Fakultät für Chemie der Technischen Universität München Lehrstuhl für Technische Chemie I Value Stream Mapping and Discrete Event Simulation for Optimization of Chemical Production Processes David Christian Schmidtke Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzende(r): Univ.-Prof. Dr. rer. nat. Thomas Brück Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Kai-Olaf Hinrichsen 2. Univ.-Prof. Dr.-Ing. Dirk Weuster-Botz Die Dissertation wurde am 28.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 28.09.2015 angenommen. Acknowledgements Acknowledgements Over the course of compiling my dissertation, I was able to profit from the support of numerous colleagues and friends. This support involved professional as well as personal guidance, which was crucial for my work within the last years. In particular, I would like to express my gratitude to the following group of people: First of all, I would like to thank Prof. Kai-Olaf Hinrichsen for giving me the opportunity to channel my research into a dissertation. I would like to thank him for his enduring interest in my field of study and his great guidance throughout my dissertation project. I am also thankful to his entire research group, the Chair of Technical Chemistry I at the Technical University of Munich. In particular, I would like to thank Prof. Hinrichsen’s assistant, Heidi Holweck, who greatly supported me despite my status as an external PhD student. Furthermore, I am grateful to my colleagues at Clariant Produkte Deutschland GmbH, who supported me throughout my dissertation project. Especially, I want to thank Dr. Uwe Heiser, the initiator of my dissertation, who closely guided me during my work and shared numerous ideas, comments and suggestions with me, which helped shaping my thesis. I would further like to thank Maximilian Weiss, whom I could support with his Master thesis, as well as Dr. Andrea De Toni, Dr. Andreas Bentele, Andreas Rauch, Enrico Zein, PD Dr. Frank Klose, Dr. Gustav Schrenk, Markus Kerzel and Sascha Podehl for their countless fruitful discussions. I am greatly thankful to the Imagine That Inc. team, who provided me with a research grant for their Discrete Event Simulation package ExtendSim® AT. What’s more, they offered me invaluable support for the simulation approaches of my thesis. In particular, I would like to thank Bob Diamond, Cecile Damiron, Dave Krahl and Kathi Hansen. Last but definitely not least, I would like thank my parents Gabi and Joachim Schmidtke, as well as my sister Marie Schmidtke for all their help, advice and support, not only during my studies. Especially, I would like to thank my beloved Kathi. Without you, this work would not have been possible! Thanks for all of that, David I Abstract Abstract Over the past 15 years, Value Stream Mapping (VSM) has emerged as the predominant Lean implementation method within the manufacturing industry. The secret of its success is rooted in the holistic approach and, at the same, the straightforwardness which allows for engagement of all stakeholders along the value stream. These attributes of the “paper and pencil” method, however, result in limitations when applying VSM in complex production environments, as particularly found in the chemical industry. Upon closer inspection, VSM lacks the ability to adequately capture complex process routing and to account for process variability. In those environments, it further fails to prove feasibility and to reliably quantify the actual benefit of proposed future states prior to implementation of the improvement measures. In this thesis, these shortcomings are tackled through enhancement of the method with the aid of Discrete Event Simulation (DES). The outcome is a VSM approach, which is capable of predicting feasibility and benefit of proposed future states in complex chemical production environments. In addition, the applicability of DES for modelling chemical production processes is explored beyond its deployment in VSM projects. Integration of DES with Discrete Rate Simulation and continuous simulation is elaborated, in order to account for peculiarities of chemical production. The benefit of the simulation technique, which has only been applied scarcely in the chemical industry to date, is demonstrated for holistic operating cost optimization as well as debottlenecking of transient mixed batch-continuous chemical production processes. II Kurzzusammenfassung Kurzzusammenfassung In den vergangenen 15 Jahren hat sich die Wertstromanalyse als bevorzugte Lean- Implementierungsmethode der Industrie etabliert. Der Hauptgrund für die weite Verbreitung der Methode liegt in ihrer Ganzheitlichkeit und Geradlinigkeit, die es ermöglicht, alle in eine Prozesskette involvierten Personen in das Wertstromanalysen- Projekt zur Lean-Implementierung einzubinden. Diese Eigenheit der Methode, für welche keine besonderen technischen Hilfsmittel benötigt werden, führt allerdings zu Limitierungen bei deren Anwendung auf komplexe Produktionssysteme, wie sie beispielsweise häufig in der chemischen Industrie zu finden sind. Bei genauerer Betrachtung stellt man fest, dass durch die Wertstromanalyse komplexe Prozessführungen sowie Variabilität nicht abgebildet werden können. Darüber hinaus ist es während eines Wertstromanalysen-Projekts oft nicht möglich, die technische Umsetzbarkeit und den monetären Nutzen des auf dem Papier optimierten Prozesses vor der Implementierung verlässlich vorherzusagen. In der vorliegenden Arbeit wird die Methode mit Hilfe von Discrete Event Simulation (DES) so modifiziert, dass auch komplexe Produktionssysteme analysiert und die Umsetzbarkeit sowie der Nutzen eines Optimierungsvorschlags vorab bewertet werden können. Zusätzlich wird die Anwendbarkeit von DES über den Einsatz in Wertstromanalysen-Projekten hinaus zur Modellierung und Optimierung chemischer Prozesse untersucht. Hierbei wird DES mit Discrete Rate Simulation und kontinuierlichen Simulationstechniken kombiniert, um die Besonderheiten von chemischen Produktionsprozessen adäquat abbilden zu können. Der Nutzen des Simulationsansatzes, welcher bisher kaum in der chemischen Industrie Anwendung gefunden hat, wird anhand eines Projekts zur ganzheitlichen Kostenoptimierung sowie eines Projekts zur Durchsatzoptimierung, jeweils für einen instationären chemischen Prozesses bestehend aus verschiedenen kontinuierlichen und chargenweise betriebenen Verfahrensschritten, gezeigt. III Kurzzusammenfassung IV Table of Contents Table of Contents Acknowledgements .......................................................................................................... I Abstract ...........................................................................................................................II Kurzzusammenfassung ................................................................................................ III Table of Contents ............................................................................................................ V Abbreviations ............................................................................................................. VIII Symbols .......................................................................................................................... IX Tables ............................................................................................................................... X Figures .......................................................................................................................... XII 1 Introduction ............................................................................................................ 1 1.1 The evolution of production systems – from craft to Lean production .................................................................................................. 1 1.2 Goals, principles and tools of Lean production ......................................... 3 1.3 Lean production in the chemical industry .................................................. 6 1.4 Scope and structure of this thesis ............................................................... 9 2 Optimization in the chemical industry ............................................................... 10 2.1 Economical aspects of chemical production processes ........................... 10 2.2 Objectives and strategies for optimization of chemical processes........... 15 2.3 Multi-objective optimization problems.................................................... 18 2.4 Strategies for solving optimization problems .......................................... 20 3 Value Stream Mapping ........................................................................................ 23 3.1 VSM – an integral approach to Lean implementation ............................. 23 3.2 Procedure of a VSM project .................................................................... 24 3.2.1 Selection of a product family ................................................................... 24 3.2.2 Current state map ..................................................................................... 25 V Table of Contents 3.2.3 Future state map ....................................................................................... 30 3.2.4 Work plan for achieving the future state .................................................. 33 3.3 VSM in the context of optimization......................................................... 33 3.4 VSM for chemical process optimization .................................................. 36 3.4.1 Limitations ............................................................................................... 36 3.4.2 Potential adaptions ................................................................................... 39 4 Discrete Event Simulation for decision support in complex environments ........................................................................................................ 42 4.1 Introduction to DES ................................................................................. 42 4.2 Steps in a DES study ................................................................................ 44 4.3 Adaption of DES to chemical processes .................................................. 50 4.3.1 Review of DES application in the chemical industry .............................. 50 4.3.2 Introduction to DRS ................................................................................. 51 4.3.3 Integration of DRS with DES and continuous modelling ........................ 53 4.4 Review of the application of DES for enhancing VSM ........................... 55 4.5 Development of a DES enhanced VSM procedure for complex production environments ......................................................................... 56 5 Case studies ........................................................................................................... 60 5.1 Case study 1: Application of VSM in a catalytic converter production process ................................................................................... 62 5.1.1 Selection of a product family ................................................................... 63 5.1.2 Current state map ..................................................................................... 64 5.1.2.1 Process Description .................................................................................. 65 5.1.2.2 Process flow and inventory ...................................................................... 68 5.1.2.3 Analysis of the current state ..................................................................... 71 5.1.3 Future state map ....................................................................................... 74 5.1.3.1 Shop floor future state .............................................................................. 74 5.1.3.2 Supply chain future state .......................................................................... 78 5.1.4 Discussion ................................................................................................ 79 5.2 Case study 2: Application of DES enhanced VSM in a catalytic converter production process ................................................................... 81 5.2.1 Selection of a product family ................................................................... 81 5.2.2 Current state mapping .............................................................................. 82 5.2.3 Future state mapping ................................................................................ 87 5.2.4 Feasibility and trade-off analysis ............................................................. 90 5.2.4.1 DES model translation, verification and validation ................................. 90 VI Table of Contents 5.2.4.2 Feasibility analysis. .................................................................................. 91 5.2.4.3 Trade-off analysis. ................................................................................... 96 5.2.5 Discussion ................................................................................................ 98 5.3 Case study 3: Application of DES/DRS for cost efficient operation of a precipitation/filtration unit .............................................................. 101 5.3.1 Process description and problem formulation ........................................ 101 5.3.2 Model conceptualization ........................................................................ 104 5.3.3 Model translation and verification ......................................................... 106 5.3.4 Model experimentation and analysis ..................................................... 109 5.3.5 Discussion .............................................................................................. 114 5.4 Case study 4: Application of DES/DRS for debottlenecking of a complex multi-stage waste water treatment process .............................. 117 5.4.1 Process description and problem formulation ........................................ 117 5.4.2 Model conceptualization and input parameter modelling ...................... 119 5.4.3 Model translation, verification and validation ....................................... 121 5.4.4 Model experimentation and analysis ..................................................... 126 5.4.5 Discussion .............................................................................................. 131 6. Concluding summary ......................................................................................... 133 7. Abschließende Zusammenfassung .................................................................... 136 Appendix A: Supplementary data for case study 3 .................................................. 140 A.1 Process flow diagram ............................................................................. 140 A.2 Material balance ..................................................................................... 140 A.3 Process ................................................................................................... 140 A.4 Variability .............................................................................................. 142 A.5 Objective function .................................................................................. 143 Appendix B: Supplementary data for case study 4 .................................................. 144 B.1 Process flow diagram ............................................................................. 144 B.2 Process and variability ........................................................................... 145 B.3 Material balance recalculation algorithm for simulation model ............ 150 References..................................................................................................................... 153 Curriculum Vitae – David Schmidtke ....................................................................... 161 VII Abbreviations Abbreviations DES Discrete Event Simulation DOE Design Of Experiments DRS Discrete Rate Simulation ES Evolutionary Strategies FIFO First In First Out I Inventory IID independent and identically distributed JIT Just In Time pc Piece PGM Platinum Group Metals SCM Supply Chain Management SCR Selective Catalytic Reduction SME Subject Matter Expert (process expert, who provides input data for a Discrete Event Simulation model) SMED Single-Minute Exchange of Die TPM Total Productive Maintenance TPS Toyota Production System VSM Value Stream Mapping VIII
Description: