Dividend Taxation and Intertemporal Tax Arbitrage Anton Korinek and Joseph E. Stiglitz Oslo August 2008 AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 1/50 Contributions 1 General life cycle theory of the firm under dividend taxation (cid:73) inastochasticworld (cid:73) withimperfectcapitalmarkets 2 Analysis of the impact of dividend taxation: (cid:73) effectsoftemporarydividendtaxcutoninvestmentandoutput likelytobeadverse 3 Political economy for contestable democracies: (cid:73) thereisnosuchthingaspermanentpolicies (cid:73) thishasfirstorderimplicationswheneverprivateagents’actions entailintertemporaleffects AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 2/50 Motivation Motivation Fierce debate over the effects of dividend taxation (cid:73) Traditionalview: taxationdistortionary (cid:73) Newview: marginalincentivetoinvestisunaffected ⇒ we develop a stochastic life-cycle model incorporating both views Role of capital market imperfections is largely ignored (cid:73) Firm’spayoutpolicyaffectsitsabilitytoinvest ⇒ we analyze the implications of this for dividend taxation Tax policy is analyzed as if changes were permanent (cid:73) Incontestabledemocracynopolicyispermanent (cid:73) Rationalagentsanticipatethis ⇒ we analyze this as an infinitely repeated dynamic game AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 3/50 Overview Overview 1 Analysis of Firms and Effects of Dividend Taxation (cid:73) Constructvaluefunction (cid:73) Describebehaviorundernotaxation/constanttaxation (cid:73) Effectsofunanticipatedchangesintaxation (cid:73) Implicationsofanticipatedchangesintaxation (cid:73) Aggregatebehaviorofthemacroeconomy 2 Political Economy of Dividend Taxation (cid:73) Keydeterminantoffirmbehavior: beliefsaboutfuturetaxrates (cid:73) Futuretaxratesinturndependonpartyrule (cid:73) Markovmodelwithexogenouslyfixedtaxrates (cid:73) Markovmodelwithendogenoustaxrates AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 4/50 Life-CycleModelofFirms AnalyticalSetup Key Considerations Holding cash is costly because of agency problems: (cid:73) investors’discountfactorisβ < 1 , 1+r i.e.lessthantherisk-freediscountrate(assumedexogenous) (cid:73) ⇒incentivetopayoutdividendsD t Investment opportunities arrive randomly: (cid:73) Bernoullivariableλ˜ indicateswhetherthereisaninvestment t opportunityattimet (cid:73) Probabilityforinvestmentopportunityisp (cid:73) Ifλ˜ =1,theninvestingI yieldsG(I )=AIα−(1+r)I t t t t t Capital market imperfections: (cid:73) preventfirmsfromquicklyraisingnewcash (cid:73) investmentthusreliesoninternalcashholdingsM : t I ≤M −D t t t ⇒ link between incentive to pay dividends, investment, and output AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 5/50 Life-CycleModelofFirms AnalyticalSetup Key Results 1 Firms can be analyzed by looking at three distinct stages: (cid:73) Newfirms: M =0,needtoraisecashinequitymarkets t (cid:73) Youngfirms: 0<M <M∗,retainalltheirearnings t (cid:73) Maturefirms: M ≥M∗,distributealltheirearnings t optimal cash holdings M∗ determined by the trade-off between the cost of holding cash and expected cost of capital constraints 2 Most firms in the economy are mature: Mt ≥ M∗. For these: (cid:73) Theleveloftaxationisirrelevant (cid:73) Unanticipatedpermanentdividendtaxchangeshavenoeffect (cid:73) Anticipatedincreases(decreases)intaxationallowfor intertemporaltaxarbitrageandtemporarilylower(raise)cash holdings,investment,andoutput (cid:73) Probabilistictaxchangeshavesimilareffects AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 6/50 Life-CycleModelofFirms AnalyticalSetup Key Results (2) 1 Unanticipated temporary tax changes are equivalent to: (cid:73) unanticipatedchangeinonedirection (cid:73) expectedreversalofthischangeinalaterperiod 2 Effects of unanticipated temporary tax cut: (cid:73) maturefirms: noeffectoftemporarilylowerrate atexpiration: highdividendpayout⇒loweroutputandinvestment (cid:73) youngfirms: temporarilylowerrate: (cid:70) iftaxcutisshort-lived: irrelevant(taxwillberaisedagainbeforefirm makesdividendpayments) (cid:70) iflongenough: initialperiodinwhichnewlyestablishedfirmsraise morecapital,havehigherequitybuild-up,moreinvestmentandoutput atexpiration: highdividendpayout⇒loweroutputandinvestment (cid:73) aggregateeffectdominatedbymaturefirms: ⇒overallnegativeeffectonoutputandinvestment AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 7/50 Life-CycleModelofFirms AnalyticalSetup Firms’ Maximization Problem Optimization problem of growing or mature firms under constant dividend tax rate τ: (cid:40) ∞ (cid:41) (cid:88) V(M ) = max E βt (1−τ)D 0 t {Dt,It,Mt+1}∞t=0 t=0 s.t. M = (1+r)[M −D ]+λ˜ G(I ) t+1 t t t t M ≥ I +D t t t D ≥ 0 t with M > 0 given. 0 or, in recursive notation: (cid:110) (cid:111) V(M ) = max(1−τ)D +βEV (1+r)[M −D ]+λ˜ G(I ) t t t t t t Dt,It AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 8/50 Life-CycleModelofFirms AnalyticalSetup Firms’ Value Function V(M ) t 5.5 V’ = 1−τ M)t5 V’ > 1−τ V( e u al m v4.5 fir 4 ISS = M∗ I∗ 3.5 0 0.5 1 1.5 2 cash holdings M t Figure: ThevaluefunctionV(M )canbedeterminediterativelyfromfirms’ t maximizationproblem. Parametervaluesused: α=1/2,β =0.93,r =0.01, p =1/2,τ =38.6%,AcalibratedsothatISS =1. AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 9/50 Life-CycleModelofFirms Steady-StateAnalysis Firms in Steady State Proposition (Steady state investment) The amount of money ISS that a firm in steady state sets aside for investment is defined by a marginal product of β[pF(cid:48)(ISS)+(1−p)(1+r)] = 1 Intuition: Both sides of this equation can be multiplied by (1−τ) Resulting equation: discounted expected benefit of holding cash = cost of paying out dividends Note: without capital constraints, optimum investment is F(cid:48)(I∗) = 1+r The two solutions coincide if β = 1 , otherwise ISS < I∗ 1+r AntonKorinekandJosephE.Stiglitz (2008) DividendTaxation Oslo 10/50
Description: