ebook img

Distribution of the largest root of a matrix for Roy's test in multivariate analysis of variance PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Distribution of the largest root of a matrix for Roy's test in multivariate analysis of variance

arXiv:arXiv:0000.0000 DISTRIBUTION OF THE LARGEST ROOT OF A MATRIX FOR ROY’S TEST IN MULTIVARIATE ANALYSIS OF VARIANCE BY MARCO CHIANI 4 1 University ofBologna 0 2 LetX,YdenotetwoindependentrealGaussianp×mandp×nmatrices withm,n ≥ p,eachconstitutedbyzeromeanindependent, identicallydis- b tributedcolumnswithcommoncovariance.TheRoy’slargestrootcriterion, e usedinmultivariateanalysisofvariance(MANOVA),isbasedonthestatis- F tic of the largest eigenvalue, Θ1, of (A+B)−1B, where A=XXT and 5 B=YYT areindependent centralWishartmatrices. Wederiveanew ex- pressionandefficientrecursiveformulasfortheexactdistributionofΘ1.The ] expressioncanbeeasilycalculatedevenforlargeparameters,eliminatingthe T needofpre-calculatedtablesfortheapplicationoftheRoy’stest. S . h t a 1. Introduction. Thejoint distribution of snon-null eigenvalues of amultivari- m ate real beta matrix in the null case can be written in the form [14, page 112], [2, [ page331], 3 s s v 7 (1.1) f(θ1,...,θs) = C(s,m,n) θim(1−θi)n · (θi−θj) 8 Yi=1 Yi<j 9 3 where 1 > θ1 ≥ θ2··· ≥ θs > 0, and C(s,m,n)isa normalizing constant given . 1 by 0 4 s Γ i+2m+2n+s+2 1 (1.2) C = C(s,m,n)= πs/2 2 . : Γ i Γ(cid:0)i+2m+1 Γ i+(cid:1)2n+1 v Yi=1 2 2 2 i (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) X This distribution arises in multivariate analysis of variance (MANOVA)and, with ar thenotationintroducedabove,isthedistributionoftheeigenvaluesof(A+B)−1B withparameters (1.3) s= p, m = (n−p−1)/2, n = (m−p−1)/2. The marginal distribution of the largest eigenvalue, Θ1, is of basic importance in testing hypotheses and constructing confidence regions in multivariate analysis of AMS2000subjectclassifications:Primary62H10;secondary15A52 Keywordsandphrases: Roy’s test, Random Matrices, multivariate analysis of variance (MANOVA),characteristicroots,largesteigenvalue,Tracy-Widomdistribution,Wishartmatrices. 1 M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 2 variance(MANOVA)accordingtotheRoy’slargestrootcriterion(seee.g.[2,page 333] and references therein), and isgenerally considered difficult tocompute. For this reason, extensive studies have produced tables of upper percentage points for few specific (small) values of s and some combinations of m,n (see e.g. [8, 15], [2,TableB.4]).Themostefficientnumerical algorithm tocomputethecumulative distribution function (CDF)ofΘ1 isprovided in[3]based on[7],butfornoninte- gersmornitrequiresinfiniteseriesexpansionswhichcanresultsincomputational timeofseveralhours. Approximations based ontheTracy-Widom distribution are discussed in[12]. In this paper we derive a simple expression for the exact CDFof Θ1 for arbitrary s,n,m,andaniterativealgorithm foritsfastevaluation. Thealgorithmneedsonly the incomplete beta function, and does not rely on numerical integration or series expansion.Forinstance,allresultsin[2,TableB.4]orin[12,Table1]canbeeasily computed instantaneously1;even for the most challenging cases analyzed in liter- ature [3, Table 1], which with previous methods required hours of computational time, no more than a second is needed. Finally, we discuss some approximations basedontheTracy-Widomdistribution anditsapproximation [12,4]. We remark that we study the case of real matrices: the complex analogous of our problem, i.e., the case where X,Y are independent complex Gaussian, is much easierandhasbeensolvedin[13]. Throughout thepaper weindicate withΓ(.)thegammafunction, withB(a,b)the betafunction, withB(x;a,b) = xta−1(1−t)b−1dttheincomplete (lower)beta 0 function[1,Ch.6],andwith|·|tRhedeterminant. 2. Exact distribution of the largest eigenvalue for multivariate beta matrices inthenullcase. Thefollowingisthemainresultofthepaper. THEOREM 1. TheCDFofthelargest eigenvalue Θ1 foramultivariate beta ma- trixinthenullcaseis: (2.1) FΘ (θ1) = Pr{Θ1 ≤ θ1} = C |A(θ1)|. 1 p Whensiseven,theelementsofthes×sskew-symmetricmatrixA(θ1)are: (2.2) ai,j(θ1) =E(θ1;m+j,m+i)−E(θ1;m+i,m+j) i,j = 1,...,s where x (2.3) E(x;a,b) , ta−1(1−t)nB(t;b,n+1)dt. Z0 1Onacurrentdesktopcomputerinlessthan0.1seconds. M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 3 Whensisodd,theelementsofthe(s+1)×(s+1)skew-symmetricmatrixA(x1) areasin(2.2),withtheadditional elements (2.4) ai,s+1(θ1) = B(θ1;m+i,n+1) i = 1,...,s (2.5) as+1,j(θ1) = −aj,s+1(θ1) j = 1,...,s (2.6) as+1,s+1(θ1) = 0 Notethatai,j(θ1)= −aj,i(θ1)andai,i(θ1) = 0. Moreover,theelementsai,j(θ1)canbecomputediteratively, startingfromthebeta function, withoutnumerical integration orseriesexpansion. PROOF. Theproofisbasedontheapproachintroducedin[4]forWishartandGOE matrices. Denotingξ(x) = xm(1−x)n,x= [x1,x2,...,xs],andwithV(x) = xij−1 the n o Vandermonde matrix,wehavefortheeigenvalues inascending order s s (2.7) f(xs,...,x1)= C (xj −xi) ξ(xi) = C|V(x)| ξ(xi) Yi<j Yi=1 Yi=1 wherenow0 < x1 ≤ ··· ≤ xs < 1. TheCDFofthelargest eigenvalue isthen (2.8) FΘ1(θ1) = Z ...Z f(xs,...,x1)dx 0≤x1<...<xs≤θ1 s (2.9) = C ... |V(x)| ξ(x )dx. i Z Z 0≤x1<...<xs≤θ1 Yi=1 Toevaluatethisintegralwerecallthatforagenerics×smatrixΦ(x)withelements {Φ (x )}thefollowingidentityholds[6] i j (2.10) ... |Φ(x)|dx =Pf(A) Z Z a≤x1<...<xs≤b where Pf(A) = |A|is the Pfaffian, and the skew-symmetric matrix A iss×s forseven,and(sp+1)×(s+1)forsodd,with b b (2.11) a = sgn(y−x)Φ (x)Φ (y)dxdy i,j = 1,...,s. i,j i j Z Z a a M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 4 b For s odd the additional elements are ai,s+1 = −as+1,i = a Φi(x)dx, i = 1,...,s,andas+1,s+1 = 0. R Using (2.10) in (2.9) with a = 0,b = θ1,Φi(x) = xi−1ξ(x) = xi−1xm(1−x)n withsomesimplemanipulations givesTheorem1. To avoid the numerical integration in (2.3), we first observe that the incomplete betafunctions canbecomputed iterativelybytherelation a xa(1−x)b (2.12) B(x;a+1,b) = B(x;a,b)− . a+b a+b Thisrelationisobtainedforexamplewithintegrationbypartsof ta(1−t)b−1dt = f(t)g′(t)dtwithf(t)= ta−ta+1,g′(t)= (1−t)b−2. R RThen,from(2.3)and(2.12)thefollowingidentities canbeeasilyverified: 1 (2.13) E(x;a,a) = B(x;a,n+1)2 2 E(x;a,b) B(x;a+b,2n+2) (2.14) E(x;a,b+1) = b − b+n+1 b+n+1 (2.15) E(x;b,a) = B(x;a,n+1)B(x;b,n+1)−E(x;a,b). Therefore, the elements of the matrix in (2.1) can be evaluated iteratively without anynumerical integration. Theorem 1 can thus be used for an efficient computation of the exact CDF of the largesteigenvalueforRoy’stest.Infact,using(2.13),(2.14),and(2.15),theCDFin (2.1)can be simply evaluated, without numerical integrations or series expansion, byAlgorithm 1reported below. Implementing directly the algorithm in Mathematica on a personal computer, for each value x1 we obtain the exact CDF in (2.1) in less than 0.1 seconds for all tablesin[15],[2,TableB.4]and[12,Table1].Fors = 54,m = −1/2,n = 45/2, which corresponds to the most challenging case analyzed in literature [3, Table 1, last row], the exact CDF is computed with the new expression in less than a second. For comparison, the approach based on series expansions of the hyperge- ometric function of a matrix argument requires hours. For larger parameters for whichnoothermethods areavailable inliterature, likeforexamples = 200,m = −1/2,n = 299/2, the computational time is less than fifteen seconds on a com- monpersonal computer. Therefore, the upper percentage points for Roy’s test can be the evaluated exactly and almost instantaneously for parameters of interest in appliedstatistics. M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 5 Algorithm1Algorithm:CDFofthelargesteigenvalue forRoy’stest Input: s,m,n,θ1 Needed: IncompletebetafunctionB(x;a,b) Output: FΘ1(θ1)=Pr{Θ1 ≤θ1} A=0 fori=1→sdo bi =B(θ1;m+i,n+1)2/2 forj =i→s−1do m+j B(θ1;2m+i+j,2n+2) bj+1 = bj− m+j+n+1 m+j+n+1 ai,j+1 =B(θ1;m+i,n+1)B(θ1;m+j+1,n+1)−2bj+1 endfor endfor ifsisoddthen AppendonecolumntoAwithai,s+1 =B(θ1;m+i,n+1), i=1,...,s AppendonezerorowtoA endif A=A−AT return FΘ1(θ1)=C(s,m,n)p|A| 3. Approximations. In[12]itisshownthatthelogitofΘ1approachestheTracy- Widomlawforlarges.Moreprecisely, itisshownthat,form ≥ −1/2,n ≥ 0and larges,thefollowingapproximation holds (3.1) log(Θ1/(1−Θ1))−µ ≈D TW1 σ where TW1 denotes a random variable with Tracy-Widom distribution of order 1 [16,17, 9, 10, 18], and the values of µ,σ are given, using the parameters in (1.3), by[11,12] γ+φ (3.2) µ = 2logtan (cid:18) 2 (cid:19) 16 1 3 (3.3) σ = (m+n−1)2sin2(γ +φ)sinγsinφ m+n−2p (3.4) γ = arccos (cid:18) m+n−1 (cid:19) m−n (3.5) φ = arccos . (cid:18)m+n−1(cid:19) M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 6 Moreover,in[4]itisshownthattheTW canbecloselyapproximatedbyashifted 1 gammadistribution, sothat x+α (3.6) F1(x) , Pr(TW1 ≤ x) ≃ P k, x > −α (cid:18) δ (cid:19) (3.7) x = F−1(y) ≃ δP−1(k,y)−α 1 where P(a,x) is the regularized lower incomplete gamma function, P−1(a,y) is its inverse, and the constants k = 46.446,δ = 0.186054,α = 9.84801 have been chosentomatchthemomentsoftheapproximation tothatoftheTracy-Widom. Thus, using (3.6) in (3.1) we obtain for the CDF of the Roy’s statistic in the null case log(θ1/(1−θ1))−µ+σα (3.8) FΘ (θ1)≃ P k, 1 (cid:18) δ (cid:19) andforitsinverse, usefulforevaluating thepercentiles, exp σ[δP−1(k,y)−α]+µ (3.9) θ1 = FΘ−11(y) ≃ 1+ex(cid:8)p{σ[δP−1(k,y)−α]+(cid:9)µ} . Anexamplecomparing exact(byAlgorithm 1)withapproximate (by(3.8))distri- butionsisreportedinFig.1. While Theorem 1 with Algorithm 1 gives the exact distribution, the two approxi- mationsabove, whichareinsimple closed forms,canbeusedforarapid, approx- imate design of the Roy’s test. For instance, with s = 5,m = −1/2,n = 1000 the 80th-percentile obtained by root-finding with the exact CDF of Algorithm 1 is θ1 = 0.008501, while (3.9) gives θ1 = 0.008609. For larger matrices and largervaluesoftheCDFtheapproximationgenerallyimproves.Forexample,with s = 200,m = −1/2,n = 299/2 the 99th-percentile obtained by Algorithm 1 is θ1 = 0.827760, while(3.9)givesθ1 = 0.827761. 4. Remarks for the complex multivariate beta. For completeness we recall that, when X,Y are two independent complex Gaussian, the analogous of (1.1) is the complex multivariate beta, where the joint distribution of the eigenvalues is [13] s s (4.1) f(θ1,...,θs) = C′(s,m,n) θim(1−θi)n · (θi−θj)2 Yi=1 Yi<j where1 > θ1 ≥ θ2··· ≥ θs > 0,and s Γ(m+n+s+i) C′(s,m,n) = . Γ(i)Γ(i+m)Γ(i+n) Yi=1 M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 7 CDFHΘ1L 1 0.8 0.6 0.4 0.2 00 0.2 0.4 0.6 0.8 1Θ1 FIG 1.CDFofthelargest eigenvalue, realbetamatrix,m = −1/2,n = 100. Fromlefttoright: s = 5,15,100.Comparisonbetweentheexactdistribution(2.1)(solidline)andtheapproximation in(3.8)(dotted).Notethatfors=100thetwocurvesarealmostindistinguishable. Inthiscasewecanwrite s (4.2) f(θ1,...,θs) = C′(s,m,n)|V(θ)|2 ξ(θi). Yi=1 Therefore, by applying [5, Corollary 2] the CDF of Θ1 in the complex case is simplygivenby[13] (4.3) FΘ (θ1)= Pr{Θ1 ≤ θ1}= C′(s,m,n) |A(θ1)| 1 wheretheelementsofthes×smatrixA(θ1)are: (4.4) ai,j(θ1) = B(θ1,m+i+j −1,n+1) i,j = 1,...,s. Moreover, expressions analogous to (3.6) and (3.9) can be derived, by using the Tracy-Widom limiting behavior for Θ1 in the complex case [11] and the approxi- mationoftheTracy-Widomoforder2withashiftedgamma[4]. REFERENCES [1] ABRAMOWITZ, M. and STEGUN, I. A. (1970). Handbook of Mathematical Functions wih Formulas,Graphs,andMathematicalTables.UnitedStatesDepartmentofCommerce,Wash- ington,D.C. M.CHIANI/DISTRIBUTIONOFTHELARGESTROOTOFAMATRIXFORROY’STEST 8 [2] ANDERSON, T. W. (2003). AnIntroduction toMultivariate StatisticalAnalysis.Wiley,New York. [3] BUTLER,R.W.andPAIGE,R.L.(2011).ExactdistributionalcomputationsforRoy’sstatistic andthelargesteigenvalueofaWishartdistribution.StatisticsandComputing21147–157. [4] CHIANI,M.(2012).DistributionofthelargesteigenvalueforrealWishartandGaussianran- dom matrices and a simple approximation for the Tracy-Widom distribution. arXiv preprint arXiv:1209.3394. [5] CHIANI,M.,WIN,M.Z.andZANELLA,A.(2003).OntheCapacityofSpatiallyCorrelated MIMORayleighFadingChannels.IEEETrans.Inform.Theory492363-2371. [6] DEBRUIJN,N.G.(1955).Onsomemultipleintegralsinvolvingdeterminants.J.IndianMath. Soc19133–151. [7] GUPTA, R. D. and RICHARDS, D. S. P. (1985). Hypergeometric functions of scalar matrix argumentareexpressibleintermsofclassicalhypergeometricfunctions.SIAMJ.Math.Anal. 16852-858. [8] HECK, D. (1960). Charts of some upper percentage points of the distribution of the largest characteristicroot.TheAnnalsofMathematicalStatistics31625–642. [9] JOHANSSON,K.(2000).ShapeFluctuationsandRandomMatrices.CommunicationsinMath- ematicalPhysics209437-476. [10] JOHNSTONE,I. M. (2001).Onthedistributionofthelargesteigenvalue inprincipalcompo- nentsanalysis.TheAnnalsofstatistics29295–327. [11] JOHNSTONE, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widomlimitsandratesofconvergence.TheAnnalsofstatistics362638–2716. [12] JOHNSTONE, I. M. (2009). Approximate null distribution of the largest root in multivariate analysis.Theannalsofappliedstatistics31616–1633. [13] KHATRI,C.G.(1964).Distributionofthelargestorthesmallestcharacteristicrootundernull hypothesis concerning complex multivariate normal populations. Ann. Math. Stat. 35 1807- 1810. [14] MUIRHEAD,R.J.(1982).AspectsofMultivariateStatisticalTheory.Wiley,NewYork. [15] PILLAI,K. S.(1967).Upperpercentagepointsofthelargestrootofamatrixinmultivariate analysis.Biometrika54189–194. [16] TRACY,C.A.andWIDOM,H.(1994).Level-spacingdistributionsandtheAirykernel.Com- municationsinMathematicalPhysics159151–174. [17] TRACY,C.A.andWIDOM,H.(1996).Onorthogonalandsymplecticmatrixensembles.Com- municationsinMathematicalPhysics177727-754. [18] TRACY, C. A. and WIDOM, H. (2009).Thedistributionsofrandommatrixtheoryandtheir applications.NewTrendsinMathematicalPhysics753–765. DEI,UNIVERSITYOFBOLOGNA V.LERISORGIMENTO2,40136 BOLOGNA [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.