ebook img

Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity PDF

10 Pages·01.131 MB·0\10
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity

Neuropharmacology90(2015)23e32 ContentslistsavailableatScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity Daniel Jenson a, Kechun Yang b, Alexandra Acevedo-Rodriguez a, Amber Levine a, John I. Broussard a, Jianrong Tang c, John A. Dani b,* aDepartmentofNeuroscience,CenteronAddiction,Learning,Memory,BaylorCollegeofMedicine,Houston,TX77030,USA bDepartmentofNeuroscience,MahoneyInstituteforNeurosciences,PerelmanSchoolofMedicine,Philadelphia,PA19104,USA cJanandDanDuncanNeurologicalResearchInstitute,TexasChildren'sHospital,DepartmentofPediatrics,BaylorCollegeofMedicine, Houston,TX77030,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Attention-deficithyperactivedisorder(ADHD)isthemostcommonlystudiedanddiagnosedpsychiatric Received20January2014 disorderinchildren.Methylphenidate(MPH,e.g.,Ritalin)hasbeenusedtotreatADHDforover50years. Receivedinrevisedform ItisthemostcommonlyprescribedtreatmentforADHD,andinthepastdecadeitwasthedrugmost 29October2014 commonlyprescribedtoteenagers.Inaddition,MPHhasbecomeoneofthemostwidelyabuseddrugs Accepted30October2014 oncollegecampuses.Inthisstudy,weexaminedtheeffectsofMPHonhippocampalsynapticplasticity, Availableonline11November2014 which serves as a measurable quantification of memory mechanisms. Field potentials were recorded withpermanentlyimplantedelectrodesinfreely-movingmicetoquantifyMPHmodulationofperforant Keywords: pathsynaptictransmissionontogranulecellsofthedentategyrus.OurhypothesiswasthatMPHaffects Dentategyrus Perforantpath hippocampal synaptic plasticity underlying learning because MPH boosts catecholamine signaling by Memory blocking the dopamine and norepinephrine transporters (DAT and NET respectively). In vitro hippo- Reward campalsliceexperimentsindicatedMPHenhancesperforantpathplasticity,andthisMPHenhancement Long-termpotentiation arose from action via D1-type dopamine receptors and b-type adrenergic receptors. Similarly, MPH LTP boostedinvivoinitiationoflong-termpotentiation(LTP).Whiletherewasaneffectviabothdopamine andadrenergicreceptorsinvivo,LTPinductionwasmoredependentontheMPH-inducedactionviaD1- type dopamine receptors. Under biologicallyreasonable experimental conditions, MPH enhances hip- pocampalsynapticplasticityviacatecholaminereceptors. ©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-SA license(http://creativecommons.org/licenses/by-nc-sa/3.0/). 1. Introduction et al., 2003; Volkow et al., 1995; Volkow and Swanson, 2003). Human studies using PET imaging show that intravenous MPH Attentiondeficit/hyperactivitydisorder(ADHD)isabehavioral increases DA neurotransmission in the striatum (Volkow et al., disorder characterized by inattention, hyperactivity, and impul- 2004),whichisanearmarkofaddictivedrugs(DiChiara,2002). sivity.Althoughnewerdrugshavebeendeveloped,methylpheni- MPHincreaseshippocampalNEandDAinvivo(Kuczenskiand date (MPH) is one of the most highly prescribed drugs for the Segal, 2002; Weikop et al., 2007), both of which are known to treatmentofADHD(Chaietal.,2012).MPHdose-dependentlyin- affect synaptic plasticity such as long-term depression (LTD) and creases extracellular dopamine (DA) and norepinephrine (NE) long-termpotentiation(LTP)(HopkinsandJohnston,1984;Hyman indirectly by blocking the transporters, DATand NET (Biederman etal.,2006;Izumietal.,1992;JonesandBonci,2005;Kauer,2004; andSpencer,1999;KuczenskiandSegal,1997,2002).Functionally, LismanandGrace,2005;Thomasetal.,1996).Aswellasinfluencing MPH is remarkably similar to cocaine in both DAT blockade and hippocampal plasticity (Kulla and Manahan-Vaughan, 2000; Saji- subjective “high” when administered by the same route (Stoops kumarandFrey,2004;TangandDani,2009),DAneurotransmission alsoinfluenceshippocampal-relatedfunction(Rossatoetal.,2009). Theseresultsareconsistentwithevidenceindicatingthataddictive drugsactuponsynapticplasticitymechanismsthatnormallyun- * Correspondingauthor.Tel.:þ12158988498. derlielearningandmemory(DaniandHarris,2005;Hymanetal., E-mailaddress:[email protected](J.A.Dani). http://dx.doi.org/10.1016/j.neuropharm.2014.10.029 0028-3908/©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-SAlicense(http://creativecommons.org/licenses/by-nc-sa/3.0/). 24 D.Jensonetal./Neuropharmacology90(2015)23e32 2006;Jay,2003;JonesandBonci,2005;Kauer,2004;Kelley,2004; 2.3. Fast-scancyclicvoltammetryinstriatalslices Unglessetal.,2004;Winderetal.,2002). Wild-typeC57BL/6Jmalemicebetweentheagesof3and5monthswereused One of the most important pathways for the formation of for these experiments. Animals were anesthetized via injection of a ketamine, associativememoryistheperforantpath,whichoriginatesinthe xylazineandacepromazinecombinationanesthetic.Whentheanimalwasdeeply anesthetized,itwasdecapitated,andthebrainquicklydissectedout.Horizontal entorhinalcortexandtransmitsconvergentinformationfromthe slices(300mm)containingthedorsalstriatumwereincubatedat32±0.5(cid:2)Cfor neocortextothehippocampus(Deadwyleretal.,1979;Lavenexand 10minandheldatroomtemperaturefor(cid:3)1h.Thesliceswerestudiedat34±1(cid:2)C Amaral, 2000). The accumulated evidence supports that synaptic inACSF:125mMNaCl,2.5mMKCl,1.3mMMgCl2,2.5mMCaCl2,1.25mMNa2HPO3, plasticity along the perforant path is a substrate for memory 26mMNaHCO3and10mMglucosesaturatedwith95%O2and5%CO2. (Lynch, 2004; Martinez and Derrick,1996; McHugh et al., 2008; Fast-Scan cyclic voltammetry was performed using homemade carbon-fiber microelectrodes.Thepotentialappliedtotheelectrodewasscannedlinearlyfrom Rumpel et al., 2005), and the medial perforant path inparticular 0to(cid:4)400to1000to(cid:4)400to0mVatarateof300mV/msagainstasilver/silver carriesplaceandspatialinformation(Hargreavesetal.,2005)that chloridereference.Thetipofthecarbonfiberrecordingelectrodewascentered isimportantfordrugassociatedmemory.BothDAandNEreleasein approximately 200 mmawayfrom the tips of the bipolarstimulating electrode. the hippocampus enhance LTP and learning, which establishes a Voltammogramsweresampledat50kHzandthebackgroundcurrentwasdigitally subtracted. An oxidationpeak between 400 and 600 mV and a reductionpeak functionallinkbetweenmemorysystemsandthecatecholamine- between(cid:4)200and(cid:4)250mVwereusedtoidentifythesignalasadopaminesignal. releasing “reward” centers (Lisman and Grace, 2005; Moore and ThepeakoxidationcurrentsforDAineachvoltammogramwereconvertedtoaDA Bloom,1979).Recentworksuggeststhatthesetwocatecholamine concentrationduringapostexperimentalcalibrationofthecarbon-fiberelectrode systemsmaybemoreinteractiveinthehippocampusthanprevi- againstsolutionsof0.1e10mMDA(Zhangetal.,2012,2009,2010). ouslyanticipated(Agnatietal.,1995;Borgkvistetal.,2012;Smith Thedorsalstriatumwasusuallystimulated(1-msduration,0.6-mAconstant and Greene, 2012). In this study, we examined MPH's influence current) with a bipolar tungsten electrode with 120 s between stimulations to ensurerecoveryoftheDAsignal.AfterrecordingstableDAreleasefor10minin overperforantpathsynapticplasticityowingtosignalingviaDAor ACSF,MPHwasbathadministeredandallowedtoequilibratefor45minbeforedata NEreceptors. werecollectedforMPHinducedchangesinDArelease.Forsomeoftheexperiments, stimulustrainswereapplied.Whenstimulationtrainswereapplied,theycombined atonicandphasiccomponent.Thetonicstimulationwasgivenat1.8Hz,andthe 2. Materialsandmethods phasicstimulationwasgivenas5pulsesat20Hz.Thephasicstimulationmatches the average intraburst firing frequency of approximately 20 Hz that has been 2.1. Experimentalprocedures measuredinvivofromrodents(Benoit-Marandetal.,2001;Hylandetal.,2002; AllanimalexperimentswerebeencarriedoutinaccordancewiththeNIHguide Zhangetal.,2009).Theaveragefrequencyofthetotalstimulationtrainwas4Hz, forthecareanduseoflaboratoryanimalsandaccordingtoprotocolssubmittedto whichisconsistentwiththeaveragebaselinefiringrateofDAneuronsinvivo.The theInstitutionalAnimalCareandUseCommitteeatBaylorCollegeofMedicine.All stimulationtrainwasappliedbeforeandafterbathadministrationofMPH(50nM). effortsweremadetominimizeanimalsuffering,toreducethenumberofanimals This MPH concentration is close to the peak serum concentrations observed used,andtousealternativestoinvivotechniqueswhenavailable. followingmoderatetherapeuticoraldosages(SwansonandVolkow,2003). 2.4. Invivoelectrophysiology 2.2. Slicepreparationandperforatedpatchclamprecording 2.4.1. Animalcareandsurgery Hippocampalslicescontainingthedentategyruswerepreparedaspreviously AdultmaleC57BL/6Jmice(JacksonLaboratory),3e4monthsold,wereusedin described(Zhangetal.,2010).Briefly,C57BL/6miceofeithersex(24e30dayold) alloftheseexperiments.Forinvivoelectrophysiology,themicewerehousedindi- wereanesthetizedviainjectionofamixtureofketamine(42.8mg/ml),xylazine vidually with food and water ad libitum in a temperature-controlled room (8.6mg/ml),andacepromazine(1.4mg/ml).Whentheanimalwasdeeplyanes- (23±1(cid:2)C)withareversed12hartificiallightedarkcycle(lightonat9p.m.). thetized,itwasdecapitated.Thenthebrainwasrapidlyremovedandslicedwitha Onday0micewereanesthetizedwithsodiumpentobarbital(80mg/kg,intra- vibratome(LeicaVT1000S).Fourhorizontalbrainslices(270mmthick)werefirst peritonealinjection,i.p.,withadditional15mg/kgsupplementsasnecessary)and recoveredinahomemadechamberfilledwithlow-calcium,high-magnesiumarti- securedintothestereotaxicapparatus.Aconcentricbipolarstimulatingelectrode ficialcerebrospinalfluid(ACSF)containing(inmM):125NaCl,25NaHCO3,2.5KCl, consistingof a tungstenwireplaced inside a 30 gaugestainless steeltubewas 1.25NaH2PO4,7MgSO4,0.5CaCl2,and25D-(þ)-glucosecontinuouslysaturated positionedinthemedialpartoftheperforantpath(0.2mmposteriorandbetween pweirthatu9r5e%(2O22±an1d(cid:2)5C%)fCoOr2ataltea3s2t(cid:2)1Chfournt3i0ltmheinreacnodrdtihnegnswmearientbaeinguedn.atroomtem- 2el.8ectarnodde3(.T0eflmomn-claotaetreadltoufnglasmtebndwa,ir1e.,0bea1r.e3dmiammebteerlo5w0mtmhe)adtutarcah).edThtoearestcaoirndliensgs Therecordingsweremadewitha200Bamplifier(AxonInst.)appliedtoahip- steelguidetube(outerdiameter310mm)wastargetedipsilaterallytothehilusofthe pocampalslicethatwasplacedinahomemaderecordingchambercontinuously dentate gyrus (DG) (1.8e2.0 mm posterior, 1.4e1.6 mm lateral of bregma, perfusedwithwelloxygenatedACSF(1e2ml/min)containing(inmM):125NaCl,25 2.2e2.3mmbelowthe skull)(FranklinandPaxinos,1997).Thefinaldepthand NaHCO3,2.5KCl,1.25NaH2PO4,1MgSO4,2CaCl2,25D-(þ)-glucose,maintainedat positionoftheelectrodesweredeterminedbyjudgingthereal-timeelectrophysi- 32e34(cid:2)Cbyanautomatictemperaturecontroller(TC-324B,WarnerInstrument ologicalsignal.Asilverelectrodeplacedcontralaterallyinthecortexservedasthe Corp,Hamden,CT).Picrotoxin(100mM,SigmaeAldrich),aGABAAreceptorantag- recordingreferenceandground.Dentalcementwasusedtoanchortheelectrodes onist, was routinely included in the ACSF. Patch-clamp recording electrodes andtheconnectingdeviceforchronicrecordings.Miceweregivenatleast2weeks (3e4MU)werefilledwiththefollowingintracellularsolution(inmM):140po- torecoverbeforebeginningtheexperimentalrecordings. tassiumgluconate,10KCl,10HEPES,5MgCl2,(pH7.2withKOH)freshlysupple- mentedwith200mg/mlamphotericinB(SigmaeAldrich)(Yangetal.,2009).Therest 2.4.2. Handling,habituation,stimulation,andrecordingprocedures ofthepipettesolutioncontainingamphotericinBwaskeptina4(cid:2)Crefrigeratorand Beginning on day 10 post-surgery and continuing for 5 days, each animal wasdiscardedafter6h. received5minofhandlingfollowedbyadministrationof0.3mlsaline(i.p.)inthe After achieving a gigaohm seal (>2 GU), a perforated whole-cell recording homecageintheexperimentalroombothinthemorningandafternoon.Thenthe conformationwasobtainedwithin5e20minasjudgedbygradualreductionofthe micewereindividuallyhabituatedtotherecordingchamber:aPlexiglascylinder accessresistanceto<20MU.Undercurrentclamp,excitatorypostsynapticpoten- withbeddingwithinasound-reducingbox(MedAssociates,VT).Atthesametime tials(EPSPs)wereevokedbystimulationpulsesgeneratedbyastimulusisolator themicewerehabituatedtotherecordingheadstagesystem.Micereceived1hof (A365,WPI,FL)every30sviaastereotrodetungstenelectrode(WPI,FL)placedat habituationdailyfor4consecutivedaysstartingfromday11.Monophasicsquare themedialperforantpathway.Astablebaselinewasrequiredfor10minbefore pulses(100ms)weredeliveredtotheperforantpath(A360R,WPI,FL).Recorded beginning the experiment by applying drugs or beginning the spike timing signalswereamplified((cid:5)100),filtered(bandpass0.1Hze5kHz),digitizedat10kHz, dependent plasticity (STDP) protocol. In order to monitor the perforated patch andstoredondiskforoff-lineanalysis.Onday15,aninputeoutputcurve(I/O)was recording conditions, a small hyperpolarizing current (0.01 nA) was injected generated.Singleteststimuliwerethendeliveredat30sintervalsatanintensity (200ms)throughtherecordingpipettetomeasureinputresistance.Iftheinput (35e100mA)thatevoked40%ofthemaximalamplitudeofthepopulationspike. resistancechangedby30%ormore,thentheexperimentwasstoppedandthedata Inatypicalexperimentexaminingevokedsynapticresponsesintheperforant werediscarded.Alldrugswerebathappliedforatleast15min,andtheSTDPpro- path-dentatepathway,thereweretwoorthreecounterbalancedsessionsforeach tocol(presynapticstimulationfollowedbypostsynapticdepolarizationseparatedby mouse:e.g.,saline,5mg/kgMPH,and20mg/kgMPH.Eachdataacquisitionsession a10-mstimeinterval)wasdelivered60timesat0.33Hzin3min.Themagnitudeof continuedfor4days.Ondayminusone((cid:4)1d),thebaselineamplitudeofthepop- the synaptic plasticity change was defined as the mean peak amplitude of 40 ulationspikewasexaminedforstabilityfor30min.On0d,another30minstable consecutive EPSPs taken 30e60 min after the end of STDP induction protocol baselinerecordingwasrequiredbeforeadministeringsaline,5mg/kg,or20mg/kg normalizedbytheaverageoftheinitial20consecutiveEPSPs(i.e.,baseline). MPH(i.p.,0.1mlper10gbodyweight).Theresponseswereusuallymonitoredfor D.Jensonetal./Neuropharmacology90(2015)23e32 25 another3hfollowingtheinjection,butinsomecasestheresponsesweremonitored electricalafterdischargesandtoensurethemousewasina“still-alert”state(Doyere for5h.Insomecases,thebaselinesalsowererecordedbetweeninjectionofdrugor etal.,2003). salineandthetaburststimulation(TBS)toensurestability(e.g.,Fig.4).Intheex- perimentsforFig.4,afterthebaselinewasrecorded,miceweredisconnectedfrom 2.4.3. Thetaburststimulation therecordingamplifier,givenaninjectionofeithersalineorMPH,reconnectedto Theta burst stimulation (TBS) was designed to model the firing patterns of therecordingamplifier,andbaselinerecordingcontinuedforthe15minbeforethe hippocampalneuronsrecordedduringexploratorybehaviorinintactanimals.A TBSwasadministered.However,duringthemultipleinjectionsnecessaryforthe singleTBStrainconsistedof6individual0.1mspulsesina400Hzburstwith6 experimentsofFigs.5and6,wedidnotrecordduringthemanipulationstoavoid burstsat5Hzpertrain.Thistrainwasrepeatedatanintervalof20stoinduce electricalnoise.Themicewereleftintherecordingchamber,butunconnectedtothe differentamountsofsynapticpotentiation.Asingletrainproducednochangein recordingsysteminbetweentheinjectionsandTBS.Themicewerereconnected synaptictransmission,while6trains(astrongTBSprotocol)consistentlyinduced 1e2minpriortoTBSadministration.Baselinerecordingsweretakenon1dand2d LTP of the perforant path connection to dentate granule cells. We titrated the aftertreatmenttofollowtheoverallstabilityoftherecordings.I/Ocurveswere strengthoftheTBSandfoundthat2trainsonaverageproducedslightlong-term recordedsystematicallybetweensessionstoverifythestabilityandtherecovery depressionanddidnotinducesignificantLTPonitsown.ThisversionofTBSwas afterthetreatmentofeachsession.Throughouttheelectrophysiologicalrecording, usedinalloftheTBSexperiments. themouse'sbehaviorwasvideomonitored,andtheEEGderivedfromthedentate gyrusrecordingalsowasdisplayedonanoscilloscopetoensuretheabsenceof 2.4.4. Drugadministrationandhistology AllthedrugswerefromSigma(St.Louis,MO).Fori.p.injection,sodiumpen- tobarbitol, dl-threo-methylphenidate hydrochloride, R(þ)-SCH-23390 hydrochlo- ride,andtimololmaleateweredissolvedinnonpyrogenicsalineandadjustedfor injectionvolumeof0.1mlper10gbodyweight.Afterallexperimentation,themice werekilledwithanoverdoseofisoflurane.Ananodalcurrent(30mA,10s)was passedthroughthetungstenwireforidentificationoftheelectrodeplacements. Frozen30mmcoronalsectionswerecutandstainedwithhematoxylin. 2.4.5. Dataanalysis Duringtheinvivoexperiments,theamplitudeofthepopulation(pop)spikewas measuredforeachstimulusevokedpostsynapticresponsebycalculatingthedepth ofthelocalfieldpotential.Thepopspikeamplitudewasmeasuredfromthepoint directly above the minimum of the local field potential on an imaginary line extending between the local maxima before and after the pop spike itself. The calculatedvaluesfromeverytenconsecutivepopspikeswereaveraged.Theaver- agedvaluesbeforeanydrugtreatmentwerenormalizedto100%,andthoseaveraged valuesdefinedthebaseline.Themeanbaselinevalueswereobtainedduringthe 30minofrecordingimmediatelybeforethefirstdrugtreatment. TheinvivodataofFigs.3e6werecollectedin3continuoussectionsonday 0(i.e.,thetreatmentday).Thebaseline(30min)collectedbeforethetreatments began,thetreatmentsection,andthepost-treatmentsection(3h).Thebaselinewas alwaysnormalizedto100%,andthevalueforsynaptictransmission(i.e.,theLTPor LTDvalue)wascalculatedbyaveragingthedatacollectedinthelasthourofthepost- treatmentsection.Todeterminewhetheratreatmentdatasethadaneffect,we ultimatelycomparedthetreatmentgroupanditspairedcontrolgroup.Thedata groups were analyzed with multi-way repeated measures analysis of variance (ANOVA).Inthecaseswhere3ormoregroupswerecompared(i.e.,Figs.4e6),the multi-wayANOVAindicatedwhetherthegroupsweredifferent.Then,aTukeyHSD post-hoctestwasperformedtodeterminetherelationshipofsignificantdifferences betweengroups,andthisprocessyieldedthereportedpvalue.Thatis,theprocess indicatedwhetherthetreatmentwasdifferentfromitspairedcontrol,whichalso indicatedtheinductionofLTPorLTD. 3. Results 3.1. MPHenhancedSTDPinhippocampalslices EPSPswereevokedbystimulationpulsesappliedevery30svia anelectrodeplacedinthemedialperforantpathwayandrecorded undercurrentclampthroughaperforatedpatchondentategranule cells(Fig.1A).Fig.1BindicatesthetimingoftheSTDPprotocolthat wasapplied.Thepresynapticstimulationoccurred10msbeforethe postsynaptic depolarization. Postsynaptic current was injected to causethepostsynapticcelltofiretwoactionpotentialsat100Hz. This pairing was repeated 60 times at 0.33 Hz over 3 min after Fig.1. MPHenhancedSTDPinhippocampalslices.(A)Aschematicdiagramofapatch- recording the baseline for 15 min to ensure stability of the clamprecording(R)fromagranulecellinamousedentategyrus(DG)slice.Astim- recording.EPSPsevokedbystimulationwererecordedfor60min ulatingelectrode(S)wasplacedinthemedialperforantpath(mPP)originatinginthe medialentorhinalcortex(EC).(B)AnillustrationoftheSTDPinductionprotocolwith following the STDP pairing. The STDP stimulation protocol alone Dt¼10ms,meaningthepresynapticstimulationprecededby10msthepostsynaptic did not produce consistent synaptic plasticity, with the average actionpotential(AC)firinginducedbycurrentinjectionviatherecordingpipette.STDP being notsignificantly differentfrombaseline (94% ± 19%, n ¼ 7, (inSCdHuc)tioþn5b0y0thneMproMtoPcHol(iDn),th2e0prmeMsentciemooflo5l00(TInMM) MþPH50(0C),n2M0mMMPHSCH(E-)2,33an9d0 p¼0.77;graycircle,Fig.1G). SCHþTIMþMPH(F),respectively.Theopenhorizontalbarineachleftpanelindicates The literature indicates MPH doses for hippocampal slice ex- theperiodofdrugapplication,andthearrowsindicateapplicationofthe10msSTPD perimentsrangingfromabout50nMto300mM(Dommettetal., protocol. The right panel of the corresponding figures shows tabulated individual 2008; Ishimatsu et al., 2002). MPH has a higher affinity for the psulamstmicaitryyovafltuheesmaenadnamveargangietuddveaolufeSsTDoPfitnhdeumceadgbnyituthdee1o0fmsysnparpottioccopllasshtoicwitny.in(GC)eAF DAT(Ki¼34nM)thanfortheNET(Ki¼339nM)(Bymasteretal., andforcontrolexperiments.*p<0.05comparedtothebaseline,#p<0.05comparison 2002;Pristupaetal.,1994),however,themedianeffectivedosesfor betweenthetwogroupsindicated. DATand NET blockade are close (Hannestad et al., 2010; Volkow 26 D.Jensonetal./Neuropharmacology90(2015)23e32 Fig.2. TheMPHdosedependenceforinfluencingDAreleasemeasuredbyfast-scancyclicvoltammetry.(A)ExampleDAtracesbefore(0MPH)andafterbathadministrationofthe indicatedconcentrationofMPH.TheaverageDAresponsespeakmagnitude(B)anddopaminesignalarea(C)areplottedagainsttheMPHconcentrations.(D)MPH(50nM)in- creasesDArelease.AnexampleDAtraceisshownbefore(blacktrace)andafterMPHbathadministration(graytrace).ThebargraphsshowthattheaverageDApeakandareaunder theDAcurveincreaseafterMPHadministration.(E)MPH(50nM)increasesthephasic/tonicratioofDArelease.Thephasic-to-tonicratioincreasesfollowingtreatmentwith 50nMMPH.Theindividualpairedtracesareaveragedandplottedovereachother.Whentreatedwith50nMMPH(largeramplitudegraytrace),thetonicandphasicDArelease bothincreased.However,thephasicDAreleaseincreasedmore,andthisresultisreflectedintheincreasedphasic-to-tonicratiosofthepeakamplitudesandareasfollowingMPH application(bargraphs,right). etal.,1998),andtherapeuticdosesinjectedi.p.inratsshowsimilar antagonistalsoreducedtheSTDPenhancementsothatitwasno increases in DA and NE concentrations in the prefrontal cortex longer significant (TIM, Fig.1E: 148% ± 46% of baseline, n ¼ 8, (Bymaster et al., 2002). Based on the literature and our voltam- p¼0.17;blackupwardtriangle,Fig.1G).Withasingleantagonist, metry experiments below, we used a moderate concentration of thestimulationprotocolforagivenrecordingcouldproduceLTP, 0.5mMMPH,andfoundthatMPH(0.5mM)significantlyenhanced LTD, or no change, with the average being not significantly LTPinducedbytheSTDPprotocol(154%±21%ofbaseline,n¼7, different from baseline (Fig. 1D and E, right panels). However, p¼0.02,Fig.1C;blackcircle,Fig.1G). when both antagonists (SCH-23390 and timolol) were applied SCH-23390, a D1/D5 receptor antagonist, reduced the STDP alongwithMPHbeforetheSTDPprotocol,nochangeinsynaptic enhancementsothatitwasnolongersignificantlydifferentfrom strengthwasobserved,andindividualrecordingsweremuchless baseline (SCH, Fig.1D: 128% ± 48% of baseline, n ¼ 8, p ¼ 0.29; likelytovarygreatly(Fig.1F:81%±15%ofbaseline,n¼6,p¼0.13; black square, Fig. 1G). Timolol, a nonspecific NE b receptor blackdownwardtriangle,Fig.1G). D.Jensonetal./Neuropharmacology90(2015)23e32 27 Fig.3. HighdoseofMPHinducedLTP.(A)Anatomicaltrackverificationofarecordingelectrodelocationinthedentategyrus(dottedcircle,left).Theblackdotsshowtherangeof recordinglocationsinthedentategyrus(right).(B)Anatomicallesionofastimulatingelectrodeinthemedialperforantpath(arrow,left).Theblackdotsshowtherangeof stimulation-sitelocationsinthemedialperforantpath(right).(C)MPH-inducedpotentiationoftheperforantpathrecordedintheDG(graysquares).Thetimecourseofeach procedureisacross4days,fromthedaybefore((cid:4)1d)until2daysafter(2d)theMPHadministration.A30minbaselinewasobtainedon(cid:4)1dandconfirmedtobestablefor30min onday0(0d).Saline(black,n¼5)or20mg/kgMPH(gray,n¼5)wasinjected(i.p.)at30minonday0(verticaldashedline).TheamplitudesofthepopulationspikeofthefEPSCare plottedovertimefor4days((cid:4)1dto2d).SignificantLTPwasmeasuredfor20mg/kgMPHon0d(F(2,389)¼7.8,p<0.0005).Thestabilityoftherecordingsandthereturntobaseline areshownon1dand2d. The compiled data (Fig. 1G) show that MPH with the STDP DAneuronsdischargetonicallyatlowfrequenciesthatconsist protocol(blackcircle)significantlyenhancedSTDP-inducedLTPin mainly of individual action potentials (Grace and Bunney,1984). hippocampalslicescomparedtothebaseline,comparedtoacon- Periodically,DAneuronsfirephasicburststhataveragenear20Hz trol in which the STDP protocol was applied without MPH (light inrodents(Hylandetal.,2002;Robinsonetal.,2004;Zhangetal., graycircle),andcomparedtoacontrolinwhichMPHwasperfused 2009).AfterbathapplicationofMPH(50nM),theDAreleaseinthe inthebathbutnoSTDPstimulationwasapplied(lightgraysquare). dorsolateral striatum increased (Fig. 2D). For a single electrical AddingeitheraDAD1/D5receptorantagonistoraNEbreceptor stimulus (1p), the peak DA concentration increased to antagonistreducedMPH-enhancementbelowthelevelofsignifi- 1.40 ± 0.15 mM from 0.99 ± 0.11 mM in the control (n ¼ 13, cance.Combiningthetwoantagonists (blackdownward triangle) p<0.0002),andthetotalDAsignal,measuredasareaunderthe potentlyblockedtheincreaseinsynapticstrengthinducedbyMPH curve,increasedto0.89±0.13mM*sfrom0.47±0.07mM*sinthe duringtheSTPDprotocol. control(n¼13,p<0.005). To examine the tonic and phasic components of DA release, a 3.2. MPHincreaseddopaminereleaseinstriatalslices tonic1.8Hzstimulationwasgivenbeforeaphasicburst(5pulsesat 20 Hz). In the presence of MPH (50 nM), each DA response was TobetterunderstandMPH'sinfluenceoverDAreleaseandMPH larger(Fig.2E).Alsothephasic-to-tonicratiosofthepeakampli- dosingforourexperiments,weusedfast-scancyclicvoltammetry tudes and areas were significantly increased following MPH (FSCV)tomeasuredynamicDAreleasefrominvitrostriatalslices, application. The phasic/tonic ratio of the DA concentrationpeaks which provide robust, measurable DA release. Our intent was to increased to 3.07 ± 0.36 in MPH from 2.05 ± 0.26 in the control findtheMPHdosethatincreasesDAsignalingwithoutproducing solutions(n¼11,p¼0.009)andthephasic/tonicratioofthearea anoverlyseverealterationintheDAsignalingprocess.Inthatway, under the DA curves increased to 5.91 ± 1.02 in MPH from wehopedtobettermodelthemoreconservativedosingexpected 3.40±0.59inthecontrol(n¼11,p¼0.014).Thus,MPHincreased intherapeuticsituations.WeusedFSCVtoobtainhighfidelityin- phasic DA release more than it increased tonic DA release under formationonthetimecourseoftheevokedDAresponse.Firstwe theseconditions. completed a doseeresponse curve for concentrations of MPH rangingfrom1nMto300mM(Fig.2AeC),whichcoversthedose 3.3. BehavioralobservationsdefinedinvivoMPHdosing rangecommonlyusedforinvitrohippocampalstudies(Dommett et al., 2008; Ishimatsu et al., 2002). The doseeresponse curve We set out to find an appropriate in vivo MPH dose that re- showedaninvertedU-shapecurve.Upto1mMMPH,theDArelease capitulates some of the behavioral effects of cocaine, but not so iswellbehaved,butabovethatconcentrationtheDApeakfallswith highastoinducestereotypyorimpairperformanceonabehavioral increasingMPHconcentrations.Therefore,weusedMPHconcen- memory task. Increased locomotion and stereotypies are side ef- trations well below 1 mM for the slice experiments, and we fectsofmoderatetohightherapeuticdosesofMPHinhumans.The considereddosesinthisrangetobebiologicallyreasonable. therapeuticrangeofMPHdosesinhumanshasbeensuggestedto 28 D.Jensonetal./Neuropharmacology90(2015)23e32 Fig. 6. Inhibiting NE b-receptors decreased but did not prevent MPH's effect. (A) Systemicinjectionofanon-specificNEb-receptorantagonist,timolol,alonedidnot affectsynaptictransmissionfollowingtheweakTBS(n¼5).(B)Salineadministered beforeMPHandTBS(black,n¼5)gaverobustLTP,whiletimololadministeredbefore MPHandTBS(gray,n¼7)decreasedMPH'seffectontheresultingsynaptictrans- mission,butLTPwasnotblocked.Treatmentswerecounterbalancedandgivenatleast 7daysapartforeachmouse.InjectionoftimololbeforetheMPH/TBSLTPinduction protocol significantly decreased the resulting synaptic transmission in the dentate gyruswhencomparedtothesalinecontrol,(F(1,339)¼252.4,p<0.05). Fig.4. ModeratedoseofMPHenhancedTBSinducedLTP.(A)Exampletracescompare before(blacktrace)andaftertreatment(gray)traceforMPH(5mg/kg)alonewithout TBS,forsalinewithTBS,andforMPH(5mg/kg)þTBS.(B)Saline(gray,n¼5)or5mg/ kgMPH(black,n¼5)wasinjected15minbeforeTBSstimulationwasgiven.This 2010; Wright and White, 2003). A boost in T-maze performance lowerdoseofMPHwillnotinduceLTPalone(opencircles,n¼5).Eachmousereceived shouldmeanwehaveamoderatetherapeuticdose,asindicatedin 2seriesofTBSwithsalineorMPHinacounterbalancedmannerover2weeks.An the literature by behavioral experiments in mice (Heredia et al., injectionof5mg/kgMPHfollowedbyTBSresultsinsignificantLTPofthepopulation 2013; Huang and Huang, 2012; Lloyd et al., 2013). A dose of spikeamplitude(F(1,551)¼176.17,p<0.0001). 1 mg/kg did not significantly increase locomotor behavior, while 5 mg/kg increased locomotor behavior without inducing stereo- be0.5e2.5mg/kg(KuczenskiandSegal,2001).However,theroute typy.Wefound,however,thatadoseof20mg/kgdidinduceste- of administration and species differences in drug metabolism reotypy,andwethereforelabeled20mg/kgahighdoseofMPH.For significantlyaffectplasmaandbrainMPHconcentrations.Although theremainingexperimentsweused5mg/kgasourmediumdose MPHhashigheraffinityforthehumanDATovertheNET,3mg/kg ofMPH.Afterbeingthoroughlytrainedonthetask,administration MPH injected i.p. in rats showed similar increases in DA and NE of5mg/kgMPH(i.p.)significantlyincreasedcorrectarmchoicein concentrations in the prefrontal cortex, striatum, and nucleus theT-mazecomparedtomicethatreceivedsaline(88%±7%after accumbens as a percentage of baseline (Bymaster et al., 2002). MPHversus69%±11%aftersalineasacontrol,p<0.05,n¼16for ResultsalsosuggestthatmicearelesssensitivetoMPHthanrats, bothgroups,datanotshown).Thisgaveusourbasisfordosingto andchronicinjectionsof3mg/kgpreferentiallyincreasedDAand begintheinvivoelectrophysiologicalexperiments. NEintheprefrontalcortexwithoutaffectinglevelsinthestriatum andwithoutcausingsensitizationover21daysofdailyinjections (Kodaetal.,2010).Guidedbythesedataweperformedopenfield 3.4. MPHenhancedLTPinvivo experimentsonseveraldosesofMPHlookingfor increasedloco- motorbehaviorwithoutstereotypies,definedasrepetitiveturning Fieldpotentialsevokedbystimulationofthemedialperforant pathwererecordedinthehilarregionofthehippocampaldentate intightcirclesorexcessiveself-grooming. gyrusfromfreelymovingC57BL/6mice(Fig.3A,B).Anexampleof As a second test of a moderate dose of MPH, we ran mice thelesionfromarecordingsiteisshowninFig.3A(left),andallthe throughahippocampaldependent,delayednon-matchtosample recordingsitesinthedentategyrusareindicatedinFig.3A(right). T-maze task designed to test spatial working memory, a type of memorythatMPHisspecificallyknowntoenhance(Repantisetal., AnexampleofthelesionfromastimulationsiteisshowninFig.3B (arrow,left), andall thestimulationsites inthemedialperforant path are indicated in Fig. 3B (right). We focused on the medial perforantpathbecauseitrelaysconvergentinformationfromthe neocortex that is rich in contextual, place, and spatial content (Hargreaves et al., 2005), and evidence indicates that such infor- mationisassociatedwiththedrugexperience(Bialaetal., 2005; Kilts et al., 2001; Tang and Dani, 2009). Field recordings were madefromthehilusofthedentategyrustofollowthesynaptically generated field excitatory postsynaptic potential (fEPSP) and the population (pop) spike, which corresponds to the synchronous discharge of a large number of granule cells (Buzsaki and Czeh, 1981). The magnitudes of these components are directly related tothenumberofneuronsactivatedbythestimulus(Andersenetal., 1971; Lomo, 1971). Synaptic transmission was quantified by Fig.5. InhibitingDAD1-typereceptorsblockedMPH'seffect.(A)Systemicinjectionof measuringthepopspikeamplitudebecausetheslopeofthefEPSP aD1/D5receptorantagonist,SCH-23390,alonedidnotaffectsynaptictransmission isoftenobscuredinvivobyanincreaseinthepopspikethatoccurs followingtheweakTBS(n¼5).(B)SalineadministeredbeforeMPHandTBS(black, aftersynapticpotentiationinductioninawakeanimals. n¼5)gaverobustLTP,whereasSCH-23390administeredbeforeMPHandTBS(gray, n¼5)didnotshowanysynaptictransmissionchange(F(1,319)¼248.19,p<0.0001). Two weeks after surgical implantation of the electrodes and Treatmentswerecounterbalancedandgivenatleast7daysapartforeachmouse. habituation to the recording situation, mice were treated with D.Jensonetal./Neuropharmacology90(2015)23e32 29 three 4-daycounterbalanced sessions of systemic i.p. injection of Therefore, the influence of MPH over plasticity of the perforant saline,5,or20mg/kgMPH.WetestedwhetherMPHalonewould pathtothedentategyruswasexamined.Wefocusedonthemedial induceanydirectionalplasticitythatcouldbemeasuredbythepop perforantpathbecauseit specificallycarriesplaceandspatial in- spikeofthefEPSPs.Neithersalinenor5mg/kgMPHaffectedsyn- formation(Hargreavesetal.,2005)thatisimportantforassociative aptictransmission:forsaline,104%±1.1%,n¼3,p>0.05(Fig.3C, memory. The accumulated evidence also supports that synaptic saline,blacksquares);for5mg/kgMPH(seeFig.4B,opencircles,to plasticityalongthispathwayisacontributingsubstrateofmemory simplify Fig. 3C). However, 20 mg/kg MPH induced long-term (Lynch, 2004; Martinez and Derrick,1996; McHugh et al., 2008; synaptic potentiation (Fig. 3C, gray squares) as measured in the Rumpeletal.,2005).UsinginvitrosliceswefoundthatMPHen- popspikeamplitude2hafteradministration:109%±1.1%,n¼5, hancestheinductionofSTDP.ASTDPprotocolthatinducednonet p<0.001for20mg/kg. synaptic change by itself would induce LTP when the stimulus To simulate a signal along the perforant path to the dentate protocolwasappliedinthepresenceofMPH(0.5mM).Wheneither gyrus,weappliedrelativelyweakthetaburststimulation(TBS)and theD1-typeDAreceptorswereinhibitedwithSCH-23390ortheNE combinedthatTBSwithMPHadministration.Basedontheinvitro b receptors wereinhibited bytimolol, the averageLTPamplitude experiments(Fig.1),wehypothesizedthatMPHshouldboostthis induced by the MPH protocol was reduced (Fig.1). In slices, it is sub-threshold TBS paradigm to produce long-term potentiation noteworthy that with either D1-type receptors or NE b receptors (LTP) owing to blockade of the NET and/or DAT (Kulla and inhibited there is still a trend toward potentiation, and there is Manahan-Vaughan,2000;MooreandBloom,1979;Rossatoetal., significant scatter among the individual plasticity recordings 2009;SajikumarandFrey,2004).Asalineinjection15minbefore (Fig.1D, E, right bar plots). When both sets of catecholamine re- the standard theta burst stimulation resulted in slight long-term ceptors were inhibited, however, LTP induction by the STDP pro- depression (Fig. 4B, light gray circles, 93.1% ± 2.0% of baseline, tocol was eliminated on average and for each individual n¼5,p¼0.008).AmoderatedoseofMPH(5mg/kg)alonedidnot experiment(Fig.1F,rightbarplot).Chronicrecordingsfromfreely produce significant synaptic change (Fig. 4B, open circles): movingmiceshowedthatsimilarcatecholaminemechanismsare 104%±1.1%,n¼3,p>0.05.However,whenthatdosewasgiven atplayinvivo.Fieldpotentialsevokedbystimulationofthemedial 15minbeforethestandardTBS,itproducedlonglastingpotenti- perforant path were recorded in the hilar region of the dentate ationoftheperforantpathtodentategyruspathway(Fig.4B,black gyrus (Tang and Dani, 2009). Weak theta burst stimulation (TBS) circles):131%±2.3%,n¼5,p<0.0001. thatinducednosynapticchangeorslightLTDonitsown,induced To determine whether primarily DA or NE receptors were LTP when applied in the presence of MPH (5 mg/kg). The LTP responsible for the MPH induced synaptic potentiation, we sys- induced by TBS þ MPH was reduced when NE b receptors were temicallyinhibitedDAD1/D5receptors(0.2mg/kg,i.p.,SCH-23390) inhibitedbytimolol(Fig.6),buttheLTPinductionwasabsentwhen orNEbreceptors(10or20mg/kg,timolol).InjectionsofSCH-23390 D1-typeDAreceptorswereinhibitedwithSCH-23390(Fig.5). (0.2 mg/kg, i.p) alone did not significantly alter synaptic trans- Whileboththeinvitroand invivoexperiments suggest influ- mission(Fig.5A):102.5%±2.8%ofbaseline,n¼5,p>0.05.Inthe ence by both catecholamines, the results are quantitatively pairedcontrol experiments wheresaline (i.p.) preceded the MPH different. The in vitro experiments show influence by inhibiting administration, MPH induced a significant potentiation over the eitherthe D1-type receptorsor NE b receptors, butthe strongest baseline(Fig.5B,blacksquares):164.2%±2.9%ofbaseline,n¼5, inhibition of STDP occurred when both receptor types were p<0.0001.SystemicinjectionofSCH-23390precedingMPH(5mg/ inhibited.Theinvivoexperimentsshowgreaterandcompletein- kg) administration completely prevented synaptic potentiation hibition of the MPH-influenced plasticity when the D1-type re- induced by MPH combined with TBS (Fig. 5B, gray squares): ceptors were inhibited. These differences could arise from the 100.1%±18.6%ofbaseline,n¼5,p>0.05.Injectionsoftimolol(10 differenceinthepreparations.Theinvitrosliceswerefrom24to30 or 20 mg/kg, i.p.) alone did not significantlyalter synaptic trans- day old mice while the in vivo experiments were conducted on mission(Fig.6A):103.2%±5.9%ofbaseline,n¼5,p>0.05.Inthe youngadultmice(3e4monthsold).Possiblymoreimportantly,the paired control experiments where saline (i.p.) preceded MPH scatteramongtheindividualexperimentsinvitro(Fig.1D,E,right) administration,MPHfollowedbyTBSinducedasignificantpoten- suggest that the individual placements of stimulation and tiation over baseline (Fig. 6B, black circles): 174% ± 13%, n ¼ 7, recordingelectrodes, coupled with the reduced slicepreparation, p<0.0001.Systemicinjectionoftimololdecreasedthechangein couldproducemoreextremesinthelocalcatecholaminesignaling. synaptictransmissioninducedbyMPHprecedingTBS,butsignifi- This variability appears less likely in the intact, in vivo situation cant LTP was still induced: 151% ± 3.4% of baseline, n ¼ 5, wheremature,moreconsistentcatecholaminesignalingispresent. p¼0.0037.The3-wayANOVAandTukeyHSDpost-hoctestsreport Inthatcase,theactionsofthereceptorsandthereceptorinhibitors that all 3 groups are statistically different, indicating that when may reflect the final more refined and consistent catecholamine timololinhibitsNEbreceptorsthereisadifferenceinMPH'seffect. signalingintothedentategyrusseenintheadultmice. Asalways,thereportedLTPvalueabovewascalculatedforthelast EvidenceindicatesthatNETandDATblockadeinfluencesindi- hourofthe3htimecourseafterTBSadministration(Fig.6B).The vidualareasofthehippocampusdifferently(HopkinsandJohnston, greatestdifferencecausedbytimololoccursatearliertimesduring 1988; Huang and Kandel,1996; Ishihara et al.,1991; Lacaille and the first hourafterTBS when inhibition of the NE b receptors by Harley,1985;Munroetal.,2001).InthehippocampalCA1region timolol resulted in a stronger suppression of the early synaptic ofratslices,MPHboostedtetanicLTPbasedmainlyonitsabilityto potentiation:136%±3.1%,n¼5,p¼0.0004. block NETs because the NE b receptor inhibitor, timolol, blocked MPH enhancement of tetanic LTP (Dommett et al., 2008). In our 4. Discussion experimentsappliedtothedentategyrus,however,theDAD1-type receptors and NE b receptors both seemed important during our Methylphenidate (MPH) is widely used for the treatment of invitro(relativelyweak)STDPprotocolappliedtoslicesfromyoung ADHD to improve attention, learning, and memory. The main mice(24e30d).Furthermore,theD1-typereceptorsseemedeven mechanistic action of MPH is to inhibit DA and NE reuptake moreimportantthantheNEreceptorsduringourinvivoTBSpro- transporters. Based on its action and on previous findings tocolinadultmice. (Dommett et al., 2008; Urban et al., 2013), we hypothesized that PreviousreportsshowedmixedresultsfortheabilityofMPHto MPH directly alters hippocampal long-term synaptic plasticity. increase DA and NE in slice preparations (Heal et al., 2008). We 30 D.Jensonetal./Neuropharmacology90(2015)23e32 found effects of both DA and NE in our hippocampal slice LTP expected to enhance the size and length of adrenergic signaling. paradigm,suggestingthattheSTDPstimulationprotocolcancause Dopamine and adrenergic receptors are expressed in the hippo- variable DA and NE release from terminals in the dentate gyrus campus (Huang et al., 1992; Jurgens et al., 2005), and the cate- slice. Furthermore, MPH significantly increased these catechol- cholamineshavebeenshowntoenhancesynapticplasticityviaD1- amine signals to enhance synaptic plasticity. In vivo, TBS type DA receptors and b-type NE receptors (Lisman and Grace, enhancementbyMPHinthedentategyruswasmoredependenton 2005;TangandDani,2009;Thomasetal.,1996).Ourresultssup- theactivityofDAreceptors.WhethertheDAdrivenenhancement port the importance of catecholamines in synaptic plasticity, and wasduetoendogenousDAreleaseorpreferentialreleaseofDAby theresultsindicatethatMPHinfluencesthesesynapticprocesses. theTBSprotocolitselfisunknown.Thesedifferencesintheresults Becausetheinvivoexperimentswereconductedonfreely-moving that arise from different plasticity induction protocols applied to mice under biologically reasonable conditions, those results pro- differenthippocampallocationsareconsistentwithregion-specific vide strong support for the importance of MPH acting via cate- forms of neuromodulation (Hopkins and Johnston, 1988; Huang cholaminesinthehippocampus. and Kandel,1996; Ishihara et al.,1991; Lacaille and Harley,1985; Munroetal.,2001).Therefore,thecumulativeresultssuggestthat MPHinfluenceshippocampalplasticityowingtoeffectsonboththe Acknowledgments DAandNEsystems. Throughout these experiments we attempted to use stimulus TheworkwassupportedbygrantsfromtheNationalInstitutes protocolsandMPHdosesthatarereasonable.ATBSprotocolwas ofHealth,NIDADA09411andNINDSNS21229. usedinvivotomimicthethetamodeofhippocampalfiringthatis observed during states of active, alert behavior in freely-moving References rodents (Hyman et al., 2003; Orr et al., 2001). That TBS protocol onlyproducedLTPafteradministrationofMPH.Similarly,theSTDP Agnati,L.F.,Zoli,M.,Stromberg,I.,Fuxe,K.,1995.Intercellularcommunicationinthe protocolusedfortheinvitroexperimentswasmild.Inaddition,the brain:wiringversusvolumetransmission.Neuroscience69,711e726. perforated-patchmethodology,ratherthanthewhole-cellconfig- Andersen,P.,Bliss,T.V.,Skrede,K.K.,1971.Unitanalysisofhippocampalpopulation uration,wasusedfortheinvitrorecordingstopreservetheintra- spikes.Exp.BrainRes.13,208e221. Benoit-Marand,M.,Borrelli,E.,Gonon,F.,2001.Inhibitionofdopaminereleasevia cellular milieu. Unlike tetanic stimulation to induce synaptic presynapticD2receptors:timecourseandfunctionalcharacteristicsinvivo. plasticity, STDP pairs a presynaptic stimulation followed by a J.Neurosci.21,9134e9141. postsynapticdepolarizationtomimicthebiologicalcaseinwhich Biala,G.,Betancur,C.,Mansuy,I.M.,Giros,B.,2005.Thereinforcingeffectsofchronic D-amphetamineandmorphineareimpairedinalineofmemory-deficientmice the afferent activity drives a postsynaptic response in the target overexpressingcalcineurin.Eur.J.Neurosci.21,3089e3096. area. The mild STDP protocol used for the in vitro experiments Biederman,J.,Spencer,T.,1999.Attention-deficit/hyperactivitydisorder(ADHD)as induced synaptic plasticity (LTP) only in the presence of MPH anoradrenergicdisorder.Biol.Psychiatry46,1234e1242. (0.5mM).ThedosesofMPHarosefromtheliterature,ourvoltam- Borgkvist,A.,Malmlof,T.,Feltmann,K.,Lindskog,M.,Schilstrom,B.,2012.Dopamine inthehippocampusisclearedbythenorepinephrinetransporter.Int.J.Neu- metry data, and our behavioral data. Based on our voltammetry ropsychopharmacol.15,531e540. experiments, the DA release was well behaved up to 1 mM MPH, Buzsaki,G.,Czeh,G.,1981.Commissuralandperforantpathinteractionsintherat hippocampus.Fieldpotentialsandunitaryactivity.Exp.BrainRes.43,429e438. whichresultedinthelargestpeakevokedDArelease.Therefore,we Bymaster, F.P., Katner, J.S., Nelson, D.L., Hemrick-Luecke, S.K., Threlkeld, P.G., used 0.5 mM MPH for the hippocampal slice experiments. This Heiligenstein,J.H.,Morin,S.M.,Gehlert,D.R.,Perry,K.W.,2002.Atomoxetine concentrationishigherthanbloodplasmalevelsinpatientstreated increases extracellular levels of norepinephrine and dopamine in prefrontal forADHD,whichisusuallyintherangeof50e200nM,butMPH cortexofrat:apotentialmechanismforefficacyinattentiondeficit/hyperac- tivitydisorder.Neuropsychopharmacology27,699e711. reaches higher concentrations in the brain than in the blood Chai,G.,Governale,L.,McMahon,A.W.,Trinidad,J.P.,Staffa,J.,Murphy,D.,2012. (HoffmanandLefkowitz,1996).TheMPHconcentration(5mg/kg) TrendsofoutpatientprescriptiondrugutilizationinUSchildren,2002e2010. usedfortheinvivoexperimentswithfreely-movingmicehadno Pediatrics130,23e31. Dani,J.A.,Harris,R.A.,2005.Nicotineaddictionandcomorbiditywithalcoholabuse effectoverinvivosynaptictransmissionbeforetheTBSwasapplied andmentalillness.Nat.Neurosci.8,1465e1470. (Fig. 4). This MPH dose (5 mg/kg) increased locomotor behavior Deadwyler,S.A.,West,M.,Lynch,G.,1979.Activityofdentategranulecellsduring withoutinducingstereotypy,andthisdoseincreasedcorrectarm learning:differentiationofperforantpathinput.BrainRes.169,29e43. DiChiara,G.,2002.Nucleusaccumbensshellandcoredopamine:differentialrolein choicesinthedelayednon-matchtosampleT-mazetask.Thattask behaviorandaddiction.Behav.BrainRes.137,75e114. is designed to test spatial working memory, which is a type of Dommett,E.J.,Henderson,E.L.,Westwell,M.S.,Greenfield,S.A.,2008.Methylphe- memorythatMPHisspecificallyknowntoenhance(Repantisetal., nidate amplifies long-term plasticity in the hippocampus via noradrenergic mechanisms.Learn.Mem.15,580e586. 2010; Wright and White, 2003). Therefore, the 5 mg/kg dose of Doyere,V.,Schafe,G.E.,Sigurdsson,T.,LeDoux,J.E.,2003.Long-termpotentiationin MPH seems like a biologically appropriate concentration for the freelymovingratsrevealsasymmetriesinthalamicandcorticalinputstothe behavioraltasksandinvivomeasurementsofsynapticplasticityin lateralamygdala.Eur.J.Neurosci.17,2703e2715. Floresco,S.B.,West,A.R.,Ash,B.,Moore,H.,Grace,A.A.,2003.Afferentmodulation mice.Underthesebiologicallyreasonableexperimentalconditions, ofdopamineneuronfiringdifferentiallyregulatestonicandphasicdopamine MPH enhanced synaptic plasticity involving catecholamine transmission.Nat.Neurosci.6,968e973. receptors. Franklin,K.B.,Paxinos,G.,1997.TheMouseBraininStereotaxicCoordinates.Aca- Unpredictedrewardsareknowntoproducebriefburstfiringby demicPress,London. Garris,P.A.,Ciolkowski,E.L.,Pastore,P.,Wightman,R.M.,1994.Effluxofdopamine DAneurons(Schultzetal.,1997),andphasicburstsinducegreater fromthesynapticcleftinthenucleusaccumbensoftheratbrain.J.Neurosci.14, extracellular DA release compared with tonic, single-spike firing 6084e6093. activity (Floresco et al., 2003; Garris et al., 1994; Gonon, 1988; Gonon, F.G.,1988. Nonlinear relationship between impulse flow and dopamine releasedbyratmidbraindopaminergicneuronsasstudiedbyinvivoelectro- Grace,1991;RiceandCragg,2004;Zhangetal.,2009).Dopamine chemistry.Neuroscience24,19e28. neurons operate in these distinct tonic and phasic timescales to Grace, A.A.,1991. Phasic versus tonic dopamine release and the modulation of differentiatebehaviorallyrelevantinformation(Schultz,2007).By dopaminesystemresponsivity:ahypothesisfortheetiologyofschizophrenia. Neuroscience41,1e24. inhibitingDATsandNETs,MPHincreasesandlengthensthecate- Grace, A.A., Bunney, B.S.,1984.The controlof firingpatternin nigraldopamine cholaminesignalafterrelease,whichmaysharesimilaritiestothe neurons:singlespikefiring.J.Neurosci.4,2866e2876. DA/NE signal after a long phasic burst. Our voltammetry results Hannestad, J., Gallezot, J.D., Planeta-Wilson, B., Lin, S.F., Williams, W.A., van Dyck,C.H.,Malison,R.T.,Carson,R.E.,Ding,Y.S.,2010.Clinicallyrelevantdosesof showed that MPH enhanced the DA signaling from phasic bursts methylphenidatesignificantlyoccupynorepinephrinetransportersinhumans even more than it enhanced the tonic signals. Likewise, MPH is invivo.Biol.Psychiatry68,854e860. D.Jensonetal./Neuropharmacology90(2015)23e32 31 Hargreaves, E.L., Rao, G., Lee, I., Knierim, J.J., 2005. Major dissociation between Lloyd,S.A.,Oltean,C.,Pass,H.,Phillips,B.,Staton,K.,Robertson,C.L.,Shanks,R.A., medial and lateral entorhinal input to dorsal hippocampus. Science 308, 2013. Prenatal exposure to psychostimulants increases impulsivity, compul- 1792e1794. sivity,andmotivationforrewardsinadultmice.Physiol.Behav.119C,43e51. Heal, D.J., Smith, S.L., Kulkarni, R.S., Rowley, H.L., 2008. New perspectives from Lomo, T.,1971. Patterns of activation in a monosynaptic cortical pathway: the microdialysisstudiesinfreely-moving,spontaneouslyhypertensiveratsonthe perforantpathinputtothedentateareaofthehippocampalformation.Exp. pharmacologyofdrugsforthetreatmentofADHD.Pharmacol.Biochem.Behav. BrainRes.12,18e45. 90,184e197. Lynch,M.A.,2004.Long-termpotentiationandmemory.Physiol.Rev.84,87e136. Heredia,L.,Torrente,M.,Colomina,M.T.,Domingo,J.L.,2013.Assessinganxietyin Martinez,J.L.,Derrick,B.E.,1996.Long-termpotentiationandlearning.Annu.Rev. C57BL/6J mice: a pharmacological characterization of the zero maze test. Psychol.47,173e203. J.Pharmacol.Toxicol.Methods68,275e283. McHugh,S.B.,Niewoehner,B.,Rawlins,J.N.,Bannerman,D.M.,2008.Dorsalhip- Hoffman,B.B., Lefkowitz,R.J.,1996.GoodmanandGilman'sthe Pharmacological pocampal N-methyl-D-aspartate receptors underlie spatial working memory Basis of Therapeutics, Catecholamines, Sympathomimetic Drugs, and Adren- performanceduringnon-matchingtoplacetestingontheT-maze.Behav.Brain ergicReceptorAntagonists.McGraw-Hill,NewYork. Res.186,41e47. Hopkins,W.F.,Johnston,D.,1984.Frequency-dependentnoradrenergicmodulation Moore,R.Y.,Bloom,F.E.,1979.Centralcatecholamineneuronsystems:anatomyand oflong-termpotentiationinthehippocampus.Science226,350e352. physiologyofthenorepinephrineandepinephrinesystems.Annu.Rev.Neu- Hopkins, W.F., Johnston, D., 1988. Noradrenergic enhancement of long-term rosci.2,113e168. potentiationatmossyfibersynapsesinthehippocampus.J.Neurophysiol.59, Munro,C.A.,Walling,S.G.,Evans,J.H.,Harley,C.W.,2001.Beta-adrenergicblockade 667e687. in the dentate gyrus in vivo prevents high frequency-induced long-term Huang,F.L.,Huang,K.P.,2012.Methylphenidateimprovesthebehavioralandcogni- potentiationofEPSPslope,butnotlong-termpotentiationofpopulationspike tivedeficitsofneurograninknockoutmice.GenesBrainBehav.11,794e805. amplitude.Hippocampus11,322e328. Huang,Q.,Zhou,D.,Chase,K.,Gusella,J.F.,Aronin,N.,DiFiglia,M.,1992.Immuno- Orr,G.,Rao,G.,Houston,F.P.,McNaughton,B.L.,Barnes,C.A.,2001.Hippocampal histochemicallocalizationoftheD1dopaminereceptorinratbrainrevealsits synapticplasticityismodulatedbythetarhythminthefasciadentataofadult axonaltransport,pre-andpostsynapticlocalization,andprevalenceinthebasal andagedfreelybehavingrats.Hippocampus11,647e654. ganglia,limbicsystem,andthalamicreticularnucleus.Proc.Natl.Acad.Sci.U.S. Pristupa,Z.B.,Wilson,J.M.,Hoffman,B.J.,Kish,S.J.,Niznik,H.B.,1994.Pharmaco- A.89,11988e11992. logicalheterogeneityoftheclonedandnativehumandopaminetransporter: Huang,Y.Y.,Kandel,E.R.,1996.Modulationofboththeearlyandthelatephaseof disassociationof[3H]WIN35,428and[3H]GBR12,935binding.Mol.Pharmacol. mossy fiber LTP by the activation of beta-adrenergic receptors. Neuron 16, 45,125e135. 611e617. Repantis,D.,Schlattmann,P.,Laisney,O.,Heuser,I.,2010.Modafinilandmethyl- Hyland, B.I., Reynolds, J.N., Hay, J., Perk, C.G., Miller, R., 2002. Firing modes of phenidateforneuroenhancementinhealthyindividuals:asystematicreview. midbraindopaminecellsinthefreelymovingrat.Neuroscience114,475e492. Pharmacol.Res.62,187e206. Hyman,J.M.,Wyble,B.P.,Goyal,V.,Rossi,C.A.,Hasselmo,M.E.,2003.Stimulationin Rice,M.E.,Cragg,S.J.,2004.Nicotineamplifiesreward-relateddopaminesignalsin hippocampalregionCA1inbehavingratsyieldslong-termpotentiationwhen striatum.Nat.Neurosci.7,583e584. deliveredtothepeakofthetaandlong-termdepressionwhendeliveredtothe Robinson,S.,Smith,D.M.,Mizumori,S.J.,Palmiter,R.D.,2004.Firingpropertiesof trough.J.Neurosci.23,11725e11731. dopamine neurons in freely moving dopamine-deficient mice: effects of Hyman,S.E.,Malenka,R.C.,Nestler,E.J.,2006.Neuralmechanismsofaddiction:the dopaminereceptoractivationandanesthesia.Proc.Natl.Acad.Sci.U.S.A.101, roleofreward-relatedlearningandmemory.Annu.Rev.Neurosci.29,565e598. 13329e13334. Ishihara,K.,Katsuki,H.,Kawabata,A.,Sasa,M.,Satoh,M.,Takaori,S.,1991.Effectsof Rossato, J.I., Bevilaqua, L.R., Izquierdo, I., Medina, J.H., Cammarota, M., 2009. thyrotropin-releasinghormoneandarelatedanalog,CNK-602A,onlong-term Dopamine controls persistence of long-term memory storage. Science 325, potentiationinthemossyfiber-CA3pathwayofguineapighippocampalsli- 1017e1020. ces.BrainRes.554,203e208. Rumpel,S.,LeDoux,J.,Zador,A.,Malinow,R.,2005.Postsynapticreceptortrafficking Ishimatsu,M.,Kidani,Y.,Tsuda,A.,Akasu,T.,2002.Effectsofmethylphenidateon underlyingaformofassociativelearning.Science308,83e88. the membrane potential and current in neurons of the rat locus coeruleus. Sajikumar,S.,Frey,J.U.,2004.Late-associativity,synaptictagging,andtheroleof J.Neurophysiol.87,1206e1212. dopamineduringLTPandLTD.Neurobiol.Learn.Mem.82,12e25. Izumi,Y.,Clifford,D.B.,Zorumski,C.F.,1992.NorepinephrinereversesN-methyl-D- Schultz,W.,2007.Multipledopaminefunctionsatdifferenttimecourses.Annu.Rev. aspartate-mediated inhibition of long-term potentiation in rat hippocampal Neurosci.30,259e288. slices.Neurosci.Lett.142,163e166. Schultz,W.,Dayan,P.,Montague,P.R.,1997.Aneuralsubstrateofpredictionand Jay,T.M.,2003.Dopamine:apotentialsubstrateforsynapticplasticityandmemory reward.Science275,1593e1599. mechanisms.Prog.Neurobiol.69,375e390. Smith,C.C.,Greene,R.W.,2012.CNSdopaminetransmissionmediatedbynorad- Jones,S.,Bonci,A.,2005.Synapticplasticityanddrugaddiction.Curr.Opin.Phar- renergicinnervation.J.Neurosci.32,6072e6080. macol.5,20e25. Stoops,W.W.,Glaser,P.E.,Rush,C.R.,2003.Reinforcing,subject-rated,andphysio- Jurgens,C.W.,Rau,K.E.,Knudson,C.A.,King,J.D.,Carr,P.A.,Porter,J.E.,Doze,V.A., logical effects of intranasal methylphenidate in humans: a dose-response 2005.Beta1adrenergicreceptor-mediatedenhancementofhippocampalCA3 analysis.DrugAlcoholDepend.71,179e186. networkactivity.J.Pharmacol.Exp.Ther.314,552e560. Swanson, J.M., Volkow, N.D., 2003. Serum and brain concentrations of methyl- Kauer, J.A., 2004. Learning mechanisms in addiction: synaptic plasticity in the phenidate: implications for use and abuse. Neurosci. Biobehav. Rev. 27, ventraltegmentalareaasaresultofexposuretodrugsofabuse.Annu.Rev. 615e621. Physiol.66,447e475. Tang,J.,Dani,J.A.,2009.Dopamineenablesinvivosynapticplasticityassociated Kelley,A.E.,2004.Ventralstriatalcontrolofappetitivemotivation:roleiningestive withtheaddictivedrugnicotine.Neuron63,673e682. behaviorandreward-relatedlearning.Neurosci.Biobehav.Rev.27,765e776. Thomas, M.J., Moody, T.D., Makhinson, M., O'Dell, T.J.,1996. Activity-dependent Kilts, C.D., Schweitzer, J.B., Quinn, C.K., Gross, R.E., Faber, T.L., Muhammad, F., beta-adrenergicmodulationoflowfrequencystimulationinducedLTPinthe Ely, T.D., Hoffman, J.M., Drexler, K.P., 2001. Neural activity related to drug hippocampalCA1region.Neuron17,475e482. cravingincocaineaddiction.Arch.Gen.Psychiatry58,334e341. Ungless,M.A.,Magill,P.J.,Bolam,J.P.,2004.Uniforminhibitionofdopamineneurons Koda,K.,Ago,Y.,Cong,Y.,Kita,Y.,Takuma,K.,Matsuda,T.,2010.Effectsofacuteand intheventraltegmentalareabyaversivestimuli.Science303,2040e2042. chronicadministrationofatomoxetineandmethylphenidateonextracellular Urban,K.R.,Li,Y.C.,Gao,W.J.,2013.Treatmentwithaclinically-relevantdoseof levelsofnoradrenaline,dopamineandserotoninintheprefrontalcortexand methylphenidatealtersNMDAreceptorcompositionandsynapticplasticityin striatumofmice.J.Neurochem.114,259e270. thejuvenileratprefrontalcortex.Neurobiol.Learn.Mem.101,65e74. Kuczenski,R.,Segal,D.S.,1997.Effectsofmethylphenidateonextracellulardopa- Volkow, N.D., Ding, Y.S., Fowler, J.S., Wang, G.J., Logan, J., Gatley, J.S., Dewey, S., mine, serotonin, and norepinephrine: comparison with amphetamine. Ashby,C.,Liebermann,J.,Hitzemann,R.,1995.Ismethylphenidatelikecocaine? J.Neurochem.68,2032e2037. Studiesontheirpharmacokineticsanddistributioninthehumanbrain.Arch. Kuczenski,R.,Segal,D.S.,2001.Locomotoreffectsofacuteandrepeatedthreshold Gen.Psychiatry52,456e463. dosesofamphetamineandmethylphenidate:relativerolesofdopamineand Volkow,N.D.,Fowler,J.S.,Wang,G.-J.,Swanson,J.M.,2004.Dopamineindrugabuse norepinephrine.J.Pharmacol.Exp.Ther.296,876e883. andaddiction:resultsfromimagingstudiesandtreatmentimplications.Mol. Kuczenski,R.,Segal,D.S.,2002.Exposureofadolescentratstooralmethylpheni- Psychiatry9,557e569. date: preferential effects on extracellular norepinephrine and absence of Volkow,N.D.,Swanson,J.M.,2003.Variablesthataffecttheclinicaluseandabuseof sensitization and cross-sensitization to methamphetamine. J. Neurosci. 22, methylphenidateinthetreatmentofADHD.Am.J.Psychiatry160,1909e1918. 7264e7271. Volkow,N.D.,Wang,G.J.,Fowler,J.S.,Gatley,S.J.,Logan,J.,Ding,Y.S.,Hitzemann,R., Kulla,A.,Manahan-Vaughan,D.,2000.Depotentiationinthedentategyrusoffreely Pappas, N., 1998. Dopamine transporter occupancies in the human brain moving rats is modulated by D1/D5 dopamine receptors. Cereb. Cortex 10, inducedbytherapeuticdosesoforalmethylphenidate.Am.J.Psychiatry155, 614e620. 1325e1331. Lacaille,J.C.,Harley,C.W.,1985.Theactionofnorepinephrineinthedentategyrus: Weikop,P.,Yoshitake,T.,Kehr,J.,2007.Differentialeffectsofadjunctivemethyl- beta-mediated facilitation of evoked potentials in vitro. Brain Res. 358, phenidateandcitalopramonextracellularlevelsofserotonin,noradrenaline 210e220. anddopamineintheratbrain.Eur.Neuropsychopharmacol.17,658e671. Lavenex,P.,Amaral,D.G.,2000.Hippocampaleneocorticalinteraction:ahierarchy Winder,D.G.,Egli,R.E.,Schramm,N.L.,Matthews,R.T.,2002.Synapticplasticityin ofassociativity.Hippocampus10,420e430. drugrewardcircuitry.Curr.Mol.Med.2,667e676. Lisman,J.E.,Grace,A.A.,2005.Thehippocampal-VTAloop:controllingtheentryof Wright,F.K.,White,K.G.,2003.Effectsofmethylphenidateonworkingmemoryin informationintolong-termmemory.Neuron46,703e713. pigeons.Cogn.AffectBehav.Neurosci.3,300e308. 32 D.Jensonetal./Neuropharmacology90(2015)23e32 Yang,K.,Hu,J.,Lucero,L.,Liu,Q.,Zheng,C.,Zhen,X.,Jin,G.,Lukas,R.J.,Wu,J.,2009. Zhang,T.,Zhang,L.,Liang,Y.,Siapas,A.G.,Zhou,F.M.,Dani,J.A.,2009.Dopamine Distinctivenicotinicacetylcholinereceptorfunctionalphenotypesofratventral signalingdifferencesinthenucleusaccumbensanddorsalstriatumexploited tegmentalareadopaminergicneurons.J.Physiol.587,345e361. bynicotine.J.Neurosci.29,4035e4043. Zhang,L.,Dong,Y.,Doyon,W.M.,Dani,J.A.,2012.Withdrawalfromchronicnicotine Zhang,T.A.,Tang,J.,Pidoplichko,V.I.,Dani,J.A.,2010.Addictivenicotinealterslocal exposurealtersdopaminesignalingdynamicsinthenucleusaccumbens.Biol. circuitinhibitionduringtheinductionofinvivohippocampalsynapticpoten- Psychiatry71,184e191. tiation.J.Neurosci.30,6443e6453.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.