ebook img

DNA Barcoding of a Worldwide Colonial Ascidian, Diplosoma listerianum (Ascidiacea: Aplousobranchia: Didemnidae), from East Sea, Korea PDF

2021·1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DNA Barcoding of a Worldwide Colonial Ascidian, Diplosoma listerianum (Ascidiacea: Aplousobranchia: Didemnidae), from East Sea, Korea

Anim. Syst. Evol. Divers. Vol. 37, No. 2: 160-164, April 2021 https://doi.org/10.5635/ASED.2021.37.2.074 Short communication DNA Barcoding of a Worldwide Colonial Ascidian, Diplosoma listerianum (Ascidiacea: Aplousobranchia: Didemnidae), from East Sea, Korea Taekjun Lee, Sook Shin* Department of Animal Biotechnology and Resource, Sahmyook University, Seoul 01795, Korea ABSTRACT Diplosoma listerianum (Milne Edwards, 1841) is a globally distributed species that encompasses the existence of multiple cryptic species. In this study, partial sequences of cytochrome c oxidase subunit I (COI) from D. listerianum in South Korea were determined and compared with COI sequences of known D. listerianum and other Diplosoma species retrieved from GenBank. The results showed that Korean D. listerianum matched with clade A of D. listerianum, which is a group distributed globally. These new DNA barcodes for Korean D. listerianum may be useful in the identification of colonial ascidians, which is difficult to morphological identify. Keywords: DNA barcoding, COI, colonial ascidian, Didemnidae, Diplosoma listerianum INTRODUCTION and population genetic network structure (Pérez-Portela et al., 2013). The COI gene has been shown to be extremely useful Ascidians are among the most important introduced species and accurate for the detection of cryptic speciation and spe- in the sea (Lambert, 2007). Populations of some introduced cies identification in ascidians (Turon et al., 2003; Tarjuelo et ascidians clearly belong to a single species; in other cases, al., 2004; Rius and Teske, 2013). In this study, we obtained cryptic speciation has been found: Botryllus schlosseri, Ciona partial sequences of COI from D. listerianum in South Korea intestinalis, and Diplosoma listerianum (Bock et al., 2012; and compared it with known COI sequences of D. listeria- Pérez-Portela et al., 2013; Brunetti et al., 2015). Among num and other Diplosoma species. these, D. listerianum is truly cosmopolitan, recorded in the The colonies were collected from artificial materials in Juk- tropical to temperate waters of the Pacific, Atlantic, and In- byeon harbor, South Korea (Fig. 1). All examined colonies dian Oceans and the Mediterranean and North Seas (Kott, were deposited in a 95% ethyl alcohol solution at the Marine 2001). Analysis of D. listerianum revealed the existence of Biological Resource Institute of Sahmyook University. Total multiple cryptic species worldwide, and identified a complex genomic DNA was extracted from a single zooid in a colony geographic structure and multiple clades that occurred in in accordance with the DNeasy Blood & Tissue kit protocol sympatry (clades A-D), based on the dataset of mitochondrial (Qiagen, Hilden, Germany). The partial sequences of COI cytochrome c oxidase subunit I (COI) (Pérez-Portela et al., were amplified using a universal primer pair: dinF-Nux1R 2013). The results indicated that D. listerianum is a species (Brunetti et al., 2017). Polymerase chain reaction (PCR) was complex of at least four evolutionarily distinct lineages; how- executed in a reaction volume of 20.0 μL AccuPower PCR ever, they were unable to substantiate any clear diagnostic PreMix & Master Mix (Bioneer, Seoul, Korea) including 1.0 morphological character owing to the scarcity of candidate μL of each primer (10 mM) and 1.5 μL of DNA template (>50 characters (e.g., the lack of calcareous spicules in the tunic of ng/μL) using the following thermocycling profile: 94℃ for 3 this genus), and the high variability in the shape and color of min; 35 cycles of 94℃ for 30 s, 52℃ for 60 s, and 72℃ for the colonies (Pérez-Portela et al., 2013). Among these, clade 60 s; and a final extension at 72℃ for 5 min. The pairwise A of D. listerianum appears to have been introduced in differ- distance (p-distance) was calculated using the Kimura 2-pa- ent biogeographical areas, as shown by phylogenetic analyses rameter model (Kimura, 1980) in MEGA 7.0 (Kumar et al., This is an Open Access article distributed under the terms of the Creative *To whom correspondence should be addressed Commons Attribution Non-Commercial License (http://creativecommons.org/ Tel: 82-2-3399-1717, Fax: 82-2-3399-1762 licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, E-mail: [email protected] and reproduction in any medium, provided the original work is properly cited. eISSN 2234-8190 Copyright The Korean Society of Systematic Zoology DNA Barcoding of Diplosoma listerianum Fig. 1. Various color morph of Diplosoma listerianum from South Korea: A, B, Artificial materials (acrylic plate) covered with D. lies- terianum in Jukbyeon harbor. Table 1. Pairwise distance values (%) based on 516 bp mitochondrial COI sequences in this study, calculated using the Kimura 2-parameter method Species Clade na 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Diplosoma listerianum Korea 3 0.0 2 Ab 28 4.2 5.8 3 A.1b 8 12.6 12.2 1.3 4 Bb 3 18.9 9.4 19.2 5.2 5 Cb 4 23.3 23.0 22.3 23.0 4.1 6 Db 2 20.5 20.3 19.8 22.4 19.3 0.2 7 D. gelatinosa - 1 18.6 17.8 11.0 24.9 25.5 26.2 0.0 8 D. multifidum - 1 25.7 24.4 24.1 32.7 30.8 30.5 27.2 0.0 9 D. simile - 1 25.6 25.1 23.3 25.4 23.5 23.3 27.0 31.8 0.0 10 D. spongiforme - 1 26.5 26.0 21.5 23.0 26.3 22.9 26.8 32.6 22.7 0.0 11 D. swamiensis - 1 19.1 18.2 7.3 25.3 26.9 24.6 16.8 30.0 27.9 25.8 0.0 12 Diplosoma sp. - 1 17.7 17.7 16.7 18.1 18.4 18.3 21.7 26.4 20.3 20.2 21.4 0.0 13 Diplosoma sp. - 1 17.7 17.7 16.7 18.1 18.4 18.3 21.7 26.4 20.3 20.2 21.4 0.0 0.0 14 Didemnum vexillum - 1 33.1 32.6 29.3 32.3 36.3 35.1 31.8 38.9 29.3 38.7 34.8 29.0 29.0 0.0 aNumber of cytochrome c oxidase subunit I (COI) sequences in a clade. bThe type of clade is according to Pérez-Portela et al. (2013). 2016). The best-fit model of nucleotide substitution for the Rho and Huh, 1984; Kott, 2001; Shenkar et al., 2021), col- COI dataset was selected by jModelTest v. 2.1.1 (Darriba et lected colonial ascidians in Jukbyeon harbor were identified al., 2012) using the Akaike Information Criterion for Maxi- as D. listerianum (Fig. 1). The newly obtained COI sequenc- mum Likelihood (ML). The ML tree was constructed using es (867 bp) of D. listerianum were registered in GenBank PhyML 3.0 (Guidon et al., 2010) under HKY I G model (accession No. MT983895-MT983897). The type of clade for COI dataset, and which included Korean and GenBank of in this study was according to Pérez-Portela et al. (2013). + + D. listerianum, and D. spongiforme as an outgroup. The p-distance values showed that D. listerianum could be separated into four groups, with a different species in each group (Table 1). The Korean D. listerianum were closer to RESULTS AND DISCUSSION clade A of D. listerianum, than other clades (clade A.1-D) Based on previous morphological studies (Tokioka, 1970; (Table 1). The variation within the Korean and clade A were Anim. Syst. Evol. Divers. 37(2), 160-164 161 Taekjun Lee, Sook Shin Fig. 2. The maximum likelihood tree of Diplosoma listerianum based on the cytochrome c oxidase subunit I (COI) dataset (518 bp). The Korean D. listerianum indicated with red letters. Bootstrap values (>50) are indicated on each node. The type of clade is according to Pérez-Portela et al. (2013). 4.2% and this value is lower than the intraspecific varia- standing taxonomic relationship of Diplosoma species. tion of clade A (5.8%) (Table 1). Among them, the varia- tion within the Korean and closer group in clade A were ORCID the mean of 0.8% and the range of 0.0-3.4% (Appendix 1). The variation within Korean and clade A.1-D were 12.6%, Taekjun Lee: https://orcid.org/0000-0003-4407-7862 18.9%, 23.3%, and 20.5%, respectively, and which were Sook Shin: https://orcid.org/0000-0003-1799-9466 close to interspecific variations within D. listerianum and other Diplosoma (Table 1). Pérez-Portela et al. (2013) veri- CONFLICTS OF INTEREST fied that D. listerianum had high intraspecific variations, but they did not found any distinct morphological differences No potential conflict of interest relevant to this article was between each clade. The ML tree revealed the same as the p-distances result and Pérez-Portela et al. (2013) (Fig. 2). reported. Among them, Korean D. listerianum was distinctly clus- tered with clade A of D. listerianum, and this clade is clear- ACKNOWLEDGMENTS ly divided into another clade of D. listerianum (Fig. 2). This study contributes in identifying D. listerianum and under- This study was the project titled ‘Improvement of manage- 162 Anim. Syst. Evol. Divers. 37(2), 160-164 DNA Barcoding of Diplosoma listerianum ment strategies on marine disturbing and harmful organisms lem. Journal of Experimental Marine Biology and Ecology, (No. 20190518)’ funded by the Ministry of Oceans and 342:3-4. https://doi.org/10.1016/j.jembe.2006.10.009 Fisheries, Korea. López-Legentil S, Legentil ML, Erwin PM, Turon X, 2015. Harbor networks as introduction gateways: contrasting dis- tribution patterns of native and introduced ascidians. Bio- logical Invasions, 17:1623-1638. https://doi.org/10.1007/ REFERENCES s10530-014-0821-z Pérez-Portela R, Arranz V, Rius M, Turon X, 2013. Cryptic spe- Bock DG, MacIsaac HJ, Cristescu ME, 2012. Multilocus genet- ciation or global spread? The case of a cosmopolitan marine ic analyses differentiate between widespread and spatially invertebrate with limited dispersal capabilities. Scientific Re- restricted cryptic species in a model ascidian. Proceedings ports, 3:3197. https://doi.org/10.1038/srep03197 of the Royal Society of London, Series B, 279:2377-2385. Rho BJ, Huh MK, 1984. A systematic study on the Ascidians in https://doi.org/10.1098/rspb.2011.2610 Korea. Journal of Korean Research Institute for Better Liv- Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L, ing, Ewha Womans University, 33:99-136. 2015. Morphological evidence that the molecularly deter- Rius M, Teske PR, 2013. Cryptic diversity in coastal Austral- mined Ciona intestinalis type A and type B are different spe- asia: a morphological and mitonuclear genetic analysis of cies: Ciona robusta and Ciona intestinalis. Journal of Zoo- habitat-forming sibling species. Zoological Journal of the logical Systematics and Evolutionary Research, 53:186-193. Linnean Society, 168:597-611. https://doi.org/10.1111/zoj. https://doi.org/10.1111/jzs.12101 12036 Brunetti R, Manni L, Mastrototaro F, Gissi C, Gasparini F, 2017. Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira da Fixation, description and DNA barcode of a neotype for Bot- Rocha R, Swalla BJ, Turon X, 2021. Ascidiacea World Da- ryllus schlosseri (Pallas, 1766) (Tunicata, Ascidiacea). Zoot- tabase. Botrylloides Milne Edwards, 1841 [Internet]. World axa, 4353:29-50. https://doi.org/10.11646/zootaxa.4353.1.2 Register of Marine Species, Accessed 29 Mar 2021, <http:// Darriba D, Taboada GL, Doallo R, Posada D, 2012. jModelTest www.marinespecies.org/aphia.php?p=taxdetails&id= 2: more models, new heuristics and parallel computing. Na- 103528>. ture Methods, 9:772. https://doi.org/10.1038/nmeth.2109 Smith KF, Abbott CL, Saito Y, Fidler AE, 2015. Comparison of Da Silva Oliveira FA, Michonneau F, da Cruz Lotufo TM, 2017. whole mitochondrial genome sequences from two clades of Molecular phylogeny of Didemnidae (Ascidiacea: Tunica- the invasive ascidian, Didemnum vexillum. Marine Genom- ta). Zoological Journal of the Linnean Society, 180:603-612. ics, 19:75-83. https://doi.org/10.1016/j.margen.2014.11.007 https://doi.org/10.1093/zoolinnean/zlw002 Tarjuelo I, Posada D, Crandall KA, Pascual M, Turon X, 2004. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Phylogeography and speciation of colour morphs in the co- Gascuel O, 2010. New algorithms and methods to estimate lonial ascidian Pseudodistoma crucigaster. Molecular Ecol- maximum-likelihood phylogenies: assessing the performance ogy, 13:3125-3136. https://doi.org/10.1111/j.1365-294X. of PhyML 3.0. Systematic Biology, 59:307-321. https://doi. 2004.02306.x org/10.1093/sysbio/syq010 Tokioka T, 1970. Ascidians from Mindoro Island, the Philip- Kimura M, 1980. A simple method for estimating evolution- pines. Publications of the Seto Marine Biological Laborato- ary rate of base substitutions through comparative studies ry, 18:75-107. https://doi.org/10.5134/175626 of nucleotide sequences. Journal of Molecular Evolution, Turon X, Tarjuelo I, Duran S, Pascual M, 2003. Characterising 16:111-120. https://doi.org/10.1007/BF01731581 invasion processes with genetic data: an Atlantic clade of Kott P, 2001. The Australian Ascidiacea Part 4, Aplousobran- Clavelina lepadiformis (Ascidiacea) introduced into Medi- chia (3), Didemnidae. Memoirs of the Queensland Museum, terranean harbours. Hydrobiologia, 503:29-35. https://doi. 47:1-407. org/10.1023/B:HYDR.0000008481.10705.c2 Kumar S, Stecher G, Tamura K, 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data- sets. Molecular Biology and Evolution, 33:1870-1874. Received September 22, 2020 https://doi.org/10.1093/molbev/msw054 Revised March 31, 2021 Lambert G, 2007. Invasive sea squirts: a growing global prob- Accepted April 6, 2021 Anim. Syst. Evol. Divers. 37(2), 160-164 163 References This study This study This study Unpublished Unpublished Unpublished Unpublished (2013)Perez-Portela et al. (2013)Perez-Portela et al. Perez-Portela et al.(2013) (2013)Perez-Portela et al. Perez-Portela et al.(2013) Perez-Portela et al.(2013) (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. Perez-Portela et al.(2013) (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. Perez-Portela et al.(2013) (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. Perez-Portela et al.(2013) (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. (2013)Perez-Portela et al. Unpublished Unpublished (2017)Da Silva Oliveira et al. (2015)López-Legentil et al. Unpublished Unpublished Unpublished (2015)Smith et al. st. Evol. Divers. 37(2), 160-164 y S 6 m. 5 ni A 55 9.0 2 54 0.0 9.0 2 53 1.4 1.4 4.8 2 2 3 52 5.8 0.2 0.2 8.7 2 2 2 3 51 2.7 7.9 0.3 0.3 9.3 2 2 2 2 2 50 1.8 2.6 0.0 6.4 6.4 8.9 3 3 3 2 2 3 49 7.2 7.0 6.8 6.8 1.7 1.7 1.8 2 2 2 1 2 2 3 48 6.2 0.5 3.3 3.0 4.6 8.3 8.3 5.1 2 3 2 2 2 1 1 3 47 0.2 6.2 0.5 3.3 2.9 4.6 8.3 8.3 5.1 2 3 2 2 2 1 1 3 46 9.0 9.3 5.9 1.3 3.8 6.4 6.7 8.3 8.3 6.5 1 1 2 3 2 2 2 1 1 3 45 1.5 9.6 9.9 5.6 0.4 3.3 6.4 7.9 9.2 9.2 6.9 1 1 2 3 2 2 2 1 1 3 44 1.3 0.2 8.8 9.0 5.6 1.0 3.5 6.1 6.4 8.0 8.0 6.1 1 1 2 3 2 2 2 1 1 3 43 6.9 7.4 7.1 9.3 9.5 5.0 0.7 3.5 6.4 6.7 8.3 8.3 5.8 1 1 2 3 2 2 2 1 1 3 42 4.5 3.9 4.3 4.2 3.7 3.7 3.8 1.4 7.1 4.0 5.2 0.4 0.4 4.8 2 2 2 2 2 2 2 3 2 2 2 2 2 3 41 5.7 2.7 2.8 3.1 3.0 2.8 2.8 5.5 4.0 5.7 4.0 5.5 8.0 8.0 1.8 2 2 2 2 2 2 2 3 2 2 2 1 1 3 40 2.1 8.0 1.8 1.9 2.2 2.1 0.8 0.7 5.5 2.8 3.3 1.1 5.1 5.8 5.8 0.3 2 2 2 2 2 2 2 3 2 2 2 1 1 3 39 0.3 0.6 8.7 2.3 2.9 4.4 3.2 0.3 0.3 1.5 4.2 3.7 1.8 5.9 6.8 6.8 9.6 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 2 38 0.2 0.0 0.9 9.0 2.6 3.2 4.7 3.5 0.1 0.0 1.8 3.9 3.4 1.5 6.1 7.1 7.1 9.3 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 2 37 1.5 1.7 8.7 9.5 7.7 1.5 2.0 3.5 2.3 9.5 9.5 1.3 4.2 3.1 1.5 7.7 6.8 6.8 9.3 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 36 0.4 1.5 1.3 9.2 9.5 7.7 0.9 1.5 2.9 1.7 9.5 9.5 0.8 4.2 3.1 1.5 7.3 6.3 6.3 9.3 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 35 0.2 0.6 1.7 1.5 9.5 9.3 7.4 1.2 1.8 3.2 2.0 9.8 9.8 1.0 4.5 3.4 1.8 7.5 6.6 6.6 9.6 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 34 0.4 0.2 0.6 1.7 1.5 9.0 9.3 7.4 0.6 1.2 2.6 1.5 9.2 9.2 1.0 4.2 3.4 1.2 7.5 6.0 6.0 9.6 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 33 2.3 2.4 2.1 2.1 2.8 3.0 9.8 0.6 9.0 2.0 2.0 3.5 2.3 0.6 0.6 9.3 3.3 3.7 1.5 8.7 7.3 7.3 8.7 1 2 1 2 2 2 2 2 2 2 2 2 1 1 2 32 1.9 0.4 0.4 0.2 0.2 1.3 1.5 8.9 9.8 7.9 1.2 1.8 3.2 2.0 9.2 9.2 1.0 3.9 2.8 1.2 7.5 6.6 6.6 9.0 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 31 9.4 0.3 9.8 9.8 9.6 9.6 9.8 0.1 0.6 0.6 7.7 1.5 0.4 1.6 0.7 8.5 8.8 5.8 3.6 3.4 2.6 5.0 6.9 6.9 1.8 1 1 2 2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 3 30 8.7 1.8 1.8 1.8 2.3 2.0 2.0 1.8 2.0 1.2 0.1 8.0 3.8 2.1 3.3 2.4 9.9 9.9 7.5 2.2 4.3 5.4 7.7 7.7 7.7 2.5 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 3 29 9.9 8.3 2.0 3.6 2.0 2.0 1.8 2.3 3.1 2.8 2.3 0.1 4.5 3.0 2.5 3.9 2.7 0.2 0.2 8.3 5.4 5.3 6.2 8.8 7.4 7.4 2.8 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 28 9.9 0.6 8.5 1.6 1.6 1.8 2.1 1.8 1.8 1.6 1.8 1.2 0.1 8.0 4.4 2.7 3.9 3.0 0.4 0.1 7.2 2.7 4.9 6.0 7.4 8.0 8.0 2.5 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 27 0.6 9.7 0.6 8.5 1.6 1.6 2.1 2.1 1.8 1.8 1.6 1.8 1.5 0.4 8.3 4.7 3.0 4.2 3.2 0.7 0.7 7.2 2.7 4.6 6.0 7.4 8.0 8.0 2.2 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 26 9.9 0.2 0.2 0.2 8.5 2.3 3.8 2.3 1.8 2.0 2.6 3.3 3.1 2.6 9.8 4.3 3.3 2.8 4.2 3.0 0.5 0.5 8.6 5.7 5.6 6.5 9.1 7.7 7.7 3.1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 25 9.7 0.6 0.4 9.5 0.8 8.0 1.1 1.1 1.6 1.6 1.3 1.3 1.1 1.3 0.9 9.8 7.7 4.1 2.4 3.6 2.7 0.1 9.8 6.7 2.4 4.9 5.7 6.9 7.7 7.7 1.8 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 1 1 2 2 2 1 1 1 3 24 0.2 9.5 0.4 0.6 9.2 0.6 8.0 1.1 1.1 1.6 1.6 1.3 1.3 1.1 1.3 0.9 9.8 7.7 4.1 2.4 3.6 2.7 0.1 0.1 6.7 2.1 4.6 5.4 6.9 7.4 7.4 1.5 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 23 0.4 0.2 9.9 0.4 0.2 9.7 0.6 8.2 1.3 1.3 1.8 1.8 1.6 1.6 1.3 1.6 1.2 0.1 8.0 4.4 2.7 3.9 3.0 0.4 0.1 6.9 2.7 4.6 6.0 7.1 8.0 8.0 2.2 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 22 9.2 8.7 9.0 1.9 9.2 9.5 2.1 9.4 7.8 1.8 3.3 1.8 1.3 1.5 2.0 2.3 2.0 2.6 0.7 5.6 3.3 2.8 4.2 3.0 0.8 0.8 7.7 5.1 5.6 5.9 8.0 8.0 8.0 3.1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 21 0.6 9.9 9.5 9.7 1.3 9.9 0.2 1.5 0.2 8.0 2.0 3.6 2.0 1.5 1.8 2.3 3.1 2.8 2.6 0.7 5.3 3.6 3.1 4.6 3.3 0.8 0.8 8.3 5.4 5.9 5.9 8.8 7.7 7.7 3.8 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 20 3.0 3.2 0.9 0.9 0.6 2.6 1.4 1.1 2.8 1.6 9.7 3.8 5.3 3.8 3.3 3.5 4.0 4.8 4.5 3.7 0.9 5.5 2.7 2.1 3.3 2.4 1.6 1.3 9.3 4.8 6.7 7.7 0.7 8.8 8.8 2.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 1 3 19 3.9 3.9 4.1 0.6 0.1 0.4 3.4 0.6 0.9 3.7 0.8 8.9 3.8 5.3 3.8 3.3 3.5 4.0 4.8 4.5 2.0 9.3 4.0 1.8 9.9 1.3 0.1 0.0 0.0 8.8 6.3 6.4 6.8 0.7 8.2 8.2 2.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 2 1 2 2 2 2 1 1 3 18 9.2 9.9 8.3 8.0 8.0 7.8 7.8 8.8 8.2 8.2 8.5 8.5 0.6 9.6 0.1 0.1 0.1 9.8 9.8 0.1 0.3 0.9 0.9 8.0 1.2 0.1 1.3 0.4 7.7 7.9 5.6 2.7 3.1 3.5 5.3 7.1 7.1 1.8 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 3 17 1.9 8.7 9.4 7.8 7.6 8.0 7.8 7.8 8.3 8.2 8.2 8.0 8.5 2.1 9.8 0.8 0.3 0.3 0.1 0.1 0.3 0.6 0.3 0.4 6.6 1.2 0.7 1.6 0.9 8.2 8.5 6.6 3.6 3.1 3.5 6.1 6.3 6.3 1.5 1 1 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 3 16 8.0 8.5 3.7 2.8 1.5 2.1 9.7 9.2 9.5 0.2 9.7 9.9 0.4 9.9 8.3 2.6 3.6 2.5 2.0 2.3 2.8 3.1 2.8 2.9 0.1 4.5 3.6 3.1 4.6 3.3 0.8 0.8 8.3 5.4 5.3 6.2 8.8 7.4 7.4 2.8 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 15 0.2 8.3 8.8 3.9 3.0 1.7 2.4 9.9 9.4 9.7 0.4 9.9 0.2 0.6 0.2 8.5 2.8 3.8 2.8 2.3 2.5 3.1 3.3 3.0 3.2 0.4 4.8 3.9 3.3 4.8 3.6 1.1 1.1 8.6 5.7 5.5 6.5 9.1 7.7 7.7 3.1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 14 0.2 9.9 8.7 8.7 0.4 1.1 0.2 9.5 0.8 0.8 1.1 0.2 0.8 1.1 9.9 1.1 8.9 1.8 1.8 2.3 2.3 2.1 2.1 1.8 2.1 1.2 0.2 8.0 4.5 2.4 3.6 2.7 0.4 0.4 7.0 2.5 4.3 6.3 7.7 8.0 8.0 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 13 0.4 0.6 0.4 8.5 8.5 3.7 2.8 1.5 2.1 0.2 9.7 9.9 0.2 0.2 0.4 0.4 0.4 8.3 2.0 3.6 2.0 1.5 1.8 2.3 3.1 2.8 2.9 0.1 4.5 3.0 2.5 3.9 2.7 0.8 0.8 8.3 5.4 5.3 6.2 8.8 7.4 7.4 2.8 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 12 0.4 9.9 0.6 0.4 8.0 8.5 3.2 2.8 1.5 2.1 9.7 9.2 9.5 0.2 9.7 9.9 0.4 9.9 8.3 2.0 3.6 2.0 1.5 1.8 2.3 3.1 2.8 2.3 9.5 4.0 3.0 2.5 3.9 2.7 0.2 0.2 8.3 5.4 5.3 6.5 8.8 7.4 7.4 2.8 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 11 9.5 9.9 0.6 9.7 9.5 8.0 8.0 0.4 1.1 9.7 9.0 0.2 0.2 0.4 9.7 0.2 0.4 9.5 0.4 8.2 1.3 1.3 1.8 1.8 1.6 1.6 1.3 1.6 1.2 0.1 8.0 4.4 2.7 3.9 3.0 0.4 0.4 6.9 2.4 4.3 5.7 7.1 7.7 7.7 1.8 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 10 8.7 1.1 1.1 9.2 0.8 0.6 7.3 7.8 4.3 3.4 2.1 2.8 9.0 8.5 8.7 0.8 9.0 9.2 1.1 9.2 7.6 2.1 3.1 2.0 1.6 1.8 2.3 2.6 2.3 2.6 9.8 4.8 3.6 3.3 4.8 3.6 0.5 0.5 8.0 5.0 5.8 6.5 8.3 7.7 7.7 2.5 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 d etho 9 0.8 9.7 0.2 0.2 10.2 0.4 0.2 8.3 8.8 3.4 2.6 1.3 1.9 9.9 9.5 9.7 0.0 9.9 10.2 0.2 10.2 8.5 12.3 13.8 12.3 11.8 12.0 12.6 13.3 13.1 22.6 19.8 14.3 23.3 22.8 24.2 23.0 20.5 20.5 18.6 25.7 25.6 26.5 19.1 17.7 17.7 33.1 m eter 8 0.0 0.8 9.7 0.2 0.2 10.2 0.4 0.2 8.3 8.8 3.4 2.6 1.3 1.9 9.9 9.5 9.7 0.0 9.9 10.2 0.2 10.2 8.5 12.3 13.8 12.3 11.8 12.0 12.6 13.3 13.1 22.6 19.8 14.3 23.3 22.8 24.2 23.0 20.5 20.5 18.6 25.7 25.6 26.5 19.1 17.7 17.7 33.1 m a 2 2 1 9 4 4 4 6 4 5 0 6 8 5 1 2 7 9 2 2 4 4 4 8 5 1 5 0 3 8 6 3 9 1 5 6 0 5 3 8 8 8 4 8 8 3 0 0 5 ar 7 0. 0. 1. 9. 0. 0. 0. 0. 0. 8. 9. 3. 2. 1. 2. 0. 9. 9. 0. 0. 0. 0. 0. 8. 2. 4. 2. 2. 2. 2. 3. 3. 2. 0. 4. 3. 3. 4. 3. 0. 0. 8. 5. 5. 6. 9. 8. 8. 3. p 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 - ra 2 6 0.0 0.2 0.2 1.1 9.9 0.4 0.4 0.4 0.6 0.4 8.5 9.0 3.6 2.8 1.5 2.1 0.2 9.7 9.9 0.2 0.2 0.4 0.4 0.4 8.8 2.5 4.1 2.5 2.0 2.3 2.8 3.6 3.3 2.9 0.1 4.5 3.6 3.0 4.5 3.3 0.8 0.8 8.8 5.4 5.8 6.8 9.3 8.0 8.0 3.5 u 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 1 1 1 3 m e Ki 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 h g t 0 0 0 2 2 1 9 4 4 4 6 4 5 0 6 8 5 1 2 7 9 2 2 4 4 4 8 5 1 5 0 3 8 6 3 9 1 5 6 0 5 3 8 8 8 4 8 8 3 0 0 5 sin 4 0. 0. 0. 0. 0. 1. 9. 0. 0. 10. 0. 0. 8. 9. 3. 2. 1. 2. 10. 9. 9. 0. 10. 10. 0. 10. 8. 12. 14. 12. 12. 12. 12. 13. 13. 22. 20. 14. 23. 23. 24. 23. 20. 20. 18. 25. 25. 26. 19. 18. 18. 33. u d 2 2 2 2 0 0 8 7 2 2 2 4 2 3 8 4 6 3 9 9 5 7 0 9 2 2 2 5 3 8 3 8 0 6 3 1 6 8 3 3 8 2 0 5 5 6 7 6 5 1 7 7 1 ate 3 0. 0. 0. 0. 0. 0. 0. 9. 0. 0. 10. 0. 0. 8. 8. 3. 2. 1. 1. 9. 9. 9. 0. 9. 10. 0. 10. 8. 12. 13. 12. 11. 12. 12. 13. 13. 22. 19. 14. 23. 22. 24. 23. 20. 20. 18. 25. 25. 26. 19. 17. 17. 33. ul y, calc 2 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.8 9.7 0.2 0.2 10.2 0.4 0.2 8.3 8.8 3.4 2.6 1.3 1.9 9.9 9.5 9.7 0.0 9.9 10.2 0.2 10.2 8.5 12.3 13.8 12.3 11.8 12.0 12.6 13.3 13.1 22.6 19.8 14.3 23.3 22.8 24.2 23.0 20.5 20.5 18.6 25.7 25.6 26.5 19.1 17.7 17.7 33.1 stud 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 s hi s 16bp mitochondrial COI sequences in t Localilty Jukbyeon, Korea Jukbyeon, Korea Jukbyeon, Korea California, USA California, USA California, USA California, USA California, USA Worldwide: California, USA; Plymouth, UK; Cape Town, South Africa; Hout Bay, South Africa; Bastimentos Is., Panama; Santander Bay, Spain; Arenys, Spain; Coquimbo, Chile; Melbourne, Australia California, USA Worldwide: California, USA; Plymouth, UK; Cape Town, South Africa; Hout Bay, South Africa; Santander Bay, Spain; Arenys, Spain; Coquimbo, Chile; Antofagasta, Chile; Melbourne, Australia Worldwide: Washington, USA; Coquimbo, Chile; Antofagasta, Chile Worldwide: Washington, USA; Coquimbo, Chile Plymouth, UK Plymouth, UK Worldwide: Plymouth, UK; Cape Town, South Africa; Hout Bay, South Africa Port Alfred, South Africa Port Alfred, South Africa Port Alfred, South Africa Port Alfred, South Africa Santander Bay, Spain Santander Bay, Spain Coquimbo, Chile Coquimbo, Chile Worldwide: Coquimbo, Chile; BastimentoIs., Panama; Bacas Marina, Panama Coquimbo, Chile Coquimbo, Chile Coquimbo, Chile Coquimbo, Chile Arenys, Spain Arenys, Spain Port Alfred, South Africa Bacas Marina, Panama Bacas Marina, Panama Bacas Marina, Panama Bacas Marina, Panama Bacas Marina, Panama Bacas Marina, Panama Bacas Marina, Panama Kanagawa, Japan Kanagawa, Japan Kanagawa, Japan Hout Bay, South Africa Bastimentos Is., Panama Port Alfred, South Africa Port Alfred, South Africa Bastimentos Is., Panama Bastimentos Is., Panama 5 ed on Clade - - - A A A A A A A A A A A A A A A A A A A A A A A A A A A A A.1 A.1 A.1 A.1 A.1 A.1 A.1 A.1 B B B C C C C D D s a b e values(%) Accession No. MT983895 MT983896 MT983897 KY235585 KY235588 KY235590 KY235593 KF791867 KF791868 KF791869 KF791870 KF791871 KF791872 KF791873 KF791874 KF791875 KF791880 KF791881 KF791882 KF791883 KF791894 KF791895 KF791900 KF791901 KF791903 KF791904 KF791905 KF791906 KF791907 KF791908 KF791909 KF791884 KF791885 KF791886 KF791887 KF791888 KF791889 KF791890 KF791891 KF791896 KF791897 KF791898 KF791876 KF791877 KF791878 KF791879 KF791892 KF791893 KX650792 KX650796 KU221218 KF309624 KX650797 MH258861 MH258862 KM259616 nit I. c u n b a u Taekjun Lee, Sook Shin Appendix 1. Pairwise dist Species 1Diplosoma listerianum 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49D. gelatinosa 50D. multifidum 51D. simile 52D. spongiforme 53D. swamiensis 54Diplosoma sp. 55Diplosoma sp. 56Didemnum vexillum COI, cytochrome c oxidase s 164

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.