dominatedregions,whilethecyclo-synchrotroncandominateinstronglymagnetizedregions .o u likeacoronaorajet.Wepresentanextensiontothegeneralrelativisticradiationmagnetohydro- p .c dynamiccodeHARMRADtoaccountforemissionandabsorptionbythermalcyclo-synchrotron, om double Compton, bremsstrahlung, low-temperature OPAL opacities, as well as Thomson and /mn Comptonscattering.TheHARMRADcodeandassociatedanalysisandvisualizationcodeshave ras been made open-source and are publicly available at the github repository website. We ap- /artic proximatetheradiationfieldasaBose–Einsteindistributionandevolveitusingtheradiation le number–energy–momentum conservation equations in order to track photon hardening. We -ab s perform various simulations to study how these extensions affect the radiative properties of tra c magneticallyarresteddiscsaccretingatEddingtontosuper-Eddingtonrates.Wefindthatdou- t/4 bleComptondominatesbremsstrahlunginthediscwithinaradiusofr∼15r (gravitational 67 g /2 radii)athundredtimestheEddingtonaccretionrate,andwithinsmallerradiiatloweraccre- /2 2 4 tion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures 1 /2 inthecorona,whilecyclo-synchrotronregulatestemperaturesinthejet.Interestingly,asthe 9 6 2 accretion rate drops to Eddington, an optically thin corona develops whose gas temperature 4 3 of T ∼ 109K is ∼100 times higher than the disc’s blackbody temperature. Our results show 5 b y the importance of double Compton and synchrotron in super-Eddington discs, magnetized g u coronaeandjets. es t o n Key words: accretion, accretion discs–black hole physics–MHD–radiation: dynamics– 0 5 galaxies:jets–X-rays:binaries. A p While DC has received attention in cosmology to determine dis- ril 2 1 INTRODUCTION tortions to the cosmic microwave background (Chluba & Sun- 019 Blackhole(BH)accretionflowsbecomeradiation-dominatedand yaev 2012; Chluba 2014) and been applied to gamma-ray bursts geometrically thick once the luminosity L (cid:2) 0.3L , where L (Vurm,Lyubarsky&Piran2013;Be´gue´ &Pe’er2015),ithasre- Edd Edd ≈1.3×1039[M/(10M(cid:4))]ergs−1istheEddingtonluminosityfor ceived little attention in accretion theory except by Poutanen & solarmassM(cid:4)andBHmassM.Suchaccretionflowstendtohave Svensson(1996). temperaturesof109(cid:2)T(cid:2)106K(Abramowiczetal.1988),where Forphotonnumberdensityn ,ionnumberdensityn,electron γ i bremsstrahlung(BR,free–free,ep→e(cid:6)p(cid:6)γ)isimportant. massm ,speedoflightc,Boltzmann’sconstantk andtemperature e b Double (radiative) Compton (DC, γ e→γ(cid:6)γ e(cid:6)) (Light- T,theratesofeachprocessshowthatDCdominatesfree–freeif 1 1 2 man 1981; Thorne 1981; Pozdnyakov, Sobol & Syunyaev 1983; (cid:2) (cid:3) Svensson1984)candominatefree–freewhileregulatingtempera- nγ (cid:2)1.3 mec2 5/2 (1) turessothatpairsremainsub-dominant(seefig.1inThorne1981). n k T i b (Thorne1981;Svensson1984),whichhasthecorrectionbySvens- (cid:3)E-mail:[email protected] son(1984)of1.3insteadofthevalue0.1byThorne(1981).Inthis (cid:7)C 2017TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 2242 J.C.McKinneyetal. paper,wefindDCdominatesfree–freeforthemeanopacitywhen Thesephysicaleffectsareincludedwithinourgeneralrelativis- T >7×107Kρ2/11, (2) tic radiative magnetohydrodynamics (GRRMHD) code HARMRAD (McKinneyetal.2014)thatusestheM1closure.Similargeneral whereρismassdensityincgsunits.ForBHX-raybinariesaccreting relativistic(GR;Fragileetal.2012;Takahashietal.2013;Sa¸dowski at 10 times the Eddington rate, one has ρ ≈ 10−3gcm−3 giving etal.2014;Fragile,Olejar&Anninos2014;McKinneyetal.2014; equalityatT≈2×107K,whilesimulationsshowthatT∼5×107– Ryan,Dolence&Gammie2015;Takahashietal.2016)andnon-GR 108K(Sadowski&Narayan2015a)indicatingthatDCdominates (Jiang,Stone&Davis2014b)schemeshavebeendeveloped.These free–freeevenifnotyetincluded.ForsupermassiveBHsrelevant codeshavebeenusedtostudyBHX-raybinariesandtheirdiscs, fortidaldisruptionevents(TDEs)accretingattheEddingtonrate, coronaeandjets(Jiang,Stone&Davis2014a;McKinney,Dai& onehasρ∼10−9gcm−3,givingequalityatT≈1.4×106K,which Avara2015;Sadowski&Narayan2015a),growthof10solar-mass isreachedwithintensofgravitationalradii. BH seeds (McKinney et al. 2014), low-luminosity active galactic Still, it remains uncertain that which opacity dominates the nuclei(AGN;Sadowskietal.2017),high-luminosityAGN(Jiang, mean flow behaviour. The Novikov–Thorne solution (Novikov & Davis&Stone2016),AGNfeedback(Sa¸dowskietal.2016a),TDEs D o Thorne1973)orslimdiscsolution(Abramowiczetal.1988)could (Sadowski & Narayan 2015b; Sa¸dowski et al. 2016b), ultralumi- w n beusedasaguidetohowimportantDCis,butwefindthatthetem- nous X-ray sources (ULXs; Narayan et al. 2016), massive stellar lo a peraturesensitivitymakestheconclusionsnotrobust–especially envelopes (Jiang et al. 2015), neutron star atmospheres (Wielgus d e aansdthmeasglinmetidcisficelsdosl.uAtiolsno,isunmliokdeififreede–bfyrewe,inDdCs,ivseerntitciarellystrduecpteunre- etaInl.S2e0c1t6io)n,e2t,cw. eoutlineourequationsofmotion;inSection3,we d from dentupontheradiationtemperature fornon-relativisticelectrons, presentourGRRMHDsimulations,andinSection4,wesummarize h so distinct gas and radiation temperatures are important to treat. ourresults.Fortheappendices:inAppendixA,wediscussouruse ttp s This motivates using simulations to consider both opacities with oftheBEdistribution,inAppendixB,wediscusshowwecompute ://a c separategasandradiationtemperatures. themeanopacities,inAppendixC,wediscussfree–freeandrelated a d In addition, cyclo-synchrotron (hereafter, synchrotron) is ex- low-temperatureopacities,inAppendixD,wediscusssynchrotron em pected to be an important source of opacity or emission for opacities,andinAppendixE,wediscussComptonscatteringand ic .o low-luminosity accretion flows or in regions where non-thermal DCopacities. u p electrons are present. In super-Eddington accretion flows, one .c o expects synchrotron to be unimportant in the disc. However, m 2 EQUATIONS OF MOTION /m the atmosphere above the disc (i.e. corona) and jet can con- n tain a strong magnetic field at low densities where synchrotron Theconservationlawsare ras cMancKdionmneiyna2t0e11(D).iInMaadtdteitoi,onC,emloatgtine&ticFalalbyiaanrre1s9te9d7;acUcrzedteionnskdyisc&s (ρuμ);μ =0, (3) /article (MADs)aremuchmorestronglymagnetizedthanweaklymagne- (cid:4) (cid:5) -a b tizeddiscsthatareusuallyconsidered(Igumenshchev,Narayan& Tνμ ;μ =Gν, (4) stra Abramowicz2003;Narayan,Igumenshchev&Abramowicz2003; c Tchekhovskoy, Narayan & McKinney 2011). Magnetically sup- (cid:4)Rνμ(cid:5);μ =−Gν, (5) t/467 portedatmospherescanhardenthespectrumbyproducingamore /2 extended vertical disc (Blaes et al. 2006), and synchrotron can whereρ isthegasdensityinthecomovingfluidframe,uμ isthe /22 gas four-velocity as measured in the ‘lab frame’ and Tμ is the 4 provide an abundant source of low-energy soft photons that can ν 1 magnetohydrodynamics(MHD)stress–energytensorinthisframe, /2 undergoinverseComptonbeforebeingabsorbed.Sothemagnetic 9 (cid:2) (cid:3) 6 field strength can regulate photon hardening in disc atmospheres 1 24 andmagnetizedjets. Tνμ=(ρ+ug+pg+b2)uμuν+ pg+ 2b2 δνμ−bμbν. (6) 35 b In this paper, we consider the competition between free– y free, bound-free bound–bound opacities from OPAL (Iglesias & Rνμisthestress–energytensorofradiation,Gνistheradiativefour- gu Rfloowgesr.sW1e99a6l)s,oDcCon,saidnedrssyenpcahrraotetroanbsionrpMtioAnDa-tnydpeemBiHssiaocncrmeteioann fpogracree,dreesscpreibcitnivgeltyh,ethinetienrtaecrtnioalnebneetrwgyeeanndgpasreasnsudrreaodfiathtieonga,suignatnhde est on opacitiestofocusonemissionratesintheenergyandmomentum comovingframeandbμisthemagneticfieldfour-vector(Gammie, 05 equations,ratherthantheRosselandmeanthatonlyappliesinthe McKinney & To´th 2003). The magnetic pressure is pb = b2/2 Ap diffusionlimitforthemomentumequation.Theabsorptionmean inourHeaviside–Lorentzunits.Theidealinductionequationand ril 2 handles the effect of irradiation and how the absorption of radia- entropyequationsarealsoused(McKinneyetal.2014).Weassume 01 tionisaffectedbythephotondistributionbeingdifferentthanthat collisions keep gas and electron temperatures similar (Sadowski 9 given by Planck at the local temperature (Sadowski et al. 2017). etal.2017). Such effects lead to a significant correction to the mean opaci- tiesandcanqualitativelychangetheoutcome(Hubeny,Burrows& 2.1 Radiativefour-force Sudarsky2003).Additionally,weevolvethephotonnumbersepa- ratelyfromthephotonenergy(Sadowski&Narayan2015a),with We use a covariant formalism for computing the interaction due separatenumberandenergyopacities,inordertotrackphotonhard- to absorption, emission and scattering (McKinney et al. 2014; eningduetoinverseComptonization(IC).Thephotondistribution Sa¸dowski et al. 2014) via a four-force between the gas and radi- isassumedtobeaBose–Einstein(BE)distribution,butwithalow- ationof (cid:4) (cid:5) energytransitiontoPlanckwhenabsorptionisfasterthaninverse Gμ=−(κ +κ)Rμνu − κRαβu u +λ uμ, (7) Compton.UnlikeaPlanckdistribution,aBEdistributioncanhandle a s ν s α β howthephotondistributionevolvestowardsaWiendistributionin whereκ istheenergyabsorptionmeanopacityofanyemissionin a ascattering-dominatedregime. thefluidframe(inwhichionsandelectronsareisotropic)inunits MNRAS467,2241–2265(2017) DCandsynchrotroninsuper-Eddington flows 2243 ofinverselength,λisthefluid-frametotalenergydensitylossrate of opacity and how the temperature of radiation is evolved, and before absorption (which includes changes in energy while con- weinvestigatehowtheopacityandradiationtemperatureevolution servingphotonnumber)andκ isthefluid-frameenergyscattering affecttheaccretionflowbehaviourandproperties. s meanopacity.Self-absorptionistreateddirectlybyhavingseparate totalabsorptionandtotalemission. 3.1 Diagnostics 2.2 Photonnumberevolution ForvariousquantitiesR,weconsidertime-averages([R]),spatial t If the radiation is Planckian, then the chemical potential μ = 0 averagesandtheirspatialdistributions.Diagnosticsarecomputed fromsnapshotsproducedevery∼4r /cforr ≡GM/c2withgrav- andtheradiationtemperatureisderivedfromonlythefluid-frame g g radiation energy density via T = (E/a)1/4, where E = Rμνu u , itationalconstantG. γ μ ν whichcandifferfromthegastemperatureT orelectrontemperature g T . D e o A more general photon distribution, like our choice of a BE w 3.1.1 Fluxes n distribution(seeAppendixA),canbeconsideredbysimultaneously lo a feovrolrvaidnigatitohneinsuomtrobpericdienntshiteyforafmpheowtoitnhsfionutrh-veerlaodciiatytiounμr)frvaimae(nr, Ttrhoemsatgrnesesticen(eErMgy)tteenrmsosr:Tνμ includesbothmatter(MA)andelec- ded fro a(wnnhrduernμr˙e);tμ=he=n˙flunb˙iy,d-Lforarmenetznuinmvabreirandceen,siwtyitohfphotonsisn=nr(−uμru(μ8)) TTMEMAμνμν ==(bρ2u+μuuνg++ppbgδ)νuμμ−uνb+μbpν,gδνμ, (13) m https://a r c n˙ =−(κ c)n+λ , (9) Here,ugistheinternalenergydensityandpg=((cid:11)−1)ugistheideal ade na n gaspressurewithadiabaticindex(cid:11).Thecontravariantfluid-frame m foranumberabsorptionmeanopacityκna andtotalnumberemis- magneticfour-fieldisgivenbybμ,whichisrelatedtothelab-frame ic.o seiqounatriaotneaλpnpbroexfoimreataebssothrpetiKono.mTphainseepthsoetoqnuantiuomnbmerosctonacsecruvraattieolyn ttihorneet-efineslodrvainadbμδμ=isBtνhheμνK/urot,nwechkeerredheμνlta=fuunμcutνio+n.δTνμhiesmaapgronjeetcic- up.co ν m whenthermalComptonization(TC)isincludedandwhengasand energydensity(ub)andpressure(pb)areub=pb=bμbμ/2=b2/2. /m radiationtemperaturesaresimilar(Sadowski&Narayan2015a). Thetotalpressureisptot=pg+pb,andplasmaβ≡pg/pb. nra Thegasrest-massflux,specificenergyfluxandspecificangular s /a 2W.3e oObptaaicnitfiietssatondservaetreasl different energy-weighted and number- mM˙om=e(cid:6)(cid:6)(cid:6)(cid:6)n(cid:7)tumρuflrudxAaθφre(cid:6)(cid:6)(cid:6)(cid:6),,respectively.givenby (14) rticle-abs weighted opacities (computed as in Appendix B), including OPAL (cid:8) trac κmopaena,acenfift)iκeiansn,fAosyrpnsp)oeilnnadrAiaxpbCpuen,nsdydaninxccheDrso,(tearnonendrg(Ceynomemregpaytnomnκeas,acenfaftκatena,rdsiynnnguamn(sdbcenartutmmerebinaengr e≡ [ME˙˙]t =−(cid:8) (Ttr+[M˙R]trt)dAθφ, (15) t/467/2/2 energymeanκs,TCenergyexchangerateλc,andDCenergymean j ≡ J˙ = (Tφr+Rφr)dAθφ, (16) 241 opacityκa,dcandnumbermeanopacityκan,dc)inAppendixE. [M˙]t [M˙]t /29 Then,theenergymeanenergyabsorptionopacityis √ 6 wheredA = −gdx(2)dx(3)formetricdeterminantg=Det(g ) 24 κa=κa,eff+κa,syn+κa,dc, (10) anduniforθmφ codecoordinateswithspacingdx(1),dx(2) anddx(3)μiνn 35 b andthenumbermeannumberabsorptionopacityis theradial-like,θ-likeandφ-likedirections. y g Thenetflowefficiencyisgivenby ue κanF=romκant,hefefs+eoκpana,csyintie+s,κtahne,dce.nergyandnumberemissionrates(1b1e)- η= E˙[M−˙]M˙ . (17) st on 05 fore any absorption are obtained in Appendix B5, giving energy t A p emissionrateλeandnumberemissionrateλn,suchthat Pthoesistyivsetevmalautessocmorereraspdoiunsd.Ftooranaejextt,rawchtiiocnhowfepdoesfiitniveeaesntehregyrefgrioomn ril 20 λ=λe+λc, (12) withinwhichb2/ρ>1,thejetefficiencyisηjandincludesallnon- 19 radiativetermsinE˙.Weoftenmeasurethejetefficiencyatr=10r andλ includesallnumberemission. g n Wedonotincludethermalpairsrelevantwhenk T (cid:2)m c2,as andcallthattheinnerjetefficiencyηj,in.Wemeasurethisatsmall b e e radii before much of the jet energy is lost to the surroundings at onlythejetcanbethathotandonerequirespairproductionthere larger radii, while we measure it off the horizon so that much of (see,e.g.appendixBinMcKinney&Uzdensky2012). themassisoutgoinginsidethejet.Theefficiencymeasuredatthe horizonoverallanglesisgivenbyη . H 3 SIMULATIONS Themagneticfluxisgiveninanormalizedformas (cid:8) Our GRRMHD simulations evolve accretion flows around BHs 0.5|Br|dA with BH mass of M = 10M(cid:4). All models have identical initial ϒH≈0.7 (cid:9)[M˙] θφ, (18) conditions, except some have different initial density values due t to an overall rescaling of the density in order to vary the final which accounts for Br being in Heaviside–Lorentz units (Gam- massaccretionrateM˙.Fordifferentmodels,wevarythechoices mie1999;Pennaetal.2010). MNRAS467,2241–2265(2017) 2244 J.C.McKinneyetal. 3.1.2 Inflowequilibrium Thefluid-frameradiationtemperatureis Inflow equilibrium is defined as when the flow is in a complete Tˆ ≈ E , (27) quasi-steadystateandtheaccretionfluxesareconstant(apartfrom γ nE¯ 0 noise)versusradiusandtime.Theinflowequilibriumtime-scaleis (cid:7) (cid:2) (cid:3) with E¯0≈2.701kB, which is within 10 per cent of the full BE rie −1 formulagivenbyequation(A5)thatweactuallyuse.Thelab-frame t =N dr , (19) ie [(cid:10)v(cid:11) ] radiationtemperatureis ri r ρ t where (cid:10)v(cid:11) is the ρ weighted radial velocity, and N ∼ 3 inflow −Rt r ρ T ≈ t . (28) timesfromaninflowequilibriumradiusofr=riedowntori=rH γ nrutrE¯0 atthehorizon. Theblackbodyassumptiongivesafluid-frametemperatureof Viscous theory gives a GR α-viscosity estimate for v of r (cid:2) (cid:3) vHv/isRc ∼and−GQRα(cHo/rrRe)c2t|ivornotQ|f(oPrargoeta&tioTnhaolrvneel1o9ci7t4y;vProetn,ndaisectathl.ic2k0n1e0s)s, TˆBB= aErad 1/4, (29) Dow sowecandefineaneffectiveαviscosityas n forradiationconstanta ,whileinthelabframe,theassumption lo v rad a αeff ≡ v r/α. (20) ofPlanckgives ded Allourmvisocdelshaveαeff∼1inthequasi-steadystate,asexpected T =(cid:2)−Rtt(cid:3)1/4. (30) from forMADs(McKinney,Tchekhovskoy&Blandford2012). BB arad http 3.1.3 Opticaldepthandradiativequantities Fromthese,onecancomputethelab-framephotonhardeningfactor s://a f = Tγ , (31) cad Thesca(cid:7)tteringopticaldepthiscomputedas col TBB em ic τ ≈ κdl, (21) andthefluid-framehardeningfactor .o sca s u p whilet(cid:7)he(cid:9)effectiveopticaldepthforabsorptioniscomputedas fˆcol= TˆTˆBγB. (32) .com/m τ ≈ 3κ (κ +κ )dl. (22) n eff a s a ra s F≈o1rt−he1r/a(duita)2l(daisrevcatliiodna,tdlla=rge−rfaγddiir),,fθγ=≈0u,ta(1nd−th(ev/inct)ecgorsaθl)i,s(fvro/cm) 3.1.4 Numericaldiagnostics /article anouterradiusofr0=4000rg(chosentobeinsidetheoutergrid’s Themagneto-rotationalinstability(MRI)isalinearinstabilitywith -ab radialboundary,butstillfaroutsidethescatteringphotosphere)tor fastestgrowingwavelengthof stra toobtainτr(r).Fortheangulardirection,dl=fγrdθ,θ =π/2,and λ ≈2π|vx,A|, (33) ct/4 tτhe(θin).teNgortaeltihsaftrtohmepehaocthosppohlearreasxinisthtoewpaorldasrjtehtereegqiuoantoarretostroobntgailny x,MRI |(cid:18)rot| √ 67/2 deθterminedbythenumericaldensityfloorsassumed. for x = θ, φ, where |vx,A|= bxbx/(cid:19) is the x-directed Alfve´n /22 To scale M˙c2 or a luminosity L, one can use the Eddington speed,(cid:19)≡b2+ρ+ug+pgandr(cid:18)rot=vrot.(cid:18)rot,vAareseparately 41/2 luminosity angle-volume-averagedateachr,t. 96 TheMRIisresolvedforgridcellsperwavelength(equation33), 2 fLoErddTh=om4πsoGκnesMelcec≈tro1n.3sc×att1e0r4in6g10o8MpMac(cid:4)ityeκrgess.−O1,necanalsocho(2o3se) Qx,MRI ≡ λx(cid:20),MxRI, (34) 435 by gue ti(onNanolovarickmcoravelit&zioenTM˙ehfofibrycnieMe˙n1Ec9dyd7f3=o)r((tc1ho/emηNNmTo)ovLniklEyod,dv/a–cTfi2h,xowerdhneeηrNtehTηin=NTd0iiss.c1thsioeslnuuostiemodn-, (cid:20)aovfθer≈Qagxri,nMdgxRI(i2s≥)(ddo6θn,/edfaxos(r2w))xitahn=Sdd,(cid:20)MθφR,I≈,φex,rcsewipnhtθevdrxex,A(3/(cid:20))(cid:20)(drxφ≈a/ndddxx((|31(cid:18))))(.rdotrV|/,odwluxhm(i1c)e)h-, st on 05 A bLuratTdwh=eeri−andc(cid:7)ilautdidveAetθhlφueRmstrpi,ninosdietypeisndceonmcpeu).tedas (24) tad2r=i0esc(0e,s,xewapchlealiprloaetutmeirnloymadoθesdtl,eeMaφlsd-1yvh3o-asvtlthueaamtQtee,iθ-sa,aMlqvluReoIiruta∼ergtmeh4dio0ndbaaeennlfdsdohrihseaavcsfoeoQnQrsmφtθa,i,MnnMgRtRIaIQl∼∼lax6,l1Mo0anR0nIg.datAnhsdoet pril 2019 probablyhassomewhatunderdevelopedMRIturbulence). whichismeasuredjustbeyondthescatteringphotospheretogive TheMRIsuppressionfactorcorrespondstothenumberofMRI the quantity we call L . The radiative efficiency is η = rad,o rad,o wavelengthsacrossthefulldisc: L /[M˙]. From any cumulative luminosity L(θ), we can com- rad,o t putetheisotropicequivalentluminosity S ≡ 2r(H/R). (35) ∂ L(θ) d,MRI λθ,MRI L (θ)= θ (25) iso −∂θcosθ Wavelengths λ<0.5λθ,MRI are stable, so the linear MRI is sup- pressedforS <1/2whennounstablewavelengthsfitwithin andthecorrespondingbeamingfactor d,MRI thefulldisc(Balbus&Hawley1998;Pessah&Psaltis2005).S d,MRI b= Liso, (26) usesaveragingweightw=(b2ρ)1/2,conditionβ>1andexcludes L regions where density floors are activated. When computing the whereL=L ascomputedoverallangles. averagedS ,v and|(cid:18) |areseparatelyθ,φ-volume-averaged rad d,MRI A rot MNRAS467,2241–2265(2017) DCandsynchrotroninsuper-Eddington flows 2245 within ±0.2r for each t, r. The S ∼0.5 at t = 0, while in at 128 × 64 × 32 in order to resolve the lowest order m modes d,MRI quasi-steadystate,S ∼0.1.Sothefieldstrengthhasincreased toallowforaccretioninMADs.ForMADs,suchlowerresolution d,MRI considerably due to magnetic flux accumulation. All models are modelshaveshownreasonableconvergence(McKinneyetal.2012; MADwithS <1/2outtor∼30r . McKinneyetal.2014).Thegridaspectratioisroughly1:1:1for d,MRI g Theflowstructurecanalsobestudiedbycomputingthecorre- radii5r ≤r≤30r forourmoderateresolutionmodels. g g lationlength-scaleandthencomputinghowmanygridcellscover ModelsM4andM12areverylow-resolution(128×64×16) eachself-correlatedpieceofturbulence.Wefollowourpriorworks testmodelsthatotherwisematchmodelsM3andM11,respectively. (McKinneyetal.2012;McKinneyetal.2014)andcomputethis. Thesemodelsandothersatdifferentresolutionsexhibitallofthe One would desire to have at a minimum six grid cells per cor- sameradiativepropertieswewilldiscuss,whichshowsthatresolu- relation length-scale, since otherwise uncorrelated parts of turbu- tionisunlikelyadominantfactorincontrollingourresults.Wedo lence are not independently resolved by our piece-wise parabolic notdiscussmodelsM4andM12further. monotonicity-preserving scheme that needs six grid cells to re- Therest-massandinternalenergydensitiesaredriventozeronear solve a structure well. All our models have ≈12 grid cells per theBHwithinthejetandneartheaxis,soweusenumericalceilings D verticalandradialcorrelationlengthfordensityandmagneticfield ofb2/ρ =300,b2/ug=1011andug/ρ =1010.Thevalueofb2/ρ ow strength,whileourmoderateresolutionmodelshave≈6cellsinthe isatthecode’srobustnesslimitforthechosenresolution,whilethe nlo a φ-direction per correlation length-scale. Our survey models have valueofb2/u ischosentoensurethatanartificialtemperaturefloor d g e othnaltyth≈e3sucervllesyinmtohdeeφls-sdhiroeucltdiobnepceorncsoidrerereladtinoontlreensgotlhv.edThenisomugehantos isnAotteinartrlyodtuimceeds.inallsimulations,weramp-upthechemicalpo- d from demonstratefullyresolvedturbulence,buttheyarestillsufficiently tential factor from Planck towards its desired target. This avoids h interesting to identify what physical effects (being switch on/off) difficult-to-resolveopacitychangesduetosynchrotronwithinthe ttp s could be important in fully resolved simulations. In addition, we first100rg/cintime.Also,thesharpchangesinsynchrotronopac- ://a comparesomesurveymodelsagainstmoderateresolutionversions ityforhighφ (equationD5)nearPlanck(i.e.exp(−ξ)=1with ca d toconfirmthesurveymodelsarereasonable. dimensionlesschemicalpotentialξ =0)aredifficulttohandle.For em synchrotrononly,weenforceexp(−ξ)<=0.99inordertosmooth ic .o outtheseopacitychanges(Seaton1993). u 3.2 Initialconditions p .c o TheinitialdiscisKeplerianwitharest-massdensitythatisGaussian m in angle with a height-to-radius ratio of H/R ≈ 0.2 and radially 3.4 Models /mn followsapowerlawofρ∝r−0.6.Thesolutionnearandinsidethe Our goal is to consider the physical effect of various choices for ras ithneneISr-CmOos,tthsetasbolleuctiiorcnuilsatraoprebrietd(ItSoCaOsm)iaslnleortdaennesqituyi(liρbr→iumρ,(rs/o1n5e)a7r, t‘hsuerrvaedyi’atrivuenstraonvsefreraotpiamceitipese.riWodesoifmaublaotuets1ev0e0r0a0lrlog/wc-,reaslololuwtiinogn /article within r = 15r ) and a smaller thickness (H/R → 0.2(r/10)0.5, thesimulationstoreachasingleinflowtimeouttor∼50r and -a g g b withinr=10rg–baseduponalow-resolutionsimulation).Thetotal inflow equilibrium out to r ∼ 20rg. We check these survey runs stra ionfteHr/nRal≈encesr/gvyKdfeonrssiotyunudtotspiseeedstcims≈ate√d(cid:11)frtootmPtovt/eρrtiwcailthe(cid:11)qutoitli≈bri4u/m3 wreistohluatcioonuprulenmstoodseereaitferreessoolluuttiioonnprluanyss,aanddomwiencaotenosirdseurbe-vdeonmlionwaenrt ct/46 andKeplerianspeedvK≈(r/rg)/((r/rg)3/2+a/M).Thetotalideal rolecomparedtotheopacityeffects. 7/2 pressurePtot =((cid:11)tot −1)utot israndomlyperturbedby10percent Table 1 shows the physical choices made for each model, in- /22 tsoimsueeladtitohne.MThReI.dTishcehdaisscangaastmhaossp(cid:11)hgeasre=w5it/h3,ρas=us1e0d−5d(urr/irngg)−th1.e1 cplhuodtionngntuhmebBeHrdsepnisni,tychisoeicveoslvfeodr,ohpoawcitthieesr,awdihaetitohnertetmheperaradtiuarteioins 41/296 and gas internal energy density ug = 10−6(r/rg)−5/2. The disc’s computedandwhetherthechemicalpotentialisvaried. 24 3 radiationenergydensityandfluxaresetbyflux-limiteddiffusion The ‘OPAL’ opacity refers to the opacity κeff given by equa- 5 b and are having the same temperature for both gas and radiation tion (C16). This is physically equivalent to the OPAL-based opac- y g (McKinneyetal.2014). ity used in Jiang et al. (2016), except ours is more approximate, u e The initial magnetic field is large scale and poloidal. For but we also account for radiation temperatures being different st o r<300rg,thecoordinatebasisφ-componentofthevectorpotential fromgastemperatures.‘DC’referstodoubleCompton,whichno n 0 is simulations have yet accounted for. ‘Syn’ refers to synchrotron, 5 A Aφ =MAX(rν1040−0.02,0)(sinθ)1+h, (36) w(Fhraicghileha&sMbeeeienra2c0c0o9u;nRteydanfoertailn.2s0u1b5-E;Sdaddinogwtosknieatccarl.et2i0o1n7c).aAselsl pril 2 wmiothnoνp=ola0r.7u5sinangdAhφ==4M.FAoXrr(r≥0ν1r004=0−3000.0rg2,,t0h)e(sfiienlθd)t1r+ahn(sr0it/iro).nTshtoe mpuoteddelsnuwmitbherphmoetoannonpuamcbiteyrneovtolyuettioanccionuclnutdede afosreipnarsaimteluylactioomns- 019 field is normalized with ∼1 MRI wavelength per half-height H (exceptonlysynchrotronnumberopacityinSadowskietal.2017). givingaratioofaveragegas+radiationpressuretoaveragemagnetic Thesimplifiedfluid-frameradiationtemperaturegivenbyEˆ/(nˆE¯ ) 0 pressureofβ≈40forr<100r . with E¯ ≈2.701k is the dominant factor in equation (A5) g 0 B (Sadowski & Narayan 2015a). We consider both Planck and BE photondistributions. 3.3 Numericalsetup AllmodelsincludeTCexceptmodelM6inordertostudyhow The numerical grid mapping equations and boundary conditions turningthatoffaffectsgastemperatures.ModelM6wouldbelike usedhereareidenticaltothatgiveninMcKinneyetal.(2012)and many existing radiative transfer simulations (Fragile et al. 2012; McKinneyetal.(2014).Thegridfocusesonthediscatsmallradii Fragileetal.2014;Jiangetal.2014b;Takahashietal.2016)except andonthejetatlargeradii. those by Fragile & Meier (2009), Kawashima et al. (2009) and Models M14h and M15h are moderate resolution models at Jiangetal.(2014a)andourselves(Sa¸dowskietal.2014;McKinney N ×N ×N =128×64×64,whiletherestaresurveymodels etal.2014). r θ φ MNRAS467,2241–2265(2017) 2246 J.C.McKinneyetal. Table1. Spin,massaccretionrate,opacityandtemperaturechoices. Model a/M M˙H Opacities Radiationnumberdensity Radiationtemperature Chemicalpotential M˙Edd M1 0.8 140 OPAL+Syn+DC Evolved E/(nE¯0) 1 M2 0.8 140 OPAL Evolved E/(nE¯0) 1 M3 0.8 80 OPAL Evolved Bose–Einstein Bose–Einstein M5 0.8 120 OPAL PlanckatTˆγ PlanckatTˆγ 1 M6 0 5.9 OPAL(noTC) PlanckatTˆγ PlanckatTˆγ 1 M7 0 4.8 OPAL Evolved E/(nE¯0) 1 M8 0 5 OPAL+Syn+DC Evolved E/(nE¯0) 1 M9 0.8 50 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein M10 0.8 27 OPAL+DC Evolved Bose–Einstein Bose–Einstein M11 0.8 36 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein D M13 0.8 1.2 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein ow M14 0.8 3.5 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein nlo M14h 0.8 2.4 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein ad M15 0.8 14 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein ed M15h 0.8 31 OPAL+Syn+DC Evolved Bose–Einstein Bose–Einstein fro m h ModelsM9,M11,M12,M13,M14,M14h,M15andM15hare ttp s used to explore how varying M˙ affects the results while using ://a c our full opacity physics, with M9 and M11 not behaving much a d differentlyduetohavingsimilarM˙. e m Throughoutourdiscussionofmodelresults,wefocusonspecific ic .o models,oftenshowingmoredetailsformodelM15becauseithas u p anintermediatemassaccretionrateanddemonstratespropertiesof .c o allourmodels. m /m n ra 3.5 Initialandfinalstate s/a Fig.1showstheinitialandfinalstateoftheaccretionflowformodel rticle M15,whichistypicalofallmodelswithrotatingBHs.Theinitial -a b mdiascgnthetaitcifiseilnditsiatrlulyctaurGeaiusslsairagnedsicsaclewainthdHpo/lRoi≈dal0,.a2nadntdhraeapdoswtehre- strac lawradialbehaviour.TherotatingBHanddischavelaunchedajet t/46 7 thatstartsoutmagneticallydominatedbutconvertsitsenergyinto /2 kineticenergyatlargeradii. /22 4 Table 2 shows results for dynamical quantities (like fluxes and 1 /2 efficiencies) for all our models as time-averaged from 4000rg/c 96 till the end of the simulation. This table can be used to compare 24 resultsformodelswithdifferentopacityphysicsanddifferentM˙. 35 b The models vary in mass accretion rate through the horizon with y M˙/M˙Edd=1–140,andtheradiativeluminosityisgivenbyLrad,o. gue Otherquantitiesaremeasuredonthehorizon(e.g.ηH),ataninner st o radius of 10rg for inner (‘i’) quantities, or at large radii for outer n 0 (‘o’)quantities. 5 A surTehdeaetffithceiehnocryizηoHn,iswthhiechtoitsalcoefnfisctaienntctyoowfitthhiens3y0stpemercaesnmt oeua-t pril 2 tothescatteringphotospherewhereouterquantitiesaremeasured. 01 9 Thetotalandradiativeefficiencyatlargeradii(η )arecom- RAD,o parable to the NT standard thin disc efficiencies (η ). The total NT non-radiativejetefficiencyη istheefficiencyatr=10r inthe j,in g jet with b2/ρ > 1. This tracks each model’s total efficiency, but thejetenergyisprogressivelylosttothesurroundingmaterialthat Figure1. ModelM15,showingtheinitialcondition(toppanel)andfinal heatsupandradiates(McKinneyetal.2015),leadingtorelatively state(bottompanel).Theinitialdiscisshownasrest-massdensity(scaled lowgasjetefficienciesbyr=1000rg.Thetotalradiativeefficiency by an Eddington density value inferred from M˙Edd, rg, and c, shown in is therefore dependent upon the mass-loading physics, which is colourwithlegend)threadedbymagneticfieldlines(greenlines).Thefinal dischasbecomemuchhigherdensityneartheBHandtherotatingBH,and controlledpartiallybynumericalfloorinjectioninoursimulations. dischavelaunchedamagneticallydominatedjetduetotheaccumulationof Fornon-rotatingBHmodels,thejetefficiencyislowat1percent, magneticfluxintotheMADstate.TheBHspin-drivenjetemergesandhas exceptforthemodelwithoutTCwithjetefficiencyat4percentdue aboundarythatcanbeseenwhereb2/ρ=1(redline).Atlargeradiiatlate tothethermalenergycontentofthejet(thisalsoleadstoaslightly times,thejethasbecomekineticallydominatedwithLorentzfactorγ ∼2 higherradiativeefficiency). byr=500rg,sothatb2/ρ<1there. MNRAS467,2241–2265(2017) DCandsynchrotroninsuper-Eddington flows 2247 Table2. Accretionrates,luminosities,efficiencies(percent)andmagnetic Thenormalizedmagneticfluxonthehorizonϒ ∼10forrel- H fluxes. ativelythickdiscsathighersuper-Eddingtonrates,whilelowerM˙ leadtodowntoϒ ∼4asseeninthinMADsimulations(Avara, H Model M˙M˙EHdd LLrEadd,do ηH ηj,in ηoRAD ηNT ϒH MshcoKwinunpeyto&ϒRe∼yno2l0dsan2d01h6a)v.eAqfueiwtemhiogdhelesffi(Mci9en,cMie1s0aapnpdarMen1t1ly) H M1 140 67 54.7 30.3 5.68 12.2 9.8 duetoradiativesuppressionofthemagneticRayleigh–Taylormodes M2 140 110 58.3 40.7 9.76 12.2 9 duetoopacityeffectsattheirintermediateM˙/M˙ ∼30–50,but M3 80 81 114 84.6 12.3 12.2 13 Edd one suspects that higher resolutions would show no such effect M5 120 81 59.2 36.3 8.39 12.2 9.5 (which M15h approaches and does show more moderate ϒ and M6 5.9 6 9.83 4.24 5.86 5.72 3.9 H M7 4.8 2.4 7.98 0.926 2.84 5.72 3.9 efficiencies). M8 5 1.9 8.39 0.979 2.21 5.72 5 Fig.2showsasnapshotfromthesimulationandshowsvarious M9 50 240 124 71.6 59.4 12.2 14 fluxesandefficienciesversustime,whoseconstancyindicatesthat M10 27 160 267 184 71.8 12.2 20 theflowhasreachedaquasi-steadystateinwhichthetotalefficiency D M11 36 290 185 110 95.5 12.2 18 isηH∼30percent,almostthreetimestheNTthindiscefficiency, ow MM1134 13..25 12..18 1283..57 118..42 91.07.97 1122..22 53..16 ManAdDthestaratedioautitvteoeafbfiocuietnrc∼yi5s0ηrradw,oith∼ev5ipdeernctemnat.gTnehteicdRisacyilseiignh–a nload MMM111455hh 213.144 211.185 332021...398 111471...237 11452.5..677 111222...222 647...771 TflauyxloϒrHin≈sta7b,icliotimespairnabthleewy–itxhpngloann-er.adTihaetivdeimdiesncssiowniltehssHm/Rag≈ne0t.i3c ed from (McKinneyetal.2012).Theeffectivephotospherereachescloseto h thedisc,exceptwherethejethasrelativelyhighdensities. ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 6 7 /2 /2 2 4 1 /2 9 6 2 4 3 5 b y g u e s t o n 0 5 A p ril 2 0 1 9 Figure2. EvolvedsnapshotofmodelM15hatt≈5000rg/cshowinglogofrest-massdensity(scaledbyanEddingtondensityvalueinferredfromM˙Edd,rg, andc,shownincolourwithlegendonright)inboththez–xplaneaty=0(topleft-handpanel)andy–xplaneatz=0(topright-handpanel).Blacklines tracefieldlines.Inthetopleft-handpanel,thethickredlinecorrespondstowhereb2/ρ =1andthepurplelinecorrespondstotheeffectivephotosphere (computedradiallyinward).Thebottompanelhasthreesub-panels.Thetopsub-panelshowsM˙ throughtheBH(M˙H)andradiativeluminosity(Lrad,o).The middlesub-panelshowsthemagneticfluxpassingthroughthehorizon(ϒH).Thebottomsub-panelshowsthetotalefficiency(ηH),innerjetefficiency(ηj,in), andradiativeefficiency(ηrad,o).Horizontalsolidlinesofthesamecoloursshowtheaveragesovertheaveragingperiod.Forsuper-Eddingtonaccretionat M˙/M˙Edd≈31,thetotalBHefficiencyismoderateatηH≈31percentwithradiativeefficiencyofηrad,o≈5percent. MNRAS467,2241–2265(2017) 2248 J.C.McKinneyetal. Table3. Radiativepropertiesandradiation/jetopeninganglesinradians. (cid:10) (cid:11) Model TTˆgγas r=10rg Tˆγ,r=10rg(K) Tγ,r=100rg,rad.beam(K) fˆcro=l10rg,disc fcro=l100rg,rad.beam e−r=ξ10rg,disc e−r=ξ100rg,rad.beam θrr=1000rg θjr=1000rg M1 0.96 4.2e7 1.7e7 1 1.4 1 1 0.12 0.067 M2 0.93 1.3e8 7.7e8 3.9 55 1 1 0.089 0.0038 M3 1 1.1e8 6e8 3.2 42 0.88 0.36 0.084 0.021 M5 0.97 3.8e7 9.1e6 1 0.77 1 1 0.092 0.025 M6 9.8e-5 1.5e7 3.3e6 1 0.58 1 1 0.6 0.12 M7 0.87 1.4e8 2.5e7 8.9 5.4 1 1 0.6 0.19 M8 0.63 1.9e7 6.7e6 1.1 1.6 1 1 0.6 0.15 M9 0.98 4.1e7 1.5e7 1 1.1 0.97 0.96 0.13 0.16 M10 0.99 4.9e7 2.1e7 1.3 1.6 0.87 0.69 0.13 0.041 M11 0.99 4.3e7 1.5e7 1 1 0.99 0.97 0.098 0.21 D o M13 0.12 3e7 9.2e6 4.5 2.6 0.43 0.45 0.28 0.0091 w n M14 0.23 1.5e7 2.1e6 1.3 0.48 0.79 0.94 0.26 0.011 lo a M14h 0.2 1.3e7 2e6 1.2 0.45 0.76 0.99 0.47 0.055 d e MM1155h 00..8957 22..45ee77 77..32ee66 11.1 11..21 00..8969 00..7962 00..1367 00..002987 d fro m h ttp s Table3showsresultsforourradiativediagnostics,whichcanbe beamingfactorisuptob=15forrotatingBHmodelsandb=3 ://a usedtodeducehowtheradiativepropertiesareaffectedbydifferent fornon-rotatingBHmodels(similartothoseseeninSadowski& ca opacitychoicesanddifferentM˙.Thistableincludesthefluid-frame Narayan 2015b). This corresponds to an enhanced radiative flux de m draidscia,tfliounidt-efmrapmeerartaudrieatpioernutenmitpgearsattuermepinertahtuerdeisact,rla=b-f1r0armgeinratdhie- ahtigshpeerciafi/cMv.ieTwhiengMa1ngclleoss,uwreithslhigighhtleyrobveearmesintigmfaotershitghheebreMa˙mainndg ic.ou hatairodnenteinmgpfearcattourrefˆintihnethraeddiaistico,nlabbe-afrmamaetrha=rde1n0i0nrgg,faflcutiodr-fframine factors(Narayanetal.2016). p.com theradiationbeamcoaltr=100r ,chemicalpotentialfactorsincolthe /m disc and radiation beam, radiatgion beam half-opening angle (θ ) 3.6 Magneticandradiativefluxes nra r s aotperni=ng1a0n0g0lreg(,θaj)ndatjret=(k1i0n0e0tircg+.eDnitshcalqpuya+netlieticetsroamreagconmetipcu)tehdalafs- Fciiegn.c3y)sahnodwlsabth-ferammaegrnaedtiiactiflonuxflulixnestsre(awmithlineelsec(twroitmhargadnieattiicveefefif-- /article weightedbyvolumeofthegridcelltimessquareofdensity,while ficiency).Theradiationisbroadlydistributed,buthasanenhanced -a b radiation or electromagnetic beam quantities are measured at the beamedregionwhoseopeningangleisabouttwicelargerthanthe s aperaekpriensethnetaltuiomninoofswithyaptearnuonbistearnvgelres(e∂esθL(a(sθ)w).oTulhdiscodmoeesfnroomtgtihvee eplleocttterodm) ashgonweticthjeet’pseoapkenEiMngalunmglien.oMsiotydeplserwuitnhitzearnogBleHesmpienrg(ninogt tract/4 6 luminosityperunitsolidangle),andinsteadshowswhatopening fromcylindricalradiusneartheISCO(Tchekhovskoy,McKinney 7/2 angleshavethemostefficiencyassociatedwiththem.Thiscanbe & Narayan 2012), instead of the rotating BH models where the /2 2 usefulwhenconsideringhowanambientmediumwouldbeaffected peakpowerperunitangleemergesfromneartheequatorialregion 41 bythejetorradiationandleadtosecondaryemissionduetothat oftheBHhorizon(McKinney&Gammie2004;McKinney2006; /29 6 interaction,likeinTDEaftergloworULXionizationcones. McKinney&Blandford2009). 2 4 ThelowM˙ ∼M˙Eddmodelshavehighergastemperaturesinthe 35 disc,butgastemperaturesareatmostabout10timestheradiation b temperatureswithTC.OnlymodelM6withoutTCshowsverylow 3.7 Effectiveenergyphotospheres y gu Tsˆpγe/cTtrguasm.TihnemroaddiealtsiownitbheoaumtDaCndodriisncmhaovdeelhsawrdiethniMn˙g∼wiMt˙hEaddW. ien Fraidgi.i,4thsheotwotsaltheeffeefcfteicvteivpehpohtoostpohspehreerseistsfoarbomvoedtehleMd1is5c.aAntdladrigsec est on ThephotondistributionstendtobesomewhatWieninthecoronae wind. Sitting inside the total effective photosphere is the free– 05 formodelswithchemicalpotentialevolution.ModelswithoutDC free photosphere, the DC photosphere, and the synchrotron pho- A p and synchrotron (like M2, M3 and M7) show significant photon tosphere. The free–free, DC and synchrotron opacities all merge ril 2 hardening,whichbecomesmuchmorelimitedwhenincludingthese withinsomeradius,showingthattheybecomecomparablyimpor- 0 1 opacities.Radiationbeamlab-frametemperaturesarecomparable tant. While free–free and DC are clearly important in metal-free 9 to the disc core, except for models without DC and synchrotron. plasmas,bound-freeandbound–boundcontributionsareimportant ModelswithoutDCandsynchrotron(e.g.M7)havemuchhigher withsolarabundances,whichleadstoaneffectivephotospherefar radiation temperatures than otherwise identical models (e.g. M8) beyondthefree–freephotosphere.ForhigherM˙ models,thesedif- with DC and synchrotron. This shows that DC and synchrotron ferentopacitiesbecomemorecomparableatlargerradiithaninthis are crucial to include in order to obtain accurate observer-frame lowerM˙ model.Thescatteringphotosphereisatr∼800rginthis radiationtemperaturesforflowswithM˙ (cid:2)M˙ . model. Edd Thehalf-openinganglesinradiansidentifythemaximuminL iso withintheradiationbeamorgasjet.Wealsocomputed(notintable) 3.8 Gasoverheatedregions thebeamingfactor(b=L /L,i.e.isotropicequivalentluminosity iso per unit total luminosity) measured at r = 1000r . The electro- Fig.5showsthelab-frameradiationtemperatureandfluid-framegas g magnetic jet is beamed by factors up to b = 15 for rotating BH temperatureformodelM15.Theradiationtemperaturereachesupto modelsanduptob=6fornon-rotatingBHmodels.Theradiation Tγ ∼108K,whilethegastemperaturereachesuptoTgas∼109K MNRAS467,2241–2265(2017) DCandsynchrotroninsuper-Eddington flows 2249 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 6 7 /2 Figure3. ModelM15,withtoppanelshowingtime-φ-averagedmagnetic /2 2 fluxlines(translucentgreylines)withelectromagneticluminosityperunit 4 1 angle(∂θLEM)/(M˙Hc2)(shownincolourwithlegend),withbluelineshow- /29 ingwhereb2/ρ=1,greenlineshowingwhereur=0andpurplelineshow- 6 2 ingtotaleffectivephotosphere.Imageisduplicatedacrossthex=0line. 43 5 Thebottompanelshowssamethingsforlab-frameradiationfluxlinesand b radiationluminosity.Theelectromagneticenergyfluxactsasafunnel-wall y g jetbyfollowing(andsittingjustoutside)theboundarywhereb2/ρ =1. u e MostoftheelectromagneticenergyisreleasedfromtheBH’sspinenergy. st o TheMADequatorialregionisquitehotanddynamic,leadingtotheradi- n ationemergingfromquiteclosetotheBH(andinatime-averagedsense, 05 someradiationappearstoemergefromabovetheBHduetotransientbut A p powerfulpolarmagneticfieldsthatjumpbetweentheBHanddisc).Radia- ril 2 tionmovesinwardwithinthediscthataccumulatesmoreradiativeenergy, 0 1 whichsomewhatfollowsthepathofthewindandultimatelybecomesmore 9 Figure4. ModelM15,showingeffectivephotospheresfordifferentpro- radiallydirectedatlargerdistances. cesses, including OPAL+DC+synchrotron (purple line), synchrotron (red line),DC(brownline),free–free(blackline),scattering-only(yellowline) in the jet region. Given our discussion in the Introduction, this ondifferentsizeregions(top,middleandbottompanels).Thephotospheres suggests that DC should be important throughout the flow, while arecomputedradiallyinwardfromr=4000rg.Rest-massdensityshown synchrotron is likely important in the jet region. Note that as M˙ incolour(withlegend),scaledbyanEddingtondensityvalueinferredfrom drops, the disc becomes thinner, although such MAD type discs iMn˙EFdidg,.r3g.aFnodrcr.(cid:2)Gr5eregn,,DblCuea,nydelflroewe–farnedepbuercpolmeelincoesmapraer,abiflypirmespeonrtt,aanst are also magnetically compressed by the large-scale poloidal and processesinthedisc.Theeffectivephotospheresomewhatfollowsthetran- toroidalfieldsthreadingtheBHanddisc(McKinneyetal.2012). sitionbetweendiscinflowandwindoutflow.Thepolaraxisregionscontains Fig.6showsthefluid-frameradiationtemperatureperunitgas ahigh-densityportionofthejet(launchedbymassinjectionneartheBH), temperature.TCactstoregulategastemperaturestowardstheradi- whichleadstohigheropacitiesthere. ationtemperatureinradiation-dominatedplasmas.Weshowseveral model’spoloidalplanetemperatureratiosinordertopresenthow MNRAS467,2241–2265(2017) 2250 J.C.McKinneyetal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/4 6 7 /2 /2 2 4 Figure5. ModelM15,showinglab-frameradiationtemperatureinKelvin 1/2 (toppanel)andfluid-framegastemperatureinKelvin(bottompanel).Green, 9 6 blue,yellowandpurplelinesare,ifpresent,asinFig.3.Radiationtemper- 24 aturesarehighintheequatorialandpolarregions,whilegastemperatures 35 arehighinthejetregionduetoinsufficientComptonization. b y g u e thiseffectworksathighM˙ ∼100M˙Edd tolowM˙ ∼1M˙Edd.Note st o thatmodelM14hasalong-livedhemisphericalasymmetry,leading n 0 toscattering photosphere far away onthe upper hemisphere. The 5 fiargauterelyshtiomwes-φfl-uaivde-frraagmede)T.ˆγW/Thiglaes(lnouwmererMa˙tomraonddeldsenhoavmeinaatsolirgshetply- April 2 overheatedgasregionwithinsomeradius,thecorediscregionhas 01 9 atmost10percenthighergastemperaturesthanradiationtemper- aturesforM˙ ∼10M˙ models. Edd ModelM13withM˙ ≈1M˙Eddshowsanopticallythincoronawith Figure 6. Model M1 at high M˙ ∼100M˙Edd (top panel), model M15 at gastemperaturesabout100timeslargerthanthedisc’sblackbody lowerM˙ ∼10M˙Edd(middlepanel),modelM14atlowM˙ ∼3M˙Edd(next temperature and about 20 times larger than the disc’s radiation panel)andmodelM13atlowM˙ ∼1M˙Edd(bottompanel),showingfluid- temperature that is hardened by fˆcol≈4.5 (see related data from frameTˆγ/Tgas.BlacklinehasTˆγ/Tgas=1.Green,blue,yellowandpurple Fig.9).Thegaspressureisuptoatenthoftheradiationpressure linesare,ifpresent,asinFig.3.ModelsM13andM14haveaphotosphere andthediscthicknessH/R∼0.1inthismodel. nearthedisc,exceptthejetthatislaunched,whichkeepsthedensityhigh Table 3 includes a sequence of a/M = 0 models M6, M7 and atlargeradii.AthighorlowM˙,thevalueofTˆγ/Tgasisorderunitydueto TC.Thediscisevidentlythinnerandcooleratlowermassaccretionrates M8thathavenoTCandnophotonhardening(M6),haveTCand ofM˙ ∼10M˙Eddeventhoughtheinflowisstillquitesuper-Eddington.Only photonhardeningbutwithoutDCorsynchrotron(M7),andhave forthelowestM˙ ∼M˙Edd modelM13,doesTˆγ/Tgas∼0.1inthecentral both along with all our opacities (M8). This shows that the lack disc,butprogressivelymorecoronalmaterialhashighergastemperatures ofTCleadstounphysicallyhighgastemperaturessimilartothose asM˙ drops. MNRAS467,2241–2265(2017)

Description:
synchrotron only, we enforce exp ( − ξ) < =0.99 in order to smooth out these opacity . is ηH ∼ 30 per cent, almost three times the NT thin disc efficiency, and the Guzik J. A., Cox A. N., 1995, ApJ, 448, 905. Heng K., Hayek W.,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.