ebook img

Doing physics with quaternions PDF

110 Pages·1998·0.597 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Doing physics with quaternions

Contents 1 UnifyingTwoViewsofEvents 2 2 ABriefHistoryofQuaternions 3 I Mathematics 4 3 MultiplyingQuaternionstheEasyWay 5 4 Scalars,Vectors,TensorsandAllThat 6 5 InnerandOuterProductsofQuaternions 10 6 QuaternionAnalysis 12 7 TopologicalPropertiesofQuaternions 19 II ClassicalMechanics 23 8 Newton’sSecondLaw 24 9 OscillatorsandWaves 26 10 FourTestsforaConservativeForce 28 III SpecialRelativity 30 11 RotationsandDilationsCreatetheLorentzGroup 31 12 AnAlternativeAlgebraforLorentzBoosts 33 IV Electromagnetism 36 13 ClassicalElectrodynamics 37 14 Electromagneticfieldgauges 40 15 TheMaxwellEquationsintheLightGauge: QED? 42 i 16 TheLorentzForce 45 17 TheStressTensoroftheElectromagneticField 46 V QuantumMechanics 48 18 ACompleteInnerProductSpacewithDirac’sBracketNotation 49 19 MultiplyingQuaternionsinPolarCoordinateForm 53 20 CommutatorsandtheUncertaintyPrinciple 55 21 UnifyingtheRepresentationofSpinandAngularMomentum 58 22 DerivingAQuaternionAnalogtotheSchro¨dingerEquation 62 23 IntroductiontoRelativisticQuantumMechanics 65 24 TimeReversalTransformationsforIntervals 67 VI Gravity 68 25 Einstein’svisionI:ClassicalunifiedfieldequationsforgravityandelectromagnetismusingRiemannian quaternions 69 26 Einstein’svisionII:Aunifiedforceequationwithconstantvelocityprofilesolutions 78 27 StringsandQuantumGravity 82 28 AnsweringPrimaFacieQuestionsinQuantumGravityUsingQuaternions 85 29 LengthinCurvedSpacetime 91 30 ANewIdeaforMetrics 93 31 TheGravitationalRedshift 95 VII Conclusions 97 32 Summary 98 ii Doing Physics with Quaternions DouglasB.Sweetser http://quaternions.com 1 UNIFYINGTWOVIEWSOFEVENTS 2 1 Unifying Two Views of Events An experimentalist collects events about a physical system. A theorists builds a model to describe what patterns of eventswithinasystemmightgeneratetheexperimentalist’sdataset. Withhardworkandluck,thetwowillagree! Events are handled mathematically as 4-vectors. They can be added or subtracted from another, or multiplied by a scalar. Nothing else can be done. A theorist can import very powerful tools to generate patterns, like metrics and grouptheory.Theoristsinphysicshavebeenabletoconstructthemostaccuratemodelsofnatureinallofscience. I hope to bring the full power of mathematics down to the level of the events themselves. This may be done by representingeventsasthemathematicalfieldofquaternions.Allthestandardtoolsforcreatingmathematicalpatterns - multiplication, trigonometric functions, transcendental functions, infinite series, the special functions of physics - shouldbeavailableforquaternions.Nowatheoristcancreatepatternsofeventswithevents.Thismayleadtoabetter unificationbetweentheworkofatheoristandtheworkofanexperimentalist. AnOverviewofDoingPhysicswithQuaternions It has been said that one reason physics succeeds is because all the terms in an equation are tensors of the same rank. This work challenges that assumption, proposing instead an integrated set of equations which are all based on the same 4-dimensional mathematical field of quaternions. Mostly this document shows in cookbook style how quaternionequationsareequivalenttoapproachesalreadyinuse. AsFeynmanpointedout,”whateverweareallowed toimagineinsciencemustbeconsistentwitheverythingelseweknow.”Freshperspectivesarisebecause,inessence, tensorsofdifferentrankcanmixwithinthesameequation.ThefourMaxwellequationsbecomeonenonhomogeneous quaternionwave equation, and the Klein-Gordon equation is partof a quaternionsimple harmonic oscillator. There is hope of integrating general relativity with the rest of physics because the affine parameter naturally arises when thinking about lengths of intervals where the origin moves. Since all of the tools used are woven from the same mathematicalfabric,theinterrelationshipsbecomemorecleartomyeye. Hopeyouenjoy. 2 ABRIEFHISTORYOFQUATERNIONS 3 2 A Brief History of Quaternions Complex numbers were a hot subject for research in the early eighteen hundreds. An obvious question was that if aruleformultiplyingtwonumbers togetherwasknown,whataboutmultiplyingthreenumbers? Foroveradecade, thissimplequestionhadbotheredHamilton,thebigmathematicianofhisday.Thepressuretofindasolutionwasnot merelyfromwithin. Hamiltonwrotetohisson: ”Everymorningintheearlypartoftheabove-citedmonth[Oct. 1843]onmycomingdowntobreakfast,yourbrother WilliamEdwinandyourselfusedtoaskme,’Well,Papa,canyoumultiplytriplets?’ WheretoIwasalwaysobligedto reply,withasadshakeofthehead,’No,Icanonlyaddandsubtractthem.’” WecanguesshowHollywoodwouldhandletheBroughamBridgesceneinDublin. StrollingalongtheRoyalCanal withMrs. H-,herealizesthesolutiontotheproblem,jotsitdowninanotebook. Soexcited,hetookoutaknifeand carvedtheanswerinthestoneofthebridge. Hamilton had found a long sought-after solution, but it was weird, very weird, it was 4D. One of the first things Hamiltondidwasgetridofthefourthdimension,settingitequaltozero,andcallingtheresulta”properquaternion.” Hespenttherestofhislifetryingtofindauseforquaternions.Bytheendofthenineteenthcentury,quaternionswere viewedasanoversoldnovelty. Intheearlyyearsofthiscentury,Prof. GibbsofYalefoundauseforproperquaternionsbyreducingtheextrafluid surroundingHamilton’sworkandaddingkeyingredientsfromRodriguesconcerningtheapplicationtotherotationof spheres. Heendedupwiththevectordotproductandcrossproductweknowtoday.Thiswasausefulandpotentbrew. Ourinvestmentinvectorsisenormous,eclipsingtheirplaceofbirth(Harvardhad>1000referencesunder”vector”, about20under”quaternions”,mostofthosewrittenbeforetheturnofthecentury). In the early years of this century, Albert Einstein found a use for four dimensions. In order to make the speed of lightconstantforallinertialobservers,spaceandtimehadtobeunited. Herewasatopictailor-madefora4Dtool, but Albert was not a math buff, and built a machine that workedfrom locally available parts. We can say now that Einstein discovered Minkowski spacetime and the Lorentz transformation, the tools required to solve problems in specialrelativity. Today, quaternions are of interest to historians of mathematics. Vector analysis performs the daily mathematical routinethatcouldalsobedonewithquaternions. Ipersonallythinkthattheremaybe4Droadsinphysicsthatcanbe efficientlytraveledonlybyquaternions,andthatisthepathwhichislaidoutinthesewebpages. 4 Part I Mathematics 3 MULTIPLYINGQUATERNIONSTHEEASYWAY 5 3 Multiplying Quaternions the Easy Way (cid:0) (cid:0) Multiplyingtwocomplexnumbersa bIandc dIisstraightforward. (cid:1) (cid:1) (cid:1) a,b(cid:2) c,d(cid:2)(cid:4)(cid:3) ac (cid:5) bd, ad (cid:6) bc(cid:2) (cid:0) (cid:0) For two quaternions, b I and d I become the 3-vectors B and D, where B (cid:7) x I y J z K and similarly for D. Multiplicationofquaternionsislikecomplexnumbers,butwiththeadditionofthecrossproduct. (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) a,B c,D (cid:3) ac (cid:5) B.D, aD (cid:6) Bc (cid:6) BxD Notethatthelastterm,thecrossproduct,wouldchangeitssigniftheorderofmultiplicationwerereversed(unlikeall theotherterms). Thatiswhyquaternionsingeneraldonotcommute. (cid:0) (cid:0) If a is the operator d/dt, and B is the del operator, or d/dx I d/dy J d/dz K (all partial derivatives), then these operatorsactonthescalarfunctioncandthe3-vectorfunctionDinthefollowingmanner: d (cid:9)(cid:8) (cid:8) (cid:10)(cid:11)(cid:11)(cid:11)(cid:11) dc (cid:9)(cid:8) (cid:8) d(cid:8)D (cid:9)(cid:8) (cid:9)(cid:8) (cid:8) (cid:13)(cid:14)(cid:14)(cid:14)(cid:14) dt, c,D (cid:3) (cid:12) dt (cid:5) .D, dt (cid:6) c(cid:6) xD(cid:15) Thisonequaternioncontainsthetimederivativesofthescalarand3-vectorfunctions,alongwiththedivergence,the gradientandthecurl. Densenotation:-) 4 SCALARS,VECTORS,TENSORSANDALLTHAT 6 4 Scalars, Vectors, Tensors and All That Accordingtomymathdictionary,atensoris... ”Anabstractobjecthavingadefinitelyspecifiedsystemofcomponentsineverycoordinatesystemunderconsideration and such that, under transformation of coordinates, the components of the object undergoes a transformation of a certainnature.” To make this introduction less abstract, I will confine the discussion to the simplest tensors under rotational trans- formations. A rank-0 tensor isknownasa scalar. It doesnotchangeat allundera rotation. It contains exactlyone number,nevermoreorless. Thereisazeroindexforascalar. Arank-1tensorisavector.Avectordoeschangeunder rotation. Vectorshaveoneindexwhichcanrunfrom1tothenumberofdimensionsofthefield,sothereisnowayto knowapriorihowmanynumbers(oroperators,or...) areinavector. n-ranktensorshavenindices. Thenumberof numbersneededisthenumberofdimensionsinthevectorspaceraisedbytherank. Symmetrycanoftensimplifythe numberofnumbersactuallyneededtodescribeatensor. There are a variety of important spin-offsof a standard vector. Dual vectors, when multiplied by its corresponding vector, generate a real number, by systematically multiplying each component from the dual vector and the vector togetherandsummingthetotal. Ifthespaceavectorlivesinisshrunk,acontravariantvectorshrinks,butacovariant vectorgetslarger. Atangentvectoris,well,tangenttoavectorfunction. Physics equations involvetensors of the same rank. There are scalar equations, polar vector equations, axial vector equations,andequationsforhigherranktensors.Sincethesameranktensorsareonbothsides,theidentityispreserved underarotationaltransformation. Onecoulddecidetoarbitrarilycombinetensorequationsofdifferentrank,andthey wouldstillbevalidunderthetransformation. There are ways to switch ranks. If there are two vectors and one wants a result that is a scalar, that requires the interventionofametrictobrokerthetransaction. Thisprocessinknownasaninnertensorproductoracontraction. The vectorsin question must have the same number of dimensions. The metric defines how to form a scalar as the indicesareexaminedone-by-one. Metricsinmathcanbeanything,butnatureimposesconstraintsonwhichonesare importantinphysics. Anaside: mathematiciansrequirethedistanceisnon-negative,butphysicistsdonot. Iwillbe usingthephysicsnotionofametric. Inlookingateventsinspacetime(a4-dimensionalvector),theaxiomsofspecial relativityrequiretheMinkowskimetric,whichisa4x4realmatrixwhichhasdownthediagonal1,-1,-1,-1andzeros elsewhere. Somepeoplepreferthesignstobeflipped,buttobeconsistentwitheverythingelseonthissite,Ichoose thisconvention. AnotherpopularchoiceistheEuclideanmetric, whichisthesameasanidentitymatrix. Theresult ofgeneralrelativityforasphericallysymmetric,non-rotatingmassistheSchwarzschildmetric,whichhas”non-one” termsdownthediagonal,zeroselsewhere,andbecomestheMinkowskimetricinthelimitofthemassgoingtozero ortheradiusgoingtoinfinity. Anoutertensor productisawaytoincrease therankoftensors. Thetensorproductoftwovectorswillbea2-rank tensor. Avectorcanbeviewedasthetensorproductofasetofbasisvectors. WhatAreQuaternions? Quaternions could be viewed as the outer tensor product of a scalar and a 3-vector. Under rotation for an event in spacetimerepresentedbyaquaternion,timeisunchanged,butthe3-vectorforspacewouldberotated. Thetreatment ofscalarsisthesameasabove,butthenotionofvectorsisfarmorerestrictive,asrestrictiveasthenotionofscalars. Quaternions can only handle 3-vectors. To those familiar to playing with higher dimensions, this may appear too restrictivetobeofinterest. Yetphysicsonboththequantumandcosmologicalscalesisconfinedto3-spatialdimen- sions. NotethattheinfiniteHilbertspacesinquantummechanicsafunctionoftheprinciplequantumnumbern,not thespatialdimensions. Aninfinitecollectionofquaternionsoftheform(En,Pn)couldrepresentaquantumstate. The HilbertspaceisformedusingtheEuclideanproduct(q*q’). 4 SCALARS,VECTORS,TENSORSANDALLTHAT 7 (cid:0) Adualquaternionisformedbytakingtheconjugate,becauseq*q (cid:7) (tˆ2 X.X,0). Atangentquaternioniscreated byhavinganoperatoractonaquaternion-valuedfunction (cid:16) (cid:9)(cid:8) (cid:1) (cid:1) (cid:8) (cid:1) (cid:10)(cid:11)(cid:11)(cid:11)(cid:11) (cid:16) f (cid:9)(cid:8) (cid:8) (cid:16) (cid:8)F (cid:9)(cid:8) (cid:9)(cid:8) (cid:8) (cid:13)(cid:14)(cid:14)(cid:14)(cid:14) (cid:16) t, f q(cid:2) ,F q(cid:2)(cid:17)(cid:2)(cid:18)(cid:3) (cid:12) (cid:16) t (cid:5) .F, (cid:16) t (cid:6) f(cid:6) XF(cid:15) Whatwouldhappentothesefivetermsifspacewereshrunk?The3-vectorFwouldgetshrunk,aswouldthedivisorsin theDeloperator,makingfunctionsactedonbyDelgetlarger.Thescalartermsarecompletelyunaffectedbyshrinking space, because df/dthas nothingto shrink, and theDel and Fcanceleachother. Thetime derivativeofthe 3-vector isacontravariantvector,becauseFwouldgetsmaller. Thegradientofthescalarfieldisa covariantvector,because ofthe work oftheDel operator in thedivisormakesitlarger. The curlat firstglance might appearasa draw,but it isacovariantvectorcapacitybecauseoftheright-anglenatureofthecrossproduct. Notethatiftimewheretoshrink exactlyasmuchasspace,nothinginthetangentquaternionwouldchange. Aquaternionequationmustgeneratethesamecollectionoftensorsonbothsides. Considertheproductoftwoevents, qandq’: (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) t,X t(cid:19) ,X(cid:19) (cid:3) tt(cid:19)(cid:20)(cid:5) X.X(cid:19) , tX(cid:19) (cid:6) Xt(cid:19)(cid:21)(cid:6) XxX(cid:19) (cid:8) (cid:8) scalars (cid:22) t, t(cid:19) , tt(cid:19) (cid:5) X.X(cid:19) (cid:8) (cid:8) (cid:8) (cid:8) polarvectors (cid:22) X, X(cid:19) , tX(cid:19) (cid:6) Xt(cid:19) (cid:8) (cid:8) axialvectors (cid:22) XxX(cid:19) Whereistheaxialvectorforthelefthandside? Itisimbeddedinthemultiplicationoperation,honest:-) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) t(cid:19) ,X(cid:19) t,X (cid:3) t(cid:19) t (cid:5) X(cid:19) .X, t(cid:19) X (cid:6) X(cid:19) t(cid:6) X(cid:19) xX (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:3) tt(cid:19)(cid:23)(cid:5) X.X(cid:19) , tX(cid:19) (cid:6) Xt(cid:19)(cid:21)(cid:5) XxX(cid:19) Theaxialvectoristheonethatflipssignsiftheorderisreversed. Termscancontinuetogetmorecomplicated.Inaquaterniontripleproduct,therewillbetermsoftheform(XxX’).X”. Thisiscalledapseudo-scalar,becauseitdoesnotchangeunderarotation,butitwillchangesignsunderareflection, due to the cross product. Youcan convinceyourself of this by noting that the cross product involvesthe sine of an angleandthedotproductinvolvesthecosineofanangle. Neitherofthesewillchangeunderarotation,andaneven functiontimesanoddfunctionisodd.Iftheorderofquaterniontripleproductischanged,thisscalarwillchangesigns forateachstepinthepermutation. Ithasbeenmyexperiencethatanytensorinphysicscanbeexpressedusingquaternions. Sometimesittakesabitof effort,butitcanbedone. Individualpartscanbeisolatedifonechooses. Combinationsofconjugationoperatorswhichflipthesignofavector, andsymmetricandantisymmetricproductscanisolateanyparticularterm. Hereareallthetermsoftheexamplefrom above (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) t,X t(cid:19) ,X(cid:19) (cid:3) tt(cid:19) (cid:5) X.X(cid:19) , tX(cid:19) (cid:6) Xt(cid:19) (cid:6) XxX(cid:19) (cid:8) (cid:8) (cid:1) q(cid:6) q(cid:24) q(cid:19) (cid:6) q(cid:19) (cid:24) qq(cid:19) (cid:6) qq(cid:19) (cid:2)(cid:25)(cid:24) scalars (cid:22) t(cid:3) , t(cid:19) (cid:3) ,tt(cid:19) (cid:5) X.X(cid:19) (cid:3) 2 2 2 (cid:8) (cid:8) q(cid:5) q(cid:24) q(cid:19) (cid:5) q(cid:19) (cid:24) polarvectors (cid:22) X (cid:3) , X(cid:19) (cid:3) , 2 2 (cid:8) (cid:8) (cid:1) (cid:1) (cid:1) (cid:1) qq(cid:19) (cid:6) q(cid:19) q(cid:2)(cid:17)(cid:2)(cid:26)(cid:5) qq(cid:19) (cid:6) q(cid:19) q(cid:2)(cid:17)(cid:2) (cid:24) tX(cid:19) (cid:6) Xt(cid:19) (cid:3) 4 (cid:8) (cid:8) (cid:1) qq(cid:19) (cid:5) q(cid:19) q(cid:2) axialvectors (cid:22) XxX(cid:19) (cid:3) 2 ThemetricforquaternionsisimbeddedinHamilton’sruleforthefield. 4 SCALARS,VECTORS,TENSORSANDALLTHAT 8 (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) (cid:8) 2 2 2 i (cid:3) j (cid:3) k (cid:3) ijk (cid:3)(cid:4)(cid:5) 1 Thislookslikeawaytogeneratescalarsfromvectors,butitismorethanthat. Italsosaysimplicitlythatij(cid:7) k,jk(cid:7) i,andi,j,kmusthaveinverses.Thisisanimportantobservation,becauseitmeansthatinnerandoutertensorproducts canoccur inthesame operation. Whentwo quaternionsaremultiplied together,a newscalar (innertensor product) andvector(outertensorproduct)areformed. Howcanthemetricbegeneralizedforarbitrarytransformations? Thetraditionalapproachwouldinvolveplayingwith Hamilton’srulesforthefield. Ithinkthatwouldbeamistake, sincethatruleinvolvesthefundamentaldefinitionof a quaternion. Change the rule of what a quaternion is in one context and it will not be possible to compare it to a quaternioninanothercontext.Instead,consideranarbitrarytransformationTwhichtakesqintoq’ q (cid:27) q(cid:19) (cid:3) Tq Tisalsoaquaternion,infactitisequaltoq’qˆ-1.Thisisguaranteedtoworklocally,withinneighborhoodsofqandq’. Thereisnopromisethatitwillworkglobally,thatoneTwillworkforanyq.Undercertaincircumstances,Twillwork foranyq.TheimportantthingtoknowisthatatransformationTnecessarilyexistsbecausequaternionsareafield.The twomostimportanttheoriesinphysics, generalrelativityandthestandardmodel,involvelocaltransformations(but thetechnicaldefinitionoflocaltransformationisdifferentthantheideapresentedherebecauseitinvolvesgroups). ThisquaterniondefinitionofatransformationcreatesaninterestingrelationshipbetweentheMinkowskiandEuclidean metrics. LetT (cid:3) I, theidentitymatrix (cid:1) (cid:8) (cid:8) IqIq (cid:6) IqIq(cid:2)(cid:25)(cid:24) (cid:3) t2(cid:5) X.X, 0 2 (cid:8) (cid:8) (cid:1) Iq(cid:2) (cid:24) Iq (cid:3) t2(cid:6) X.X, 0 Inordertochangefromwristwatchtime(theintervalinspacetime)tothenormofaHilbertspacedoesnotrequireany changeinthetransformationquaternion, onlyachangeinthemultiplicationstep. Thereforeatransformationwhich generatestheSchwarzschildintervalofgeneralrelativityshouldbeeasilyportabletoaHilbertspace,andthatmight bethestartofaquantumtheoryofgravity. SoWhatIsthe Difference? Ithinkitissubtlebutsignificant. ItgoesbacktosomethingIlearnedinagraduatelevelclassonthefoundationsof calculus. Tomakecalculusrigorousrequiresthatitisdefinedoveramathematicalfield. Physicistsdothisbesaying thatthescalars,vectorsandtensorstheyworkwitharedefinedoverthefieldofrealorcomplexnumbers. What arethenumbers usedbynature? There areevents,which consistofthe scalartime andthe 3-vectorofspace. There is mass, which is defined by the scalar energy and the 3-vector of momentum. There is the electromagnetic potential,whichhasascalarfieldphianda3-vectorpotentialA. Todocalculuswithonly informationcontained ineventsrequiresthata scalarand a3-vectorforma field. Accord- ing to a theorem by Frobenius on finite dimensional fields, the only fields that fit are isomorphic to the quaternions (isomorphicisasophisticatednotionofequality,whosesubtletiesareappreciatedonlybypeoplewithadeepunder- standingofmathematics).Todocalculuswithamassoranelectromagneticpotentialhasanidenticalrequirementand anidenticalsolution. Thisisthelogicalfoundationfordoingphysicswithquaternions. Canphysicsbedonewithoutquaternions? Ofcourseitcan! Eventscanbedefinedoverthefieldofrealnumbers,and thentheMinkowskimetricandtheLorentzgroupcanbedeployedtogeteveryresulteverconfirmedbyexperiment. QuantummechanicscanbedefinedusingaHilbertspacedefinedoverthefieldofcomplexnumbersandreturnwith everyresultmeasuredtodate.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.