ebook img

doe handbook airborne release fractions/rates and respirable fractions for nonreactor nuclear ... PDF

612 Pages·2017·6.19 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview doe handbook airborne release fractions/rates and respirable fractions for nonreactor nuclear ...

TS NOT MEASUREMENT SENSITIVE DOE-HDBK-3010-94 December 1994 DOE HANDBOOK AIRBORNE RELEASE FRACTIONS/RATES AND RESPIRABLE FRACTIONS FOR NONREACTOR NUCLEAR FACILITIES Volume I - Analysis of Experimental Data U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95004712 DOE-HDBK-3010-94 FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by the DOE and its contractors as an information source. 2. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may be of use in improving this document should be addressed to: Director, Office of Engineering, Operations, Security and Transition Support (DP-31, GTN), U.S. Department of Energy, Washington, D.C., 20585. 3. The issue of airborne releases of radioactive material from nonreactor nuclear facilities has been a subject of investigation for almost four decades, during which time a large number of individuals have contributed to the current knowledge base. Beginning in the 1960’s, a number of experiments were conducted in the United States and other countries to develop actual data on release potentials. In the late 1970s, the United States Nuclear Regulatory Commission (NRC) sponsored a research program to develop improved methods for realistically evaluating the consequences of major accidents in nuclear fuel cycle facilities. This program culminated in the development of NUREG-1320 (5/88), "Nuclear Fuel Cycle Facility Accident Analysis Handbook." The U.S. DOE began placing an increased emphasis on environmental, health, and safety issues in the mid- to late-1980s. In response to these efforts, the DOE Office of Defense Programs (DP) sponsored the Defense Programs Safety Survey (11/93). One of the objectives of this study was to build upon previous work to "develop consistent data and methodologies for making conservative estimates of basic consequence derivation parameters." As part of this effort, experimental data for airborne release fractions and respirable fractions were summarized and evaluated to estimate reasonably bounding values for physical stresses associated with the experiments. The unique and valuable nature of that compilation has been judged to merit further development as a handbook that can be directly used by technical analysts. 4. This handbook contains (1) a systematic compilation of airborne release and respirable fraction experimental data for nonreactor nuclear facilities, (2) assessments of the data, and (3) values derived from assessing the data that may be used in safety analyses when the data are applicable. To assist in consistent and effective use of this information, the handbook provides: Identification of a consequence determination methodology in which the information can be used; Page i DOE-HDBK-3010-94 Discussion of the applicability of the information and its general technical limits; Identification of specific accident phenomena of interest for which the information is applicable; Examples of use of the consequence determination methodology and airborne release and respirable fraction information. It is acknowledged that the data examined in this handbook is limited to that available during the preparation process. Other data may exist or be developed, and individuals are invited to submit such material for consideration for any future revisions. Page ii DOE-HDBK-3010-94 ACKNOWLEDGEMENTS This Department of Energy Handbook was prepared by Mr. Jofu Mishima and Mr. David Pinkston of SAIC under the technical direction of Mr. Dae Chung, DOE Office of Defense Programs. No one group of individuals, however, can appropriately take sole credit or responsibility for an undertaking of this magnitude. The preparers would like to gratefully acknowledge the specific authors whose works are referenced in this document and analysts, operators, scientists, and managers throughout the Department of Energy weapons complex and NRC fuel cycle licensee process who have labored for decades to define a context in which this information is meaningful. This broad thanks extends likewise to the large number of individuals who have provided comments on the handbook. Additional individuals involved in the development and refinement of this document merit special mention. Mr. Roger Blond of SAIC was the initiator of this effort under the sponsorship of Mr. Jeff Woody and Mr. Gerald Gears, DOE-DP. The task of editing and word processing this document was performed by William Benton, Collise Bohney, Sandra Marks, Carla Merrill, Elizabeth Owczarski, and Dawn Standley. Beyond the formal comment process used for documents of this type, the following individuals provided valuable technical insights and/or specific reviews of this document in its various stages of development: Dr. Chris Amos, SAIC Mr. John Joyce, WHC Ms. Marcel Ballinger, PNL Mr. Randy Kircher, H&R Tech. Assoc. Dr. Sanford Bloom, MMES-OR Dr. Bob Luna, SNL Dr. Bruce Boughton, SNL Ms. Lenna Mahonney, PNL Dr. Sandra Brereton, LLNL Mr. Bob Marusich, PNL Dr. Donald Chung, Scientech Dr. Louis Muhlenstein, WHC Mr. Chris Everett, SAIC Dr. Louis Restrepo, SNL Dr. Roland Felt, WINCO Mr. Fred Stetson, SAIC Mr. Terri Foppe, EG&G-Rocky Flats Dr. Doug Stevens, LLNL Mr. Abel Garcia, LLNL Mr. Ray Sullivan, SAIC Dr. Norman Grandjean, SNL Ms. Wendy Ting, SAIC Dr. John Haschke, LANL Mr. John Van Kieren, WHC Mr. Hans Jordan, EG&G-Rocky Flats Dr. David Wilson, WSRC One additional special effort merits final mention. In precursor efforts to this document, the DOE Office of Nuclear Safety provided the services of a review panel organized and directed by Dr. Vinod Mubayi, BNL, whose members were Dr. Brian Bowsher, AEA Tech. UK, Dr. Bob Einzinger, PNL, Dr. Jim Gieseke, BCL, and Dr. Dana Powers, SNL. This group reviewed draft versions of this document as well. Page iii DOE-HDBK-3010-94 Page iv DOE-HDBK-3010-94 TABLE OF CONTENTS VOLUME 1: MAIN TEXT List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 1.0 INTRODUCTION 1.1 Purpose of Handbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.2 Source Term Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.3 Applicability of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.4 Accident Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 1.5 Handbook Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 2.0 MATERIALS IN THE GASEOUS STATE 2.1 Noncondensible Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1.1 Summary of Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Vapors (Condensible Gases) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2.1 Summary of Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 3.0 LIQUIDS 3.1 Summary of Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Aqueous Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 3.2.1 Thermal Stress: Evaporation and Boiling . . . . . . . . . . . . . . . . . 3-7 3.2.1.1 Heating Of Shallow Pools . . . . . . . . . . . . . . . . . . . . . 3-10 3.2.1.2 Heating of Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 3.2.1.3 Additional Evaporation and Bubbling Release Studies . . 3-15 3.2.2 Explosive Stress: Shock, Blast, and Venting . . . . . . . . . . . . . . 3-18 3.2.2.1 Shock Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 3.2.2.2 Blast Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.2.2.3 Venting of Pressurized Liquids . . . . . . . . . . . . . . . . . 3-19 3.2.2.3.1 Venting Below the Liquid Level . . . . . . . . 3-20 3.2.2.3.2 Venting Above the Liquid Level or Overall Containment Failure . . . . . . . . . . . . . . . . . 3-22 3.2.2.3.3 Flashing Spray . . . . . . . . . . . . . . . . . . . . 3-26 3.2.3 Free-Fall Spill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 Page v DOE-HDBK-3010-94 3.2.3.1 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 3.2.3.2 Slurries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35 3.2.3.3 Viscous Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36 3.2.4 Aerodynamic Entrainment and Resuspension . . . . . . . . . . . . . . 3-37 3.2.4.1 Spray Release From Large Outdoor Pond . . . . . . . . . . 3-37 3.2.4.2 Suspension of Liquids From Shallow Pools of Concentrated Heavy Metal Solutions on Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40 3.2.4.3 Estimate of the Resuspension of Liquids From Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40 3.2.4.4 Suspension From Soil at Higher Windspeeds . . . . . . . . 3-41 3.2.4.5 Bounding Assessments . . . . . . . . . . . . . . . . . . . . . . . 3-41 3.3 Organic, Combustible Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42 3.3.1 Burning of Small Volume/Surface Area 30% TBP-Kerosine Solutions, No Vigorous Boiloff . . . . . . . . . . . . . . . . . . . . . . . 3-43 3.3.2 Pool Fires of 30% TBP-Kerosine . . . . . . . . . . . . . . . . . . . . . . 3-44 3.3.3 Combustion of TBP-Kerosine Solutions Over Pools of Acid, Vigorous Boiloff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44 3.3.4 Airborne Release of Uranium During the Burning of Process Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46 3.3.5 Airborne Release During Combustion of TBP-Kerosine . . . . . . . 3-46 3.3.6 UNH and Air-Dried UNH on Various Surfaces During a Shallow Pool Gasoline Fire . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.3.7 Thermal Stress Bounding Recommendations . . . . . . . . . . . . . . . 3-49 4.0 SOLIDS 4.1 Summary of Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.2 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 4.2.1 Thermal Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 4.2.1.1 Plutonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 44.2.1.1.1 Room Temperature Oxidation/Corrosion . . . 4-12 4.2.1.1.2 Oxidation at Elevated Temperatures Below Ignition Temperature . . . . . . . . . . . . . . . . 4-19 4.2.1.1.3 Self-sustained Oxidation Above the Ignition Temperature . . . . . . . . . . . . . . . . . . . . . . 4-21 44.2.1.1.4 Disturbed Molten Metal Surface With High Turbulence . . . . . . . . . . . . . . . . . . . . . . . 4-25 4.2.1.1.5 Small Molten Metal Drops Hurled Through Air or Explosion of Entire Metal Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31 4.2.1.2 Uranium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33 Page vi DOE-HDBK-3010-94 4.2.1.2.1 Oxidation at Elevated Temperatures . . . . . . 4-37 4.2.1.2.2 Disturbed Molten Metal Surface With High Turbulence . . . . . . . . . . . . . . . . . . . . . . . 4-42 4.2.1.2.3 Small Molten Metal Drops Hurled Through Air or Explosion of Entire Metal Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44 4.2.2 Explosive Stress: Shock, Blast, and Venting . . . . . . . . . . . . . . 4-44 4.2.2.1 Shock Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45 4.2.2.2 Blast Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45 4.2.2.3 Venting of Pressurized Gases Over Metals . . . . . . . . . 4-45 4.2.3 Free-Fall Spill and Impaction Stress . . . . . . . . . . . . . . . . . . . . 4-45 4.2.4 Aerodynamic Entrainment and Resuspension . . . . . . . . . . . . . . 4-46 4.3 Nonmetallic or Composite Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46 4.3.1 Thermal Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46 4.3.1.1 Vitrified Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-47 4.3.1.2 Aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48 4.3.1.3 Encased Nuclear Material . . . . . . . . . . . . . . . . . . . . . 4-48 44.3.1.3.1 Spent Nuclear Fuel . . . . . . . . . . . . . . . . . 4-48 4.3.1.3.2 Metal Targets . . . . . . . . . . . . . . . . . . . . . 4-50 4.3.1.3.3 Metal Alloy and Cermet Targets . . . . . . . . 4-50 4.3.2 Explosive Stress: Shock, Blast, and Venting . . . . . . . . . . . . . . 4-51 4.3.2.1 Shock Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51 4.3.2.2 Blast Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51 4.3.2.3 Venting of Pressurized Gases Over Solids . . . . . . . . . . 4-52 4.3.3 Free-Fall Spill and Impaction Stress . . . . . . . . . . . . . . . . . . . . 4-52 4.3.4 Aerodynamic Entrainment and Resuspension . . . . . . . . . . . . . . 4-52 4.4 Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55 4.4.1 Thermal Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55 4.4.1.1 Chemically Nonreactive Compounds . . . . . . . . . . . . . . 4-56 4.4.1.2 Chemically Reactive Compounds . . . . . . . . . . . . . . . 4-57 4.4.2 Explosive Stress: Shock, Blast, and Venting . . . . . . . . . . . . . . 4-61 4.4.2.1 Shock Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61 4.4.2.2 Blast Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63 44.4.2.2.1 Unshielded Blast Effects From Detonations and Large Volume, Confined Deflagrations . . . . . . . . . . . . . . . . . . . . . . 4-63 4.4.2.2.2 Shielded Blast Effects From Detonations and Large Volume, Confined Deflagrations . . . . . . . . . . . . . . . . . . . . . . 4-65 4.4.2.3 Venting of Pressurized Powder . . . . . . . . . . . . . . . . . 4-69 Page vii DOE-HDBK-3010-94 44.4.2.3.1 Venting of Pressurized Powders or Pressurized Gases Through a Powder, Pressure > 0.17 MPa . . . . . . . . . . . . . . . . 4-70 g 44.4.2.3.2 Venting of Pressurized Powders or Pressurized Gases Through a Powders, Pressure < 0.17 MPa . . . . . . . . . . . . . . . . 4-73 g 4.4.3 Free-Fall Spill and Impaction Stress . . . . . . . . . . . . . . . . . . . . 4-74 4.4.3.1 Free-Fall Spill of Powder with Air Velocity Normal to the Direction of Fall . . . . . . . . . . . . . . . . . . . . . . . . . 4-74 44.4.3.1.1 Factors That Affect Dust Generation . . . . . 4-74 4.4.3.1.2 Free-Fall Spill Experiments . . . . . . . . . . . . 4-77 4.4.3.1.3 Free-Fall Spill of Powder Model . . . . . . . . 4-81 4.4.3.2 Free-Fall Spill with Enhanced Velocity Effects Normal to the Direction of Fall . . . . . . . . . . . . . . . . . 4-82 4.4.3.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-83 44.4.3.3.1 Vibration Shock . . . . . . . . . . . . . . . . . . . . 4-84 44.4.3.3.2 Large Falling Object Impact or Induced Air Turbulence . . . . . . . . . . . . . . . . . . . . 4-85 4.4.4 Aerodynamic Entrainment and Resuspension . . . . . . . . . . . . . . 4-88 4.4.4.1 Entrainment From the Surface of a Homogenous Powder Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-88 44.4.4.1.1 Review Of Literature on Resuspension Phenomena, Factors, and Rates . . . . . . . . . 4-88 4.4.4.1.2 Experimentally Measured Resuspension Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-96 4.4.4.2 Suspension of Material by Vehicular Traffic . . . . . . . . 4-101 5.0 SURFACE CONTAMINATION 5.1 Summary of Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.2 Contaminated, Combustible Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 5.2.1 Thermal Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 5.2.1.1 Packaged Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 5.2.1.2 Uncontained, Cellulosic Waste or Largely Cellulosic Mixed Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 5.2.1.3 Dispersed Ash Dropped into Airstream or Exposed to Forced Draft Air . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 5.2.1.4 Uncontained Plastics/Elastomers . . . . . . . . . . . . . . . . 5-16 5.2.1.4.1 Polychloropene (Elastomer, Rubber) . . . . . . 5-17 5.2.1.4.2 Polymethylmethacrylate (Lucite/Perspex, Windows) . . . . . . . . . . . . . . . . . . . . . . . . 5-17 Page viii

Description:
The issue of airborne releases of radioactive material from nonreactor nuclear facilities with recovered uranium from the PUREX (plutonium uranium extraction, a liquid-liquid extraction) process for reprocessing spent nuclear fuel or irradiated product targets. Page xx .. In domino fashion, this.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.