ebook img

Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest PDF

20 Pages·2017·22.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest

RESEARCHARTICLE Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest GeanneCarlaNovaisPereira1*,MarcelSerraCoelho1,2,MarinadoValeBeirão1,3,Rodrigo FagundesBraga4,5,GeraldoWilsonFernandes1 1 UniversidadeFederaldeMinasGerais/EcologiaEvolutiva&Biodiversidade/DBG,ICB/,BeloHorizonte MG,Brazil,2 UniversidadeEstadualPaulista,InstitutodeBiociências,DepartamentodeBotaˆnica, Laborato´riodeFenologia,RioClaro,SãoPaulo,Brazil,3 UniversidadeFederaldeOuroPreto,Programade EcologiadeBiomasTropicais,CampusMorrodoCruzeiro,OuroPreto,MinasGerais,Brazil,4 Universidade FederaldeLavras,SetordeEcologiaeConservac¸ão,CampusUniversita´rio,Lavras,MinasGerais,Brazil, 5 UniversidadedoEstadodeMinasGerais,UEMG,UnidadeDivino´polis,Divino´polis,MG,Brazil a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Weprovidethefirstdescriptionoftheeffectsoflocalvegetationandlandscapestructureon thefruit-feedingbutterflycommunityofanaturalarchipelagoofmontanerainforestislands intheSerradoEspinhac¸o,southeasternBrazil.Butterflieswerecollectedwithbaittrapsin OPENACCESS elevenforestislandsthroughbothdryandrainyseasonsfortwoconsecutiveyears.The Citation:PereiraGCN,CoelhoMS,BeirãoMdV, influenceoflocalandlandscapeparametersandseasonalityonbutterflyspeciesrichness, BragaRF,FernandesGW(2017)Diversityoffruit- feedingbutterfliesinamountaintoparchipelagoof abundanceandcompositionwereanalyzed.Wealsoexaminedthepartitioningandde- rainforest.PLoSONE12(6):e0180007.https://doi. compositionoftemporalandspatialbetadiversity.Fivehundredandtwelvefruit-feeding org/10.1371/journal.pone.0180007 butterfliesbelongingtothirty-fourspecieswererecorded.Butterflyspeciesrichnessand Editor:PetrHeneberg,CharlesUniversity,CZECH abundancewerehigheronislandswithgreatercanopyopennessinthedryseason.Onthe REPUBLIC otherhand,islandswithgreaterunderstorycoveragehostedhigherspeciesrichnessinthe Received:January20,2017 rainyseason.Instead,thebutterflyspeciesrichnesswashigherwithlowerunderstorycov- Accepted:June8,2017 erageinthedryseason.Butterflyabundancewasnotinfluencedbyunderstorycover.The landscapemetricsofareaandisolationhadnoeffectonspeciesrichnessandabundance. Published:June30,2017 Thecompositionofbutterflycommunitiesintheforestislandswasnotrandomlystructured. Copyright:©2017Pereiraetal.Thisisanopen Thebutterflycommunitiesweredependentonlocalandlandscapeeffects,andthemecha- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which nismofturnoverwasthemainsourceofvariationinβdiversity.Thepreservationofthis permitsunrestricteduse,distribution,and mountainrainforestislandcomplexisvitalforthemaintenanceoffruit-feedingbutterflycom- reproductioninanymedium,providedtheoriginal munity;oneislanddoesnotreflectthediversityfoundinthewholearchipelago. authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaper. Funding:TheauthorsthanktheProgramade Introduction PesquisasEcolo´gicasdeLongaDurac¸ão(PELD Cipo´),theprojectComCerrado,Coordenac¸ãode Mechanismsthatmaintainthestructureofcommunitieshavearousedgreatinterestfromthe Aperfeic¸oamentodePessoaldeN´ıvelSuperior scientificcommunity[1].Environmentalconditionscanplayapercussiverole,orfilters,facili- (CAPES),ConselhoNacionaldeDesenvolvimento tatingorhinderingtheestablishmentofspecies[2,3].Environmentalparameters,indicativeof Cient´ıficoeTecnolo´gico(CNPq),Fundac¸ãode environmentalstructure,functionasafilterinthestructuringofcommunities,preventingthe AmparoàPesquisadeMinasGerais(FAPEMIG), establishmentofsomespecies[4,5].Thesefilterscanbeglobal(e.g.effectsofclimate),regional theReservaVelloziaforthefinancialandlogistical support. (e.g.,effectsoflandscape)andlocal(e.g.,effectsofhabitat).Ecologicalrelationshipsthatare PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 1/20 Butterfliesinmountaintoprainforestislands Competinginterests:Theauthorshavedeclared antagonistic(e.g.,predation,herbivory,parasitism,competition)ormutualistic(pollination, thatnocompetinginterestsexist. facilitation),mayrepresentthemostimportantstructuringmechanismsofbiologicalcommu- nities,havingthepotentialtoinfluencethedistributionofspeciesalongenvironmentalgradi- ents[5]. Fruit-feedingbutterfliesareexcellentmodelsfortestinghypothesesregardingtheeffects ofenvironmentalfiltersintropicalbiologicalcommunities.Theiruseisfacilitatedbythe availabilityofrelativelysimpleandcheaptrappingmethodsthatpermitreplicationand standardizationofsamplingforcomparisonsamongdifferentenvironments,besidesbeing taxonomicallywellknown[6].Amonglocalfactorsthataffecttropicalforestbutterflycommu- nities,thefrequencyandintensityofclearings,microclimate(e.g.,temperature,windand rain),luminosity,presenceofhostplantsforcaterpillarsandfoodresourcesforadultsareof greatrelevance(e.g.[7–9]).Thesefactorsarestronglyrelatedtovegetationstructure[10], whichisacomponentofessentialhabitatforbutterfliesgivenitsrelationshiptothermoregula- tionandtheprovisionofrestingandmatinglocations[11,12].Forestbutterflycommunities arealsoinfluencedbystructuralfactorsofthehabitat,suchastopography,verticalstratifica- tion,edgeeffect,matrixqualityasdifferentlevelsofdisturbanceorevenmatrixofnatural grasslands[13–16].Twovariablescanbeeasilymeasuredtocharacterizelocalorhabitatstruc- ture:opennessofthecanopyandunderstorycover.Canopyopennessisrelatedtothelevelof humidityandtemperature;themoredenseorclosedthecanopy,thelesssolarincidenceand themorehumidbecomesthehabitat[8].Often,speciesrichnessandabundanceofinsects tendtobegreaterinforesthabitatswithmoreopencanopies(e.g.[8,17]),includingbutterflies [18],howeversomegapsresultedbyanthropicimpactscancauseoppositeeffects[19].The densityorcoverageofunderstoryvegetationisanotherimportanthabitatvariablethatinflu- encecommunitystructure.Highdensityofunderstoryvegetationcanhindertheforagingand reproductiveactivitiesofbutterflies,resultinginadeclineinspeciesrichness(e.g.[20,21]). Regionalfactorsaffectingbutterflycommunitiesintropicalforestsincludefeaturesofthe landscapethatinfluencetheentiresystemviaedgeeffects[22].Areaanddegreeofisolationof forestfragmentsareimportantmetricsforinsectcommunities.Areacaninfluenceresource abundanceandthestructuralcomplexityofvegetation[10,23–25].Therefore,speciesrichness canbepositivelycorrelatedwithareaandnegativelywithisolation[26–28].However,this topicisnotcompletelyunderstoodforinvertebrates.Therearecorrelationsofincreased(e.g. [23,29,30],decreased(e.g.[31])andabsenceofeffect(e.g.[32,33])betweenspeciesrichnessof invertebratesandarea.Thespeciesrichnesscandeclinewithincreasedisolationinsimple landscapesandsmallfragments,butnotincomplexlandscapesandlargefragments[34].Spe- ciesrichnessisdeterminedbyabalancebetweenareaorisolation,whereinthenumberofspe- ciestendstobecomeconstantovertimeduetothecontinuousprocessofreplacementof speciesorturnover[26,35–37].Somebutterflieshavelargethoraxvolumescombinedwith comparativelyshorterforewinglengthsallowinglongflights.Speciallythosebutterflieswith adaptivemorphologiespermitforagingflightsunderaregionalscale[24].Itisalsoexpected thatspeciesrichnessofforestspecialistsincreasewithincreasingconnectivityamongfrag- ments,aswellaswiththeareaofadjacentforestfragments,asalreadydocumentedforbutter- flies(see[38]).Largefragmentsorcontinuousareasofforestcanfunctionasacontinentina source-sinksystemandtheclosestfragmentsassteppingstones(see[39]),facilitatingthe movementofspeciesamongfragmentsinapossiblemetacommunitydynamic(see[40]). Localandregionalenvironmentalparametersalsoactsynergisticallytoproduceandmain- tainpatternsofdiversity,bothinspaceandtime.Habitatstructurealsohasastronginfluence onpatternsofbetadiversityofarthropods[41].Betadiversityreferstothediversityamong habitats,andthedifferenceinspeciescompositionamonglocationsorintervalsoftime[42]. Thisdifferencecanbeexplainedbythesubstitutionofspecies(turnover)orthelossofspecies PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 2/20 Butterfliesinmountaintoprainforestislands (nesting)dependingontheintensityoflocalandregionalforcesactingonthecommunity [43].Responsestohabitatheterogeneityvaryamongbutterflysubfamiliesaccordingtothe foraginghabitatsandadaptations[19].Seasonalityisalsorecognizedasastrongdriverofbut- terflycommunities.Seasonalityisverydeterminanttoplantphenology,andbutterflycommu- nitiesfollowthosecirclesofresourcesavailability[44,45]. Naturallyfragmentedlandscapesrepresentanimportantscenariowhereonecanobserve theforcesthatshapecommunitystructure[33].Althoughwidelystudiedinislands(e.g. [32,46])andartificiallyfragmentedareas(e.g.[47–51]),therearefewstudiesonbutterfliesin naturallyfragmentedenvironments[52,53].Itislikelythatdifferentprocessesleadtodifferent patternsinislandswithnaturalvegetation.Naturalfragmentedforestscanbefoundinthe highestpoints(above1200metersinelevation)intheEspinhac¸omountainrangeinsoutheast- ernBrazil,immersedinrupestriangrasslandvegetationmatrix[16].Theseislandsofrainforest vegetationrequirespecificclimateandsoiltodevelop,beingfoundinerosionvalleys,inloca- tionswithoutboulders,coveringhills,andformsatruenaturalarchipelagoofforestvegetation stronglyassociatedwiththeregionsofheadwaters,rivers,creeksandsmallstreams[16,54,55]. Thepatternsofdiversityoffruit-feedingbutterflycommunitieswereanalyzedinanarchi- pelagoofnaturalislandsofAtlanticrainforestintheEspinhac¸omountainrange,Brazil.Inthis studywetestedthefollowinghypotheses:i)theopennessofthecanopyhasapositiveeffecton therichnessandabundanceofbutterflies;ii)thecoverageoftheunderstoryhasanegative effectontherichnessandabundanceofbutterflies;iii)therichnessandabundanceofbutter- fliesaregreaterintherainyseasonthaninthedryseason;iv)therichnessandabundanceof fruit-feedingbutterfliesincreaseswiththesizeofforestislands(e.g.areaandperimeterof island);v)therichnessandabundanceoffruit-feedingbutterfliesdecreaseswithlevelofisola- tion;vi)thespeciescompositionoffruit-feedingbutterfliesoftheforestislandsisnotstruc- turedbychance;vii)thespeciescompositionoffruit-feedingbutterfliesisdependentonboth local(opennessofcanopyandunderstorycover)andlandscape(areaandisolation)effectsand seasonality. Materialsandmethods Studylocation ThestudyareawaslocatedinSerradoCipó,municipalityofSantanadoRiacho,MinasGerais, Brazil(19˚14’19"S43˚31’35"W,Fig1),inthesouthernportionoftheEspinhac¸omountain range.TheclimateistypeCwb(mesothermalaccordingtotheKo¨ppenclassification)with humidsummersanddrywinters.Averageannualrainfallrangesfrom1,300to1,600mmand isconcentratedinthesummer,andaveragetemperaturesarebetween17.4and19.8˚C[56]. Floristically,forestedislandsfoundinSerradoCipóareassociatedwiththeAtlanticForest domain,withsomeCerradospecies[16].Theelevationofthestudiedislandsvariedfrom1230 to1331metersabovesealevel.Theaverageannualtemperatureoftheregionfor2014and 2015was18.8˚C(datafrommeteorologicalstationsOnsetHOBO1U30data-logger,installed at1200,1300and1400metersofaltitudeinthestudysite). Sampling Sampledesign. Elevenrainforestislandsofdifferentsizeswereselected(Fig1).Three islandswerelocatedwithintheParqueNacionaldaSerradoCipó(Islands8,9and10)while theremainderwerelocatedwithinthebufferingparkzonenamedÁreadeProteçãoAmbiental MorrodaPedreira(hereafterAPA)(Table1)[16].Islandswerechosenconsideringtheirsize (largeenoughsothatpartcouldbesampledforbutterflies),stateofconservation(preference forislandswithlowanthropicimpact)andaccessibility(Fig2A,2B,2Cand2D).Thestudied PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 3/20 Butterfliesinmountaintoprainforestislands Fig1.Mapofthestudyarea,SerradoCipo´,MinasGerais,Brazil(SIGLeebCartografyRapidEyeImage2015). https://doi.org/10.1371/journal.pone.0180007.g001 islandsvariedinsizefrom12,938m2to358,185m2(Table1).Ineachisland,a50x20mplot wasestablishedatleast20mfromtheborder,exceptforIslands3,5,8and11,whichwere closertotheedgeduetotheirsmallsizeandshape(Fig2A).Toobservetheeffectofseasonality onvariationinbutterflies,twosamplesweremadeperyear,oneduringtherainyseason(Feb- ruary)andtheotherduringthedryseason(August)forthetwoconsecutiveyearsof2014and 2015. Butterflycollection. AteachcornerofeachplotaVanSomeren-Rydonbutterflytrap wasset(n=4traps/island;ntotal=44)(Fig2B).Thetrapsconsistedofa110cmtalland35 cmdiameterfinescreencylinderthatwasclosedatthetop.Thebaseofthetrapconsistedofa platformonwhicha50mlplasticcupwithbaitwasplaced[57].Trapswerebaitedwithfer- mentedbananawithsugarcanejuiceataratioof3:1,whichwaspreparedtwodayspriorto use,andsuspendedbetween70and100cmabovetheground.Butterfliesattractedbythe smellofthebaitenteredthroughanopeninginthebottomofthecylindertofeed,andwhen theymovedupwardtheywouldbecometrapped[58].Eachfieldcampaignconsistedoffive samplingdays,thefirsttosetthetrapsandthefollowingfourtocollectthesampledindividuals andchangebaitevery24hours.Thetotaleffortwas704days-traps(44trapsx4samplingsx4 PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 4/20 Butterfliesinmountaintoprainforestislands Table1. Area,perimeter,distancetonearestcontinuousforest,distancetoclosestforestisland,altitude,location,andgeographiccoordinatesof the11forestislandsinSerradoCipo´,Brazil. Island Area Perimeter Distancetothecontinuous Distancetoclosestforest Altitude Location Coordinates # (m2) (m) forest(km) island(km) (m) 1 12,938 480 0.88 0.13 1,239 APA S1913’ W4330’ 01.97237’’ 28.67035’’ 2 84,909 1,807 1.14 0.56 1,235 APA S1911’ W4330’ 58.18605’’ 31.58434’’ 3 16,316 857 1.4 0.11 1,234 APA S1912’ W4330’ 47.65259’’ 46.21099’’ 4 169,562 2,836 2.06 0.78 1,269 APA S1913’ W4330’ 34.60436’’ 55.97316’’ 5 29,716 911 5.47 0.23 1,309 APA S1914’ W4332’ 21.24191’’ 26.10892’’ 6 113,399 2,220 7.37 0.19 1,317 APA S1915’ W4333’ 10.76660’’ 07.45422’’ 7 58,653 1,192 7.35 0.1 1,331 APA S1914’ W4333’ 40.91360’’ 20.64709’’ 8 57,557 1,366 2.49 0.34 1,271 Park S1914’ W4330’ 19.32289’’ 45.68173’’ 9 358,185 3,685 3.5 0.3 1,230 Park S1915’ W4331’ 18.03651’’ 01.00603’’ 10 82,375 1,502 6.2 0.21 1,324 Park S1915’ W4332’ 34.38313’’ 32.32418’’ 11 16,113 675 6.91 0.3 1,273 APA S1914’ W4333’ 52.58462’’ 03.19909’’ https://doi.org/10.1371/journal.pone.0180007.t001 samplingdays).Collectedindividualsweresacrificedbythoraciccompressionandplacedin entomologicalenvelopeswithsamplingdata,includingdate,islandnumberandtrapnumber, forlateridentification.Inthelaboratory,individualswereidentifiedtothelowestpossibletax- onomiclevelusingguides[59–61]andthehelpoftaxonomists.Afteridentification,threeindi- vidualsofeachspecies(wheneverpossible)weremounted,correctlypreparedanddeposited intheLaboratóriodeEcologiaEvolutiva&Biodiversidade,oftheUniversidadeFederaldeMinas Gerais. Canopyopenness. Toevaluatecanopyopennessofislands,hemisphericalphotoswere takenwithafisheyelensattachedtoaPentaxdigitalcamerafromeachofthefourcornersof eachplotofeachisland.Thephotosweretakenat1.50mabovethegroundandthenprocessed fortheproportionofwhiteandblackpixels,whichwereaveragedoverthefourphotostogeta singlevalueofcanopyopennessforeachisland.Thesedatawerecollectedduringallperiodsof butterflysamplinginbothseasons.TheimageswereprocessedusingtheRsoftwarepackage “ReadImages”[62]and“RT4Bio”[63]. Understorycover. Digitalimagesofshrubbyandherbaceousvegetationwereusedto measuretheinfluenceofunderstoryvegetationcoveronthebutterflycommunity.Thevegeta- tionwasphotographedatthecornerofeachplotusinga100cmx100cmwhitescreenasa backdropwiththecamerapositionedatthreemetersfromthescreenandonemeterabovethe ground[20,64].Fourphotosoftheunderstory,oneineachcardinaldirection,weretakenat eachcorneroftheplotsforatotalof16photosforeachislandforeachcampaign.Theareasof thewhitebackdropwerecutfromthephotosandedgesaddedtodefinethepartofthephoto tobeanalyzedusingthesoftwareGimp2(GnuImageManipulationProgram2.8.14).Very darkphotoswithpatchesofshadowsorsunwerediscarded.Vegetationcoverisdefinedasthe ratioofwhiteandblackpixelsinthephotos[20].Theaverageofthevaluesofthephotostaken PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 5/20 Butterfliesinmountaintoprainforestislands Fig2. (A)Schematicdrawingof20x50mplotestablishedontheislands(Image@2015CNES/Astrium-Google EarthPro).(B)VanSomeren-Rydonfrugivorousbutterflytrap.(C):Externalviewoftheislands5.(D)Internalview oftheisland. https://doi.org/10.1371/journal.pone.0180007.g002 ateachmeasurementwereusedasavaluefortheunderstorycoverforeachisland.Theimages wereprocessedusingtheRsoftwarepackage“EBImage”[62]. Landscapeparameters. Thedistanceofeachislandtothecontinuousforestandthedis- tancetootherislandswereusedasameasureofisolationoftheforestislands[39].Themetrics ofarea,perimeteranddistancebetweenfragmentswasobtainedwithhelpofthesoftware FRAGSTATS[65].Aftervectorization,thefilewasconvertedintoaformatcompatibleto FRAGSTATS(ASCII)[66].Thedistancesbetweenforestislandsweregeneratedfromthe automateddefinitionoftheanalyzedcentroids. PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 6/20 Butterfliesinmountaintoprainforestislands Statisticalanalyses TherichnessestimatorJackknife1wasusedtoestimatespeciesrichness,anonparametric methodthatutilizesthenumberofrarespeciesthisisfoundinasinglesample(uniques)[67]. Duetothenatureofthedata,twocategoriesofmodelsweredesignedtotestlocal(vegeta- tionparametersaccordingtoseasonality)andregionalinfluencesonthebutterflycommunity. AllofthestatisticalanalyseswereperformedusingthesoftwareR[68]. Totesttheeffectofvegetationdependingontheseasonalityonbutterflyspeciesrichness andabundance,thebutterflycommunityvalueswereusedasresponsevariables(speciesrich- nessandabundance),whiletheinteractionbetweenvegetationvariables(canopyopenness andunderstorycoverage)andseasons(dryandrainy)wereusedasexplanatoryvariables. TheforestedislandswereincludedasrandomfactorsinaGeneralizedLinearMixedModel (GLMM)[69],usingthe“Poisson”distributionoferrorsforthetwovariables(richnessand abundance).Theanalysiswasconductedusingthepackage“lme4”[70],withthefunction “glmer”.Allofthevariablesweretestedtogetherandthenon-significantones(p>0.05)were removed(stepwise)untiltheminimummodeladequacyisobtained.Thepackage“MuMIn” [71]wasusedwiththefunction“r.squaredGLMM”[72]toobtainthevalueofR2.Tovisualize theeffectofthesignificantvariablesusinggraphsweperformedseparateGeneralizedLinear Models(GLMs).TheGeneralizedLinearModelswereconductedinordertoallowthegraphi- calinterpretationoftheGeneralizedLinearMixedModelresults. Totestthehypothesisthatfruit-feedingbutterflyspeciesrichnessandabundanceincreases withislandsizeanddecreaseswithislandisolation,thebutterflycommunitymetrics(richness andabundanceofspeciesaccumulatedinallsamplings)wereusedasresponsevariablesand thevariablesofthelandscape(areaandperimeterofeachisland,distancetotheclosestisland andtocontinuousforest)wereusedasexplanatoryvariablesinaGeneralizedLinearModel (GLM)[69]witha“Quasipoisson”distributionoferrorsforbothrichnessandabundance.To testthediversitybetweentheseason,fruit-feedingbutterflyspeciesrichnessandabundance persamplewereusedasresponsevariableandtheseasonwereusedasexplanatoryvariablein aGeneralizedLinearModel(GLM)[69]witha“Quasipoisson”distributionoferrorsforboth richnessandabundance. Totestwhatregionalscalemostcontributestothetotalnumberofspeciesinallislandsan analysisofadditivepartitionofdiversity(β=γ-α)wasused.Thealpha(α)representsthe diversityofeachisland,thebeta(β)representsdiversitybetweenislands,andthegamma(γ) representstotaldiversityoftheforestarchipelago.Thepackages“vegan”[73]and“betapart” [74]wereusedwiththefunctions“adipart”[75],“beta.pair”and“beta.temp”[76].Thediffer- enceofthediversitybetweentheforestislands(spatialβ)oralongthesamplingtime(temporal β)canbeduetonestedness(speciesgainorloses)orturnover(speciesreplacementamongthe forestislandsorsamplingtime)ofspecies.Ananalysisofβpartitionwasmadetotestifthe temporalandspatialβareduetoturnoverornestedness.Thisanalysiswasmadeusingthe package“vegan”[73]andresultsinthreeindexes:theSimpsonindex(βSIM)expressesthe turnover,theSøresenindex(βSOR)expressesthetotalβ,andnestingisexpressedbytheSøre- senindexminustheSimpsonindex(β )[76]. SNE Totestthedependenceoflocal,landscapeandseasonaleffectsonbutterflyspeciescomposi- tion,PermutationalMutlivariateAnalysisofVariance(PERMANOVA)[77]wasperformed usingthepackage“vegan’[73]andthefunction“adonis”.Forthisanalysis,thebutterflycom- munitycompositionwasusedastheresponsevariableandthelandscapevariables(perimeter andareaoftheisland,distancetotheclosestislandandtocontinuousforest),vegetationvari- ables(canopyopennessandunderstorycoverage)andseasonality(dryandrainy)wereusedas theexplanatoryvariables. PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 7/20 Butterfliesinmountaintoprainforestislands Results Atotalof512fruit-feedingbutterfliesindividualsof34speciesoftheNymphalidaefamily, belongingtoseventribesandthreesubfamiliesBiblidinae(4individuals),Caraxinae(5indi- vidual)andSatyrinae(504individuals)werecollected(Table2).Themostabundantspecies wereGodartianamuscosa(Satyrinae)with189individuals(36.8%),followedbyYphithimoides straminea(Satyrinae)with69individuals(13.4%)andMoneuptychiasoter(Satyrinae)with44 individuals(8.6%).Ofallthe34species,15weresingletons(representing44.1%ofthespecies). Noneofthespeciesoccurredonalloftheislands.Speciesrichnessvariedfrom3(Island3)to 18species(Island5)whiletheabundancevariedfrom4(Island6)to100individuals(Island 10)(Table2).BasedontheJacknife1richnessestimator,68.4%ofthespeciespresentwerecol- lected(estimated49.6species). Localeffects Canopyopennessoftheforestislandsvariedfrom7%(island14inthedryseason)to29% (island10intherainyseason),whiletheaveragecanopyopennesswas12.87%(±4.5SE).The effectofcanopyopennessonbutterflyrichnessandabundancewasdifferentdependingonthe season.Canopyopennessdidnotaffecttherichnessandabundanceofbutterfliesintherainy season.Inthedryseason,richness(p<0.001)andabundance(p<0.001)ofbutterflyspecies weregreaterinislandswithgreatercanopyopenness(Fig3Aand3B;Table3). Understorycoveragevariedfrom16%(island9inthedryseason,±0.022SE)to73% (island10intherainyseason,±0.034SE),whiletheaverageunderstorycoveragewas35.8% (±0.021SE).Theeffectofunderstorycoverageonbutterflyrichnesswasdependentonthesea- son(Table3).Intherainyseason,richnessofbutterflieswasgreaterinislandswithhigher understorycoverage(p=0.03);whileinthedryseason,richnessofbutterflieswasgreaterin islandswithlowerunderstorycoverage(p=0.02)(Fig3C).Theabundanceofbutterflieswas notaffectedbytheunderstorycoverageinanyseason(p=0.3)(Fig3D). Fruit-feedingbutterflyrichnessdidnotvarywithseason(Fig4A).Ofallthe34speciescol- lected,27specieswerecollectedintherainyseasonand20speciesinthedryseason.Theaver- agenumberofspeciesofbutterfliesperislandwas3.68(SE=0.83),wherein4.3(SE=0.58)in therainyseasonand3.04(SE=0.48)inthedryseason.Ofallthe34speciessampled13species (38.2%)occurredinbothseason,14(41.2%)wereexclusiveoftherainyseasonandseven (20.6%)ofthedryseason.Therewasnosignificantdifferenceinbutterflyabundancebetween therainyanddryseasons.Theaverageabundanceofbutterfliesperislandwas11.66(±2.53SE) individuals,withnosignificantdifferencesbetweenseasonsinthesimplifiedmodel(Fig4B). Landscapeeffects Thelandscapemetrics(area,perimeter,distancetoclosestislandandtocontinuousforest)did notinfluencetherichnessortheabundanceoffruit-feedingbutterfliesoftheforestislandsof theSerradoCipó(richnessF =2.03;p=0.22;abundance,F =1.71;p=0.28). 3,6 3,6 Speciescomposition Thepartitioningofdiversityshowedthatα(forestislanddiversity)wasresponsiblefor25.6% ofthetotaldiversity(averageof8.7species),agreaterdiversitythanexpectedifindividuals weredistributedatrandom(expected=21.6%;α=7.36;p<0.001;Fig5).Thecontributionof βdiversitycontribution(diversityamongislands)wasresponsiblefor74.3%ofthetotaldiver- sity(averageof25.3species)andwaslessthanexpectedbychance(expected=78.3%;β=26.6; p<0.001).Nevertheless,βdiversitywasthediversityscalethatmostcontributedtothetotal PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 8/20 Butterfliesinmountaintoprainforestislands Table2. Frequency,richnessandsingletonsofspeciesoffrugivorousbutterfliescollectedinthearchipelagoofforestislandsinSerradoCipo´, Brazil. Abundanceofbutterflysubfamilyisshownwithinparentheses. Species Island# Season Total 1 2 3 4 5 6 7 8 9 10 11 Wet Dry Biblidinae(4) TribeBiblidini Hamadryasferonia(Linnaeus,1758) 1 1 1 TribeCallicorini Callicoresorana(Godart,[1824]) 1 1 1 TribeCatonephelini Catonepheleacontius(Linnaeus,1771) 1 1 1 Mysceliaorsis(Drury,1782) 1 1 1 Charaxinae(5) TribePreponini Archaeopreponademophoon(Hu¨bner,[1814]) 2 1 3 3 TribeAnaeini Fountainearyphea(Cramer,1775) 1 1 1 Memphismoruus(Fabr´ıcius,1775) 1 1 1 Satyrinae(503) TribeBrassolini Blepolenisbatea(Hu¨bner,[1821]) 1 2 2 3 4 1 13 13 Caligoarisbe(Hu¨bner,[1822]) 13 5 4 1 6 4 33 33 Dasyophthalmarusina(Godart,[1824]) 1 1 1 3 3 Eryphanisautomedon(Cramer,1775) 3 1 3 1 4 Opopterasyme(Hu¨bner,[1821]) 4 4 12 5 25 25 Opsiphanesinvirae(Hu¨bner,[1808]) 1 1 1 TribeSatirini Carmindagriseldis 1 1 1 Erichthodesnarapa(Schaus,1902) 1 1 1 Forsterinarianecys(Godart,[1824]) 1 10 1 7 5 12 Forsterinariaquantius(Godart,[1824]) 9 1 12 7 10 19 29 Godartianamuscosa(A.Butler,1870) 6 8 6 22 1 23 34 13 65 11 71 118 189 Hermeuptychiasp. 3 9 4 11 5 16 Moneuptychiaitapeva(Freitas,2007) 2 5 1 1 4 5 9 Moneuptychiasoter(A.Butler,1877) 1 1 15 1 20 5 1 11 33 44 Paryphthimoideseous(A.Butler,1867) 1 1 1 Paryphthimoidesphronius(Godart,[1824]) 13 3 16 16 Paryphthimoidespoltys(Prittwitz,1865) 3 1 1 3 2 5 Pharneuptychiasp. 2 1 1 1 3 2 5 Pharneuptychiaphares(Godart,[1824]) 1 1 1 Praepedaliodesphanias(Hewitson,1862) 1 1 1 Yphthimoidesangularis(A.Butler,1867) 1 1 1 9 2 10 4 14 Yphthimoidesmanasses(C.Felder&R.Felder,1867) 1 1 1 Yphthimoidesochracea(A.Butler,1867) 2 1 3 3 Yphthimoidespacta(Weymer,1911) 1 1 1 Yphthimoidesstraminea(A.Butler,1867) 2 1 1 3 35 10 10 7 51 18 69 Yphthimoidesyphthima(C.Felder&R.Felder,1867) 1 1 1 2 1 3 Zischkaiapronophila(Butler,1867) 3 1 2 3 Abundance 8 8 19 35 82 4 78 88 64 100 27 273 239 512 Richness 3 6 9 8 16 4 14 17 13 10 11 27 20 43 Singletons 3 5 1 2 3 1 9 6 15 https://doi.org/10.1371/journal.pone.0180007.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 9/20 Butterfliesinmountaintoprainforestislands Fig3.Effectofcanopyopennessandunderstorycoverageonrichnessandabundanceoffrugivorousbutterfliesbyseason(dryand rainy),basedonsimplifiedgeneralizedlinearmixedmodel(Table3).(A)Richnesswithcanopyopennessinthedryseason—p<0.001;(B) Abundancewiththecanopyopennessinthedryseason—p<0.001;(C)Richnessofbutterflieswithunderstorycoverageintherainyseason— p=0.03;(D)Abundanceofbutterflieswithunderstorycoverageinthedryseason—p=0.02.(D)Legend:dryseason—dashedlinesandemptycircles, rainyseason—solidlinesandfullcircles. https://doi.org/10.1371/journal.pone.0180007.g003 diversityoftheforestarchipelago(α=25.6%andβ=74.3%).Thedifferenceinbetadiversity amongislandswascausedmainlybytheprocessofspeciesturnover(75.9%ofβ,β =0.49), SIM whiletheprocessesofnestingexplainedonly24.1%ofthebetadiversity(β =0.15). SNE Thetemporalpartitionofβindicatedthattheturnoverwasresponsiblefor78.3%ofthe totalβdiversityamongislandsintime(β =0.518;β =0.406),whilenestingrepresented SOR SIM PLOSONE|https://doi.org/10.1371/journal.pone.0180007 June30,2017 10/20

Description:
rainy season. Instead, the butterfly species richness was higher with lower understory cov- erage in the dry season. Butterfly abundance was not influenced by understory cover. The landscape .. to be analyzed using the software Gimp 2 (Gnu Image Manipulation Program 2.8.14). Very dark photos with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.