ebook img

DNA Metabarcoding of Amazonian Ichthyoplankton Swarms PDF

15 Pages·2017·1.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DNA Metabarcoding of Amazonian Ichthyoplankton Swarms

DNA Metabarcoding of Amazonian Ichthyoplankton Swarms M.E. Maggia, Y. Vigouroux, J. F. Renno, F. Duponchelle, E. Desmarais, Juan Núñez, C. García-Dávila, F. M. Carvajal-Vallejos, E. Paradis, Jean-François Martin, et al. To cite this version: M.E. Maggia, Y. Vigouroux, J. F. Renno, F. Duponchelle, E. Desmarais, et al.. DNA Metabarcod- ing of Amazonian Ichthyoplankton Swarms. PLoS ONE, 2017, 12 (1), pp.e0170009. ￿10.1371/jour- nal.pone.0170009￿. ￿hal-01470522￿ HAL Id: hal-01470522 https://hal.sorbonne-universite.fr/hal-01470522 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCHARTICLE DNA Metabarcoding of Amazonian Ichthyoplankton Swarms M.E.Maggia1,Y.Vigouroux1,J.F.Renno2,3,F.Duponchelle2,3,E.Desmarais4,J.Nunez2,3, C.Garc´ıa-Da´vila3,5,F.M.Carvajal-Vallejos6,E.Paradis4,J.F.Martin7,C.Mariac1* 1 InstitutdeRecherchepourleDe´veloppement,Universite´deMontpellier,Unite´MixtedeRecherche Diversite´AdaptationetDe´veloppementdesPlantes(UMRDIADE),Montpellier,France,2 Institutde RecherchepourleDe´veloppement,Unite´MixtedeRechercheBiologiedesOrganismesetEcosystèmes Aquatiques(UMRBOREA),MNHN—CNRS-7208—UPMC—UCBN—IRD-207,Montpellier,France, 3 LaboratoireMixteInternational—EvolutionetDomesticationdel’IchtyofauneAmazonienne(LMI—EDIA), IIAP—UAGRM—IRD,UMRBOREA,7rueCuvier,CP32,Paris,France,4 InstitutdesSciencesde l’E´volution(UMRISEM),Universite´Montpellier—CNRS—IRD—EPHE,PlaceEugèneBataillon—CC065, Montpellier,France,5 InstitutodeInvestigacionesdelaAmazon´ıaPeruana(IIAP),LaboratoriodeBiolog´ıay Gene´ticaMolecular(LBGM),Iquitos,Peru´,6 FAUNAGUA,ULRA-UMSS,ECOSINTEGRALESSRL, Cochabamba,PlurinationalStateofBolivia,7 Montpellier-SupAgro,CentredeBiologiepourlaGestiondes Populations(UMRCBGP),Montferrier-sur-Lez,France a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Tropicalrainforestsharborextraordinarybiodiversity.TheAmazonbasinisthoughttohold 30%ofallriverfishspeciesintheworld.Informationabouttheecology,reproduction,and recruitmentofmostspeciesisstilllacking,thushamperingfisheriesmanagementandsuc- OPENACCESS cessfulconservationstrategies.Oneofthekeyunderstudiedissuesinthestudyofpopulation Citation:MaggiaME,VigourouxY,RennoJF, dynamicsisrecruitment.Fishlarvalecologyintropicalbiomesisstillinitsinfancyowingto DuponchelleF,DesmaraisE,NunezJ,etal.(2017) DNAMetabarcodingofAmazonianIchthyoplankton identificationdifficulties.Moleculartechniquesareverypromisingtoolsfortheidentificationof Swarms.PLoSONE12(1):e0170009.doi:10.1371/ larvaeatthespecieslevel.However,oneoftheirlimitsisobtainingindividualsequenceswith journal.pone.0170009 largesamplesoflarvae.Tofacilitatethistask,wedevelopedanewmethodbasedonthe Editor:PengXu,XiamenUniversity,CHINA massiveparallelsequencingcapabilityofnextgenerationsequencing(NGS)coupledwith Received:August2,2016 hybridizationcapture.WefocusedonthemitochondrialmarkercytochromeoxidaseI(COI). Theresultsobtainedusingthenewmethodwerecomparedwithindividuallarvalsequencing. Accepted:December25,2016 WevalidatedtheabilityofthemethodtoidentifyAmazoniancatfishlarvaeatthespecies Published:January17,2017 levelandtoestimatetherelativeabundanceofspeciesinbatchesoflarvae.Finally,we Copyright:©2017Maggiaetal.Thisisanopen appliedthemethodandprovidedevidenceforstrongtemporalvariationinreproductiveactiv- accessarticledistributedunderthetermsofthe ityofcatfishspeciesintheUcayal´ıRiverinthePeruvianAmazon.Thisnewtimeandcost CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and effectivemethodenablestheacquisitionoflargedatasets,pavingthewayforafinerunder- reproductioninanymedium,providedtheoriginal standingofreproductivedynamicsandrecruitmentpatternsoftropicalfishspecies,with authorandsourcearecredited. majorimplicationsforfisheriesmanagementandconservation. DataAvailabilityStatement:DNAsequencesare availableonDryadwiththeDOI(10.5061/dryad. 117tn). Funding:ThisprojectwasfundedbyLMIEDIAand theInstitutdeRecherchepourleDe´veloppement. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 1/14 DNAMetabarcodingofIchthyoplanktonSwarms Introduction TheAmazonbasinisthoughttohold30%ofallriverfishspeciesdescribedtodate[1].This exceptionalwealthoffishspeciessynchronizetheirreproductiontobenefitfromthehighly predictableannualfloodingregimeoftheAmazonbasin(floodpulseconcept,[2]).Annual floodingincreasesfoodavailabilityforfishlarvaeandjuveniles,andfacilitatestheirdispersal [3,4].Inundatedfloodplainsprovidealsoshelterforbothparentsandjuveniles[2,4–5].For migratoryfish,theexceptionaldimensionandcomplexityoftheAmazonianhydrographic networkprovidealargenumberofdispersionroutesforeggsandlarvae[6,7].Consequently, thestudyoftheirrecruitmentisdifficult.Thesemigratoryfishspeciesrepresentover80%of fisherycatchesintheAmazonianbasin,andmostofthembelongtotheordersCharaciformes andSiluriformes(catfish)[8–10].Someofthemostimportantcatfishspecies,inparticularthe largestspeciesofthegenusBrachyplatystoma,arealreadyoverexploited[11–15].Amongthis genus,Brachyplatystomarousseauxiiundertakesthelongestmigrationknowninfreshwaters, 5500kilometres[16].TheadultsreproduceinthepiedmontofAndeanriversinBolivia, Colombia,EcuadorandPeru.Thelarvaethendriftdownstreamtotheirnurseryareainthe Amazonestuarywheretheygrowbeforemigratinguprivertojointhebreedingadultsinthe headwaters[14–18].Thislong-distancemigratorylifecycleisthreatenedbyhumanactivities, particularlyoverfishingandtheconstructionofhydroelectricdams,whichcoulddrastically limitlarvalrecruitment,hencetherenewaloffisheriesresources.Understandingthereproduc- tivecyclesandrecruitmentdynamicsofcommerciallyimportantmigratoryspeciesisthus essentialforthesustainablemanagementoffisheriesinAmazonia.Regular,standardized planktonnetsamplingofthelarvaeofthesespeciesisapromisingwaytoachievethesegoals. Oneofthetechnicallimitsofthisapproachisthespecificidentificationoffreshwaterfishlar- vae,particularlythoseofSiluriformes,giventhegreatnumberofspeciesinthisorder.Mor- phologicalcriteriaaloneinearlydevelopmentstagesonlyenabledifferentiationoffamilies, andsometimesofgenera,butveryrarelyofspecies[19,20].Withthedevelopmentofdedicated databasesandthestandardizationofmoleculartools,molecularapproacheslikeDNAbarcod- ingofferasolutiontothisproblem.Thetechniquehasalreadybeensuccessfullyusedtoidentify adultsiluriformspecies[21–23].Morerecentlythisapproachwasextendedtotheidentification oflarvae[24,25]usingindividualSangersequencing.Thisapproachisveryreliable,butitcan quicklybecomeburdensomewhenseveralthousandlarvaeneedtobeidentified.Wetherefore developedanalternativestrategyusinghighthroughputsequencingofbatchesoflarvae.Our mainobjectivesweretoevaluatewhetherthisapproachisableto1)retrieveallthedifferentspe- ciesinamixtureoflarvae,and2)quantifytherelativeproportionsofspeciesinthebatch.PCR basedmethodscanleadtobiasedamplificationofDNAfromdivergentspeciesandartificially lowertherepresentationinthefinalcounts[26–28].Consequently,wedevelopedahybridiza- tion-basedmethodtocaptureacommonlyusedDNAbarcodemarker:aportionofthecyto- chromeoxidase1(COI)gene.ThemitochondrialmolecularmarkerCOI(600bp)wasselected foritsabilitytodistinguishfish[29–32].Ourapproachalsoenablesthesimultaneousanalysisof severalbatchesoflarvae,hencefurtherreducingsequencingeffort.Moreover,itisveryeasyto extrapolatefromaproof-of-conceptonasinglemarkertoseveralmarkers,wholemitochondria, orevenseveralthousandnucleargenes[33]. MaterialsandMethods Studyareaandsampling In2013and2014,larvae(ichthyoplankton)weresampledinthreetributariesoftheAmazon River:theNapo,Ucayal´ıandMarañoninPeru(foralistofsamples,seeS1Table).Apartner PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 2/14 DNAMetabarcodingofIchthyoplanktonSwarms oftheFrenchNationalInstituteofResearchforSustainableDevelopment(IRD),theInstituto deInvestigaciones delaAmazoniaPeruana(IIAP)isrightfullyauthorizedbythePeruviangov- ernmenttostudyandtosamplethePeruvianAmazonianbiodiversity.TheDIREPROoffice "DirecciónRegionaldelaProduccióndelGobiernoRegionaldeLoreto"authorizedtheexportof fishlarvaetoIRDlaboratoriesinFrance.Ichthyoplanktonweresampledindaylightbytowing anichthyoplanktonnetbehindaboatwithanoutboardmotormaintainedinastaticposition. Theprotocolused1.5mlongconical-cylindricalnetswithanaperturediameterof0.6m,and ameshsizeof1mmor0.3mmdependingonthesample,eachnetcontainingacollectorcup initsend.Eitheronenetwasused,orthreenetsarrangedvertically,withadistanceof2m betweeneach.Thenetsweretowedfor15min,fivetimesaday,overaperiodoftwodays.Lar- vaewerefixedina96%ethanolsolutionanddriedjustbeforeDNAextractionfollowingthe procedurepublishedbySambrooketal.[34]. Larvalsample Weusedtwosamples,onefromtheNapoRiverandonefromtheMarañonRiver,tovalidate themethod.Thetwosamplesoflarvaewererandomlydividedintotwosubsets.Onesubset wasusedforDNAextractionfromeachindividuallarva(270larvaefromtheMarañonand 102larvaefromtheNapo).PartoftheextractedDNAwaspooledinequimolarquantitiesto formtwosamplesnamedMar-mock-NGS(fortheMarañonlarvae)andNap-mock-NGS(for theNapolarvae).Inthesecondsubset,totalDNAwasextractedusingalllarvaetogetherfor theMarañon(250larvae)andfortheNapo(373larvae)toformtwobulksamples,Mar-bulk- NGSandNap-bulk-NGSfortheMarañonandNapolarvae,respectively. EachlarvafromthefirstsubsetwasindividuallySangersequenced.Wenamedtheresults oftheSangersequencingofNapoandMarañonNap-SandMar-S,respectively.Themockand thebulksamplesweresequencedusinganIlluminaplatform. COIamplificationandsangersequencing A680bpfragmentoftheCOIgenewasamplifiedusinguniversalprimersFishF1andFishR1 andPCRconditionsaspreviouslydescribedbyHubertetal.[29].PCRwasperformedwitha Phusion1High-FidelityPCRMasterMix(ThermoFisher,1040–2678)usingthefollowing program:3minutesat98˚Cfollowedby30cyclesof80secondsat98˚C,45secondsat55˚C andoneminuteat68˚C,withafinalextensionof10minutesat72˚C.PCRproductswere sequencedusingtheBigDyeTerminator3.1kit(AppliedBiosystems).Sequencingwasper- formedonanABIprism3130(AppliedBiosystems),atIRDMontpellier,(France)usingthe FishF1primer.SequencesareavailableonDryaddoi:10.5061/dryad.117tn(seeS2Table). Librarypreparation PreparationofbiotinylatedPCRprobesforcapture.COIprobeswereproducedbyPCRusing thesameconditionsasabovebutwith5’biotinylatedprimerssynthesizedbyEurogentecSA (AngersFrance).Amplificationwasperformedonfouradultsfromfourdifferentspecies:Oxy- dorasniger(oni),Pimelodellasp.(pgra),Pinirampuspirinampu(ppi)andPseudoplatystoma punctifer(ppu).Thefourspecieswereselectedtocoverthepanelofsiluriformspeciespresent inourdatabase,spanninganucleotidedivergencerangeof20%.PCRprobeswerepurified andpooledatequimolarconcentrationsforcapture. LibrarypreparationandcapturewereperformedasdescribedinMariacetal.[33].Libraries weretaggedusing6-bpoligonucleotides(TAG)toallowformultiplexing,andthenhybridized withCOI-targetedprobesasdescribedinMariacetal.[33].Briefly,totalDNAwassheared usingaCovarisE220sonicator(Covaris,Woburn,Massachusetts,USA),end-repaired,ligated PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 3/14 DNAMetabarcodingofIchthyoplanktonSwarms andnickswerefilledinbeforepre-hybridizationPCRwasperformed.Theseproductswere mixedandhybridizedwithbiotin-labeledprobes.Thestreptavidin-biotinylatedprobes-target complexesweremagneticallyimmobilizedduringa3min.denaturationstepat96˚Ctoelute theenrichedlibraryfraction.Anon-enrichedlibrarywasalsoproducedascontrolusinggeno- micDNAfromasubsetoftheNapo2013sample.Thislibrarywasusedtoassesstheefficiency ofthecapturemethod.TheconcentrationsofthelibrarieswerequantifiedbyqPCR(Kappa Biosystems)afterwhichpaired-endsequencingwasperformedusingMiSeqv2reagentsand 2×150bponanIlluminaMiSeqv3platformattheCIRADfacilities(Montpellier,France). Dataanalysis WebuiltadatabasewithsequencesofCOIgenesfrom86adultsiluriformspecies,referenced indifferentcollectionsorpublications(seeS5Table)andforwhichthephylogeneticrelation- shipsareestablishedanddiscussedinCarvajaletal.[35].The86sequencesofCOIusedwere depositedinGenBank(seeS5Table).Thisdatabasecontainsonlyspeciesofeconomicimpor- tanceinAmazoniaandconsequentlydoesnotincludeallthegeneraofSiluriformes.Thedata- baseallowedspeciesidentificationofthesamplesbymappingsequencestothoseinthe referencedatabase. ThesequencesproducedusingtheSangermethodwereexaminedwithGeneiousPro 4.8.5software[36].Automaticfilteringinvolvedtrimmingregionswithmorethana5% chanceoferrorperbase.Sequencesweremanuallycheckedandanyambiguitiescorrected. ThesequenceswerealignedwiththereferencedatabaseusingMUSCLE(100iterations, [37]).Finally,speciesassignmentwascomputedbybuildinganeighbor-joiningtreeusing Tamura-Neigeneticdistances. ThesequencesobtainedwiththeNGSmethodweredemultiplexedusingthescript“demul- tadapt”(availableathttps://github.com/Maillol/demultadapt),thatsortsreadsaccordingto theirTAG(6bp,0mismatchthreshold).AdapterswereremovedusingCutadapt1.2.1soft- warewiththefollowingparameters:lengthoverlap=7bp,insertsize=35bp.Readswere trimmedbasedontheirnucleotidemeanquality(Q<30)usingthescript“filter-mean-qual- ity”(availableathttps://github.com/SouthGreenPlatform/arcad-hts/blob/master/scripts/ arcad_hts_2_Filter_Fastq_On_Mean_Quality.pl).Sequenceswerethenmappedontherefer- encedatabaseusingtheBWAmemv.0.7.12package[38,39].Foreachenrichedlibrary,wecal- culated1)thepercentageofusefulreads,i.e.theratioofthenumberofreadsmappedonthe databasetothetotalnumberofreads,and2)X-foldenrichment,whichcorrespondstothe ratioofthenumberofreadsfromtheenrichedlibrarymappedtothereferencelibrarytothe numberofreadsfromthenon-enriched(genomic)librarymappedtothereferencelibrary. X-foldmeasurestheeffectiveness(theenrichment)oftheexperiment.Thepercentageofuseful readsmeasuresthespecificityoftheenrichment. AswehadbuiltupthebulkDNAfromspecieswewereabletoidentifyusingSanger sequencing,weknewwhichspeciesweexpectedtofindusingtheNGSapproach.Wewere thusabletoidentifyfalsepositives,i.e.speciesfoundusingtheNGSapproachthatwerenot presentinthebulkDNA.Onlyproperlypairedreadswithamaximumofonemismatch,no clipping,andnosecondaryalignmentwiththereferencewereused.Differentfilterswere appliedonthealignments:onlythesequencesforwhichboththeR1andR2readswere mappedtothesamespeciesonthedatabasewerekept,andwekeptonlythosemappedwith quality>0(MAPQ>0),onlysequenceswithstrictlylessthantwomismatches,andanalign- mentover100bp.Agivenspecieswasidentifiedbylistingwhichreferencesequencesthefil- teredreadsweremappedtowithaminimumcoverageof60%,otherwiseweconsideredthatit wasnotsufficientlypreciseforspecieslevelidentificationandkeptonlythegenustaxonomic PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 4/14 DNAMetabarcodingofIchthyoplanktonSwarms rank.Thefrequencyofeachidentifiedspecieswascalculatedusingtherelativenumberof mappedreadsdividedbythetotalnumberofmappedreadsacrossspecies.Finally,thecompo- sitionandfrequenciesobtainedfromSangersequencingandfromNGSsequencingwerecom- paredtovalidatethecapturemethod.Pearson’sproduct-momentcorrelationswerecalculated withR3.2.5[40]. Diversitystudy Here,wedescribeacasestudyinwhichthenewsequencingmethodwasassessedoveraperiod ofeightmonths.Toestimatethecompositionofsiluriformspeciesinsamplescollected monthlyintheUcayal´ıRiverbetweenMarchandOctober2014(seeS1Table),weperformed bulkDNAextraction,andusedtheNGScapturemethodontheeightsamplestoobtainthe sequencedata. Results Identificationofspeciescomposition TheCOImarkerwassuccessfullySangersequencedfor270and102larvaefromtheMarañon andNaporivers,respectively.Atotalof168sequencescorrespondedtosiluriformspecies.Atotal of158sequenceswereverycloseoridenticaltothe86speciesofourdatabase.Tensequencespre- sentedsomedivergencefromthese86species.Thesetensequenceswereredundant,andwere narroweddowntothreedifferentsequences.Thesethreesequenceswereaddedtoourdataset,as wethoughttheymighteitherrepresentthreedescribedspeciesnotyetsequencedorthreenew species.TheywerenamedPimelodidae_Pimelodus_spA-C34,Pimelodidae_Hypophthalmus_sp. C95andPimelodidae_Hypophthalmus_sp.A289.Thefinaldatabasethuscontained89sequences (Fig1).Basedontherevisedreferencedataset,theSangermethodidentified11differentspecies intheMarañonRiversample(Mar-S)and10differentspeciesintheNapoRiversample(Nap-S) (Table1). EnrichmentinCOIsequences X-foldenrichmentrangedfrom71to247-fold(seeS1Table),meaningthatwefound71to 247-foldmoresequencesfromthetargetCOIregionafterenrichment.Aftercapture,theper- centagesofreadsthatmappedtothetargetregionrangedfrom0.29%to1.03%. ComparisonofspeciesidentificationbytheNGSvs.thesangermethod Theenrichmentapproachusingthemocksamplesprovidedresultsthatwerelargelycongru- entwiththoseobtainedwiththeSangersequencingmethod.Thespeciescompositionsofthe MarañonandNaposamplesinferredfromthemock-NGScapturemethodwereidenticalto thoseobtainedusingtheSangersequencingapproach,whichisconsideredasthereference (Table1).Evenspecieswithverylowfrequency,suchasZungarozungaro(0.98%)intheNap- SsampleandBrachyplatystomarousseauxii(1.54%)intheMar-Ssample,wereidentifiedwith theNGScapturemethod.WealsoidentifiedafalsepositiveintheNAP-mock-NGSsample (Table1).Thisspecies,Pseudoplatystomapunctifer,onlyrepresented0.79%(27reads)ofthe totalnumberofreads. Theinitialbulkoflarvaewasdividedintotwobulksand,asexpected,lowfrequencyspecies variedbetweenthetwobulks.SevenspeciesnotpresentintheSangerreferencewereidentified intheMarañon(4)andNapo(3)bulk-NGSsamples.Conversely,fivespeciesintheMarañon sampleandtwointheNaposamplewerepresentintheSangersamplebutwerenotretrieved intherespectivebulk-NGSsamples.Thefrequencyofallthesespecieswas<1.5%. PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 5/14 DNAMetabarcodingofIchthyoplanktonSwarms PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 6/14 DNAMetabarcodingofIchthyoplanktonSwarms Fig1.Neighborjoiningtreebuiltwith89sequencesofPimelodidaespecies.The89sequencescorrespondtoalltheindividualspresentinour database,andthetreewasbuiltaccordingtotheTamura-Neimodel.StarsidentifythefourspeciesusedfortheproductionofPCRprobes,andthe colorbarsshowtheproportionsofeachspeciesinthetwosamplesproducedusingthetwosequencingmethods. doi:10.1371/journal.pone.0170009.g001 Wewouldliketoemphasizeherethatwesuccessfullyidentifieddistantspecieswithour fourprobes.ThespeciesHypophthalmussp.C95,whichwasidentifiedintheMarañonand NapomocksamplesusingtheNGScapturemethod,wasthemostgeneticallydistantspecies [41]inthefourprobes(seeS3Table).Thisspeciespresented87.6%pairwiseidentitywiththe closestprobedesignedfromPseudoplatystomapunctifer,implyingthattheprobesareableto captureverydistanttargets,evenifthespeciesispresentatalowfrequency(0.98%)inthe sample. Analysisofestimatedfrequencies SpeciesfrequencieswereverywellcorrelatedbetweenSangersequencingandthebulkoflar- vae.StrongsignificantcorrelationswerefoundbetweenSangerandNGSfrequencies:r=0.96 (p<0.001)forthemock-NGSandr=0.94(p<0.001)forbulk-NGS(Fig2).Thesamples werecharacterizedbyoneortwodominantspecies:inMar-S,B.vaillantiirepresented62%of thespeciesandinNap-S,B.vaillantiiplusPimelodusblochiirepresented79.4%ofthespecies present(Table1).Thefrequenciesoftheremainingspeciesrapidlydroppedbelow10%. Applicationtotemporalvariabilityofthesamples Changesinspeciesrichnessovertheeightmonthstudyperiod(Fig3)tendedtocorrelatewith thehydrologicalcycle:speciesdiversitywaslowerduringhighwaterandfallingwaterperiods, andhigherduringlowwaterandrisingwaterperiods.Eachbatchwasrepresentedbyoneor twomainspecies,plusanumberofspeciespresentatlowerfrequencies.Thenumberofspecies identifiedineachsamplerangedfrom2to13. Detailedexaminationofspeciescomposition(seeS4Table)showedthatthespecies belongedtotwogroups:thosepresentalmostallyearround,suchasB.vaillantiiandB.fila- mentosum;andthosepresentforonlyafewmonths,suchasP.pirinampu. Discussion Theaimofthisstudywastovalidateanduseanewapproachtostudythespecificdiversityof siluriformlarvaeinriverplanktonsamples.Wevalidatedthemethodandprovidedevidence foritsreliability.Overall,theNGSapproachmadeitpossibletoidentifyandquantifythespe- ciescompositioninaswarmoflarvaeineachsample.Theenrichmentratewashigh,i.e.a71 to247-foldincrease,andinagreementwithobservationsintheliterature[42–44].Theper- centageofusefulreadsisstillrelativelylow,butthislikelyreflectsthesizeofourtarget sequencerelativetothewholegenome.Althoughtherateofusefulreadsislow,itisneverthe- lesscosteffectiveandlaborsaving.Consideringonlythesequencingcost(librarypreparation #US$10persamplecanbedisregarded),sequencing300larvaeineachof30samples(9000 larvae)atUS$5perlarva(Sangersequencing)isveryexpensivecomparedtoasinglerunof MISEQsequencingatUS$1,100forthesame30samples.Severalstrategieshavebeenproposed toincreasethepercentageofusefulreadsincludingtworoundsofcapture[45].Thiswouldbe ausefulimprovementbutitneedstobetestedtoseeifthedoublecapturedoesnotbiasthe estimationofspeciesfrequencies. ComparingtheSangermethodandtheNGSmethodenabledustovalidatethequalitative estimationofspeciescomposition,althoughwealsofoundonefalsepositiveP.punctiferinthe PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 7/14 DNAMetabarcodingofIchthyoplanktonSwarms OIsequencesfortheNapoandMaranonsamples.ThetablesummarizestheresultsandestimatedfrequenciesofeachspeciesidentifiedndtheSangerapproach.Forthenextgenerationapproaches,a"Mock"waspreparedwithequimolarDNAfromeachlarvaanda"Bulk"withnumberofreads,thepercentageofmismatches,thepercentageofbasecoverage,theaveragecoveragedepth,maximumcoverageandesti-s.FortheSangerapproach(Nap-S,Mar-S),thenumberofindividualssequencedandthefrequencyofthespeciesisgiven.Speciesare_Genus_species”.Whencoveragewasconsideredlow(below60%),thedataareunderlinedandtheidentificationisonlygivenatthegenuspX). Mar-Mock-NGSMar-SangerMar-Bulk-NGS BaseswithAverageMaximumEstimatedIndividualsFrequencyNumberMismatchBaseswithAverageMaximumEstimatedcoveragecoveragecoveragefrequency(%)ofreads(%)coveragecoveragecoveragefrequency(%)depthdepth(%)(%)depthdepth(%) 99.3234.4718.056.14162.11,9330.399.3401.81,204.080.5 97.524.885.06.157.6840.297.717.354.03.5 98.758.7108.013.811.550.137.21.05.00.2 100.016.037.03.8710.6760.196.516.035.03.2 67.01.75.00.411.500.0 73.98.027.01.911.500.0 42.63.416.00.811.500.0 85.04.710.01.011.500.0 28.91.36.00.311.570.145.31.46.00.3 24.10.21.00.111.500.0 100.071.1114.015.869.1180.298.03.99.00.7 0.000.02150.298.745.289.09.0 0.000.0440.381.69.122.01.8 0.000.0100.565.52.16.00.4 0.000.0100.368.22.05.00.4 100.066100.02,402100.0 (Continued) Table1.DataonthealignmentoftheCusingnextgenerationsequencing(NGS)aDNAextractedfromabatchoflarvae.Thematedfrequencyaregivenforeachspeciedenotedincludingthefamilyname“Familylevel(denotedFamily_Genus_(species)_s Species NumberMismatchofreads(%) Pimelodidae1,1280.2Brachyplatystomavaillanti Pimelodidae1230.2Hypophthalmussp. Pimelodidae2770.1Pseudoplatystomatigrinum Pimelodidae760.1Brachyplatystomafilamentosum Pimelodidae80.1Brachyplatystomarousseauxii Pimelodidae380.4Pimelodusblochii Pimelodidae170.0Phractocephalus(hemioliopterus)spX Pimelodidae210.2Hypophthalmussp.C95 Pimelodidae60.1Pimelodus(spC)spX Pimelodidae10.7Pimelodus(spA-C34)spX Pimelodidae3170.2Hypophthalmussp.A289 Pimelodidae0Pseudoplatystomapunctifer(70) Pimelodidae0Pimelodinaflavipinnis(46) PimelodidaeSorubim0sp.(76) CetopsidaeCetopsis0coecutiens(126) TOTAL2,012 PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 8/14 DNAMetabarcodingofIchthyoplanktonSwarms dy stimateequenc(%) 37.3 29.6 1.3 1.6 1.4 13.2 0.0 0.0 0.1 0.9 11.5 3.0 0.0 100.0 Efr Maximumcoveragedepth 1,483.0 1,137.0 36.0 80.0 58.0 237.0 8.0 22.0 230.0 101.0 1.0 ulk-NGS Averagecoveragedepth 441.7 351.0 16.0 18.3 16.4 158.7 1.7 12.4 137.9 35.6 0.2 B Nap- Baseswithcoverage(%) 99.3 98.8 87.3 94.0 100.0 98.8 35.9 90.1 98.8 99.3 22.5 h c smat(%) 0.2 0.5 0.1 0.1 0.3 0.1 0.2 0.1 0.2 0.6 0.7 Mi Numberofreads 2,132 1,691 76 91 80 752 0 0 8 53 656 173 1 5,713 y c ger equen(%) 43.1 36.3 8.8 2.9 2.9 2.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 100.0 n Fr a S Nap- viduals 44 37 9 3 3 2 1 1 1 1 0 0 0 102 di n I dy stimateequenc(%) 45.5 29.6 4.8 3.1 3.8 8.9 1.0 0.2 1.9 0.4 0.8 0.0 0.0 100.0 Efr me Maximucoveragdepth 851.0 635.0 83.0 64.0 76.0 103.0 22.0 7.0 26.0 6.0 13.0 ck-NGS Averagecoveragedepth 322.8 211.1 34.5 21.9 26.9 63.9 7.2 1.5 13.3 3.0 5.8 o M Nap- Baseswithcoverage(%) 99.3 98.8 100.0 98.8 93.4 98.8 74.3 41.3 94.6 74.8 76.8 h c Mismat(%) 0.2 0.5 0.1 0.1 0.3 0.1 0.0 0.1 0.1 0.2 0.3 01 0 9.t d) Numberofreads 1,551 1,009 164 107 131 305 34 7 63 13 27 0 0 3,411 ne.017000 Table1.(Continue Species PimelodidaeBrachyplatystomavaillanti PimelodidaePimelodusblochii PimelodidaeBrachyplatystomafilamentosum PimelodidaeHypophthalmussp. PimelodidaePimelodinaflavipinnis PimelodidaePseudoplatystomatigrinum PimelodidaeZungarozungaro PimelodidaeLeiarius(marmoratus)spX PimelodidaeHypophthalmussp.C95 PimelodidaePimelodusspA-C34 PimelodidaePseudoplatystomapunctifer PimelodidaeCallophysusmacropterus(21) PimelodidaeHypophthalmussp.A289(184) TOTAL doi:10.1371/journal.po PLOSONE|DOI:10.1371/journal.pone.0170009 January17,2017 9/14

Description:
Different filters were applied on the .. ber 2014, 8 months. (PDF). S1 Table. Details of samples used. (XLSX). DNA Metabarcoding of . Mandel JR, Dikow RB, Funk VA, Masalia RR, Staton SE, Kozik A, et al. A target enrichment
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.